Preliminary Exam 2019
 Solutions to Morning Exam

Part I.

Solve four of the following five problems.
Problem 1. Consider the function f on \mathbb{R} such that $f(x)=x^{2} \ln |x|$ if $x \neq 0$ and $f(0)=0$. Prove that $f^{\prime}(0)$ exists but $f^{\prime \prime}(0)$ does not.

Solution: The limit of the difference quotient for f at 0 is

$$
\lim _{x \rightarrow 0} \frac{x^{2} \ln |x|}{x}=\lim _{x \rightarrow 0} x \ln |x|=0
$$

by L'Hôpital's Rule. So $f^{\prime}(0)$ exists and equals 0 . Now if $x \neq 0$ then $f^{\prime}(x)=$ $2 x \ln |x|+x$, so the limit of the difference quotient for f^{\prime} at 0 is

$$
\lim _{x \rightarrow 0} \frac{2 x \ln |x|+x}{x}=1+2 \lim _{x \rightarrow 0} \ln |x|,
$$

which does not exist as a finite quantity (the limit is $-\infty$).
Problem 2. Suppose that $y: \mathbb{R} \rightarrow \mathbb{R}$ is twice-differentiable and satisfies the differential equation $y^{\prime \prime}+y^{\prime}+y=0$. If $y(0)=1$ and $y(\pi / \sqrt{3})=0$ then what is $y(2 \pi / \sqrt{3})$? Simplify your answer to the extent possible.

Solution: Since $r^{2}+r+1=\left(r-e^{\lambda}\right)\left(r-e^{\bar{\lambda}}\right)$ with $\lambda=e^{2 \pi i / 3}=-1 / 2+i \sqrt{3} / 2$, we can write $y=a e^{\lambda t}+b e^{\bar{\lambda} t}$ with constants $a, b \in \mathbb{C}$. But $y(0)=1$ and $y(\pi / \sqrt{3})=0$, or in other words.

$$
\left\{\begin{array}{l}
a+b=1 \\
e^{-\pi / \sqrt{3}}(a-b) i=0
\end{array}\right.
$$

so $a=b=1 / 2$. Therefore

$$
y=\left(e^{(-1 / 2+i \sqrt{3} / 2) t}+e^{(-1 / 2-i \sqrt{3} / 2) t}\right) / 2=e^{-t / 2} \cos (\sqrt{3} t / 2)
$$

so $y(2 \pi / \sqrt{3})=-e^{-\pi / \sqrt{3}}$.
Problem 3. Let $f(x)=e^{x^{2}}$ and $g(x)=\int_{0}^{\tan x} f(t) d t$. Find $g^{\prime}(x)$, and then find a constant $c \neq 0$ such that $c g^{\prime}(x)=h(x) e^{h(x)}$ for some function $h(x)$.

Solution: By the Fundamental Theorem of Calculus and the Chain Rule,

$$
g^{\prime}(x)=f(\tan x) \sec ^{2} x=e^{\tan ^{2} x} \sec ^{2} x .
$$

Recalling that $\tan ^{2} x+1=\sec ^{2} x$, we see that we may take $c=e$ and $h(x)=\sec ^{2} x$.
Problem 4. Decide whether each series converges, justifying your answer:
(a) $\sum_{n \geqslant 2}(\cos (1 / \log n)-1) n^{-1}$

Solution: From the Taylor series of the cosine function (or simply by Taylor's theorem) we have $|\cos x-1| \leqslant M x^{2}$ for x near 0 , so in particular

$$
|\cos (1 / \log n)-1| n^{-1} \leqslant M n^{-1}(\log n)^{-2}
$$

Now $\sum_{n \geqslant 2} n^{-1}(\log n)^{-2}$ converges by the Integral Test, because

$$
\int_{2}^{T} \frac{d x}{x(\log x)^{2}}=-\left.(\log x)^{-1}\right|_{2} ^{T}=(\log 2)^{-1}-(\log T)^{-1} \rightarrow(\log 2)^{-1}
$$

as T goes to infinity. Therefore $\sum_{n \geqslant 2}(\cos (1 / \log n)-1) n^{-1}$ is absolutely convergent (and hence convergent) by the Comparison Test.
(b) $\sum_{n \geqslant 2} \sin (1 / \log n) n^{-1}$

Solution: Since $\lim _{x \rightarrow 0} \sin x / x=1$, we see that for some $M>0$ we have $\sin x>$ $M x$ if x is close to 0 and positive. In particular,

$$
(M / \log n) n^{-1}<\sin (1 / \log n) n^{-1}
$$

But $\sum_{n \geqslant 2} n^{-1}(\log n)^{-1}$ diverges by the Integral Test, because

$$
\int_{2}^{T} \frac{d x}{x \log x}=\left.\log (\log x)\right|_{2} ^{T}=\log \log T-\log \log 2 \rightarrow \infty
$$

as T goes to infinity. So $\sum_{n \geqslant 2} \sin (1 / \log n) n^{-1}$ diverges by the Comparison Test.
Problem 5. Let I be an open interval in \mathbb{R} and f a differentiable function on I, and suppose that f^{\prime} is identically 0 . Prove that f is a constant function. You may quote theorems from calculus that are logically prior to the present assertion.

Solution: Fix $a \in I$. By the Mean Value Theorem, for any $b \in I$ there exists a number c between a and b such that $f(b)-f(a)=f^{\prime}(c)(b-1)$. Since $f^{\prime}=0$, we get $f(b)=f(a)$, and since $b \in I$ was arbitrary we conclude that f is constant.

Part II.

Solve three of the following six problems.
Problem 6. If $n \mapsto a_{n}$ is a surjective or "onto" map from the set of positive integers to the set $\mathbb{Q} \cap[0,1]$ of rational numbers between 0 and 1 , what is the radius of convergence of the power series $\sum_{n \geqslant 1} a_{n} x^{n}$? Prove your answer.

Solution: Let ρ be the radius of convergence. Then $1 / \rho=\lim \sup _{n \rightarrow \infty} a_{n}^{1 / n}$. Put $L=\lim \sup _{n \rightarrow \infty} a_{n}^{1 / n}$. We claim that $L=1$, whence $\rho=1$. Certainly $L \leqslant 1$, because $a_{n} \leqslant 1$ for all n, whence $a_{n}^{1 / n} \leqslant 1$ for all n also. On the other hand, given $\varepsilon>0$, there are infinitely many rational numbers between $1-\varepsilon$ and 1 , hence infinitely many n such that $1-\varepsilon \leqslant a_{n} \leqslant 1$. Therefore

$$
1-\varepsilon<(1-\varepsilon)^{1 / n} \leqslant a_{n}^{1 / n}
$$

for infinitely many n. Therefore $L \geqslant 1-\varepsilon$, and since $\varepsilon>0$ is arbitrary, we conclude that $L \geqslant 1$, whence $L=1$.

Problem 7. Show that

$$
\sum_{n \geqslant 0} \frac{(-1)^{n}}{(2 n+1)(2 n+2)}=\int_{0}^{1}\left(\frac{1}{\sqrt{2-x^{2}}}-\frac{x}{1+x^{2}}\right) d x
$$

by computing both sides explicitly.
Solution: The left-hand side can be rewritten as

$$
\sum_{n \geqslant 0}(-1)^{n}\left(\frac{1}{2 n+1}-\frac{1}{2 n+2}\right)=\sum_{n \geqslant 0} \frac{(-1)^{n}}{2 n+1}-\frac{1}{2} \sum_{n \geqslant 0} \frac{(-1)^{n}}{n+1}
$$

The first and second series on the right-hand side converge by the Alternating Series Test, and they are the values at $x=1$ of the Taylor series

$$
\tan ^{-1} x=\sum_{n \geqslant 0}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}
$$

and

$$
\log (x+1)=\sum_{n \geqslant 0}(-1)^{n} \frac{x^{n+1}}{n+1}
$$

respectively. Thus the left-hand side is $\tan ^{-1}(1)-(\log 2) / 2=\pi / 4-\log \sqrt{2}$. (The Taylor series are obtained by integrating the geometric series for $\left(1+t^{2}\right)^{-1}$ and $(1+t)^{-1}$ respectively for $0 \leqslant t \leqslant x$. Strictly speaking, since the geometric series converges only for $|x|<1$, one should also quote Abel's theorem that a power series that converges on a closed interval is continuous there.)

The right-hand side can be written as

$$
\left.\sin ^{-1}(x / \sqrt{2})\right|_{0} ^{1}-\left.\frac{\log \left(1+x^{2}\right)}{2}\right|_{0} ^{1}=\pi / 4-(\log 2) / 2,
$$

which coincides with the left-hand side.
Problem 8. Find the value of the line integral $\int_{C} x d y-y d x$, where C is the curve $r=\cos 2 \theta$ for $-\pi / 4 \leqslant \theta \leqslant \pi / 4$, oriented counterclockwise.

Solution: By Green's Theorem, the line integral coincides with

$$
\iint_{R}\left(\frac{\partial}{\partial x} x-\frac{\partial}{\partial y}(-y)\right) d x d y=2 \iint_{R} d x d y
$$

where R is the region enclosed by C. Thus the line integral coincides with

$$
2 \int_{-\pi / 4}^{\pi / 4} \int_{0}^{\cos 2 \theta} r d r=\int_{\pi / 4}^{\pi / 4} \cos ^{2}(2 \theta) d \theta
$$

Since $\cos ^{2}(2 \theta)$ is an even function, the right-hand side coincides with

$$
2 \int_{0}^{\pi / 4} \cos ^{2}(2 \theta) d \theta=\int_{0}^{\pi / 4}(1+\cos 4 \theta) d \theta
$$

which is $\pi / 4$.
Problem 9. Let D be the solid region inside the cone $z=\sqrt{x^{2}+y^{2}}$ and between the two hemispheres $z=\sqrt{4-x^{2}-y^{2}}$ and $z=\sqrt{1-x^{2}-y^{2}}$. Given that D has uniform density, find the "center of mass" or "centroid" of D. You may use symmetry considerations to reduce the amount of computation.

Solution: Let $(\bar{x}, \bar{y}, \bar{z})$ be the center of mass. The rotational symmetry of D about the z-axis ensures that $\bar{x}=\bar{y}=0$. We must compute the quantity $\bar{z}=I / J$, where

$$
I=\iiint_{D} z d x d y d z
$$

and

$$
J=\iiint_{D} d x d y d z
$$

We compute I and J in spherical coordinates: Thus

$$
J=\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \int_{1}^{2} \rho^{2} \sin \varphi d \rho d \varphi d \theta=2 \pi(1-\sqrt{2} / 2)(7 / 3)
$$

and

$$
I=\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \int_{1}^{2} \rho^{3} \cos \varphi \sin \varphi d \rho d \varphi d \theta=15 \pi / 8
$$

So $\bar{z}=I / J=45 /(56(2-\sqrt{2}))$.

Problem 10. Let S be the portion of the sphere $x^{2}+y^{2}+z^{2}=4$ defined by $z \geqslant 1$, and let $\mathbf{F}(x, y, z)=\left(-y+z, x+z, z^{2}\right)$. Find the value of the surface integral

$$
\iint_{S}(\nabla \times \mathbf{F}) \cdot d \mathbf{S}=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma
$$

(to use two common notations), where n is the unit outward normal vector, $d \sigma$ is an infinitesimal unit of surface area, and $d \mathbf{S}=\mathbf{n} d \sigma$.

Solution: By Stokes' Theorem, the surface integral equals a line integral:

$$
\iint_{S}(\nabla \times \mathbf{F}) \cdot d \mathbf{S}=\int_{\partial S} \mathbf{F} \cdot d \mathbf{r}
$$

where ∂S is the boundary of S oriented counterclockwise. Now ∂S is a circle, and we can parametrize it by

$$
\mathbf{r}(t)=(\sqrt{3} \cos t, \sqrt{3} \sin t, 1) \quad(0 \leqslant t \leqslant 2 \pi) .
$$

Also $\mathbf{F}(\mathbf{r}(t))=(-\sqrt{3} \sin t+1, \sqrt{3} \cos t+1,1)$ and $\mathbf{r}^{\prime}(t)=(-\sqrt{3} \sin t, \sqrt{3} \cos t, 0)$, so

$$
\mathbf{F}(\mathbf{r}(t)) \cdot d \mathbf{r}^{\prime}(t)=3-\sqrt{3} \sin t+\sqrt{3} \cos t
$$

Hence

$$
\int_{\partial S} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{2 \pi}(3-\sqrt{3} \sin t+\sqrt{3} \cos t) d t=6 \pi
$$

Problem 11. Show that there are open neighborhoods D and D^{\prime} of $(0,0) \in \mathbb{R}^{2}$ such that if $(a, b) \in D^{\prime}$ then the system of equations

$$
\left\{\begin{array}{l}
2 e^{x}-e^{2 y}-e^{4 x-7 y}=a \\
e^{3 x}+4 e^{y}-5 e^{x+y}=b
\end{array}\right.
$$

has a unique solution $(x, y) \in D$.
Solution: Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $f(x, y)=\left(2 e^{x}-e^{2 y}-e^{4 x-7 y}, e^{3 x}+4 e^{y}-5 e^{x+y}\right)$. The Jacobian matrix of f is
so

$$
\left[f^{\prime}(x, y)\right]=\left(\begin{array}{cc}
2 e^{x}-4 e^{4 x-7 y} & -2 e^{2 y}+7 e^{4 x-7 y} \\
3 e^{3 x}-5 e^{x+y} & 4 e^{y}-5 e^{x+y}
\end{array}\right)
$$

$$
f^{\prime}(0,0)=\left(\begin{array}{cc}
-2 & 5 \\
-2 & -1
\end{array}\right),
$$

and consequently $\operatorname{det} f^{\prime}(0,0)=12 \neq 0$. Thus $f^{\prime}(0,0)$ is invertible Note also that $f(0,0)=(0,0)$. Applying the Inverse Function Theorem, we deduce that there are open neighborhoods D and D^{\prime} of $(0,0)$ such that f is a C^{∞} diffeomorphism of D onto D^{\prime}. In particular, f is a bijection of D onto D^{\prime}, so given $(a, b) \in D^{\prime}$ there exists a unique point $(x, y) \in D$ such that $f(x, y)=(a, b)$.

Solution:

Part III.

Solve one of the following three problems.
Problem 12. Let X be a metric space with metric d, and let $\left\{x_{n}\right\}_{n \geqslant 1}$ and $\left\{y_{n}\right\}_{n \geqslant 1}$ be two Cauchy sequences in X. Show that $\left\{d\left(x_{n}, y_{n}\right)\right\}_{n \geqslant 1}$ is a Cauchy sequences of real numbers. Do not use the fact that X can be embedded in a complete metric space.

Solution: By the triangle inequality we have

$$
d\left(x_{n}, y_{n}\right) \leqslant d\left(x_{n}, x_{m}\right)+d\left(x_{m}, y_{m}\right)+d\left(y_{m}, y_{n}\right)
$$

whence

$$
d\left(x_{n}, y_{n}\right)-d\left(x_{m}, y_{m}\right) \leqslant d\left(x_{n}, x_{m}\right)+d\left(y_{m}, y_{n}\right) .
$$

Similarly

$$
d\left(x_{m}, y_{m}\right)-d\left(x_{n}, y_{n}\right) \leqslant d\left(x_{n}, x_{m}\right)+d\left(y_{m}, y_{n}\right)
$$

so we get

$$
\left|d\left(x_{m}, y_{m}\right)-d\left(x_{n}, y_{n}\right)\right| \leqslant d\left(x_{n}, x_{m}\right)+d\left(y_{m}, y_{n}\right)
$$

Now if $\varepsilon>0$ is given, there exists N such that if $n, m \geqslant N$ then $d\left(x_{n}, x_{m}\right)<\varepsilon / 2$ and $d\left(y_{m}, y_{n}\right)<\varepsilon / 2$. Hence if $n, m \geqslant N$ then $\left|d\left(x_{m}, y_{m}\right)-d\left(x_{n}, y_{n}\right)\right|<\varepsilon$, so indeed, $\left\{d\left(x_{n}, y_{n}\right)\right\}_{n \geqslant 1}$ is a Cauchy sequences of real numbers.

Problem 13. Let I be an interval in \mathbb{R} and $\left\{f_{n}\right\}_{n \geqslant 1}$ a sequence of continuous real-valued functions on I which is uniformly convergent to a real-valued function f on I. In the following questions, "prove" means "justify by quoting general theorems," and "give a counterexample" includes proving that your counterexample does what you claim.
(a) If $I=[0,1]$ then is f uniformly continuous? Prove or give a counterexample.

Solution: Yes, because (i) f, being the limit of a uniformly convergent sequence of continuous functions, is continuous, and (ii) a continuous function on a compact set is uniformly continuous.
(b) If $I=\mathbb{R}$ then is f uniformly continuous? Prove or give a counterexample.

Solution: No, f need not be uniformly continuous. For example, let $f_{n}(x)=$ $e^{x}+1 / n$ and $f(x)=e^{x}$. Then $\left\{f_{n}\right\}$ is uniformly convergent to f, because

$$
\left|f_{n}(x)-f(x)\right|=1 / n
$$

for all $x \in \mathbb{R}$, whence $\left|f_{n}(x)-f(x)\right|<\varepsilon$ for $n>1 / \varepsilon$. But f is not uniformly continuous. Indeed let $\varepsilon=1$, and suppose that there exists $\delta>0$ such that $\left|e^{x}-e^{y}\right|<1$ whenever $|x-y|<\delta$. Then $\left|e^{x}-e^{x+\delta / 2}\right|<1$ for all $x \in \mathbb{R}$. So $\left|1-e^{\delta / 2}\right|<e^{-x}$ for all $x \in \mathbb{R}$. Taking the limit as $x \rightarrow \infty$, we obtain $\left|1-e^{\delta / 2}\right| \leqslant 0$, contradicting our assumption that $\delta>0$.

Problem 14. Define $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1}+x_{2}+\cdots+x_{n}$ and $g\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1} x_{2} \cdots x_{n}$. Given $c>0$, consider the surface
$S=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: g\left(x_{1}, x_{2}, \ldots, x_{n}\right)=c\right.$ and $x_{i}>0$ for $\left.1 \leqslant i \leqslant n\right\}$.
(a) Show that f attains a minimum value on S even though S is not compact.

Solution: Choose a number $L>n c^{1 / n}$. If $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in S$ and $x_{i}>L$ for some i then $f\left(x_{1}, x_{2}, \ldots x_{n}\right)>L$, whereas $f\left(c^{1 / n}, c^{1 / n}, \ldots, c^{1 / n}\right)<L$. Hence writing $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, we have

$$
\inf \{f(x): x \in S\}=\inf \left\{f(x): x \in S \text { and } x_{i} \leqslant L \text { for } 1 \leqslant i \leqslant n\right\} .
$$

Let X be the set of x on the right-hand side, in other words, the set of $x \in S$ such that $x_{i} \leqslant L$ for all i. Then X is nonempty because $\left(c^{1 / n}, c^{1 / n}, \ldots, c^{1 / n}\right) \in X$. Hence $\{f(x): x \in X\}$ is nonempty, and since the latter set is bounded below by 0 , we see that $\inf \{f(x): x \in X\}$ does exist. But X is compact (note that the condition $x_{i} \leqslant L$ amounts to $\left.0 \leqslant x_{i} \leqslant L\right)$ so $\inf \{f(x): x \in X\}$ is actually the minimum of f on X and hence on S.
(b) Show that the minimum value of f on S occurs at $\left(c^{1 / n}, c^{1 / n}, \ldots, c^{1 / n}\right)$ and at no other point.

Solution: If the minimum value of f on S occurs at the point $x \in S$ then by the method of Lagrange multipliers, we have $\nabla f(x)=\lambda \nabla g(x)$. In other words, for $1 \leqslant i \leqslant n$ we have $1=\lambda c / x_{i}$. Taking the product of these equations for $1 \leqslant i \leqslant n$, we obtain $1=\lambda^{n} c^{n} / c$, whence $\lambda=c^{-(n-1) / n}$. Substituting this value in $1=\lambda c / x_{i}$, we find that $x_{i}=c^{1 / n}$ for all i.
(c) Deduce that $\left(x_{1} x_{2} \cdots x_{n}\right)^{1 / n} \leqslant\left(x_{1}+x_{2}+\cdots+x_{n}\right) / n$ for all $x_{1}, x_{2}, \ldots, x_{n}>0$, with equality if and only if $x_{1}=x_{2}=\cdots=x_{n}$.

Solution: Let $c=x_{1} x_{2} \cdots x_{n}$. Then $x \in S$, so we know from (b) that $f(x) \geqslant$ $n c^{1 / n}$, the minimum value of f on S. Furthermore, this minimum is attained if and only if $x=\left(c^{1 / n}, c^{1 / n}, \ldots, c^{1 / n}\right)$. Thus $f(x) / n \geqslant c^{1 / n}$, with equality if and only if all the x_{i} are equal.

