Preliminary Exam 2019
Solutions to Morning Exam

Part I.
Solve four of the following five problems.

Problem 1. Consider the function f on R such that f(z) = 2%In|z| if x # 0
and f(0) = 0. Prove that f/(0) exists but f”(0) does not.
Solution: The limit of the difference quotient for f at 0 is

. 2?%In|x]
lim
x—0 xX

by L’Hépital’s Rule. So f/(0) exists and equals 0. Now if z # 0 then f'(z) =
2z In |z| + 2, so the limit of the difference quotient for f’ at 0 is

=limaInjz|=0
x—0

. 2zln|z|+x
lim —————

=142 lim In |z,
z—0 z—0
which does not exist as a finite quantity (the limit is —o0).
Problem 2. Suppose that y : R — R is twice-differentiable and satisfies the
differential equation y” + 3’ +y = 0. If y(0) = 1 and y(7/v/3) = 0 then what is

y(27/4/3)? Simplify your answer to the extent possible.

Solution: Since r? +r+l1= (r—eM)(r—e*) with A = e2™/3 = —1/24i\/3/2, we
can write y = ae* + beM with constants a,b € C. But y(0) = 1 and y(7/v/3) = 0,
or in other words.

a+b=1
e~ ™/V3(a —b)i =0,
so a = b =1/2. Therefore
y = (e(—1/2+i\/§/2)t + e(—1/2—i\/§/2)t)/2 — e t/2 cos(\/gt/2),

so y(2m/\/3) = —e~™/V3,

Problem 3. Let f(z) = ¢* and g(z) = Otanx f(t) dt. Find ¢'(z), and then find
a constant ¢ # 0 such that cg/(x) = h(z)e™®) for some function h(z).
Solution: By the Fundamental Theorem of Calculus and the Chain Rule,

tan? z

g (r) = f(tanz)sec’z = e sec? z.
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Recalling that tan? 2 +1 = sec? x, we see that we may take ¢ = e and h(x) = sec? z.

Problem 4. Decide whether each series converges, justifying your answer:
(a) >-,52(cos(1/logn) — n~!
Solution: From the Taylor series of the cosine function (or simply by Taylor’s
theorem) we have |cosx — 1| < Mz? for x near 0, so in particular
|cos(1/logn) — 1jn~t < Mn~'(logn) 2.

Now 2,5, n~1(logn)~2 converges by the Integral Test, because

T
dx 3 - B )
/2 2logaye ~ (g 1T = (log2)~* — (log T)~* — (log2)~?
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as T' goes to infinity. Therefore ), -, (cos(1/logn)— 1)n~! is absolutely convergent
(and hence convergent) by the Comparison Test.

(b) >, 5o 8in(1/logn)n=!

Solution: Since lim,_,osinx/x = 1, we see that for some M > 0 we have sinxz >
Mz if z is close to 0 and positive. In particular,

(M/logn)n~! < sin(1/logn)n~".
But >, ., n~!(logn)~! diverges by the Integral Test, because

T

d

/ A log(log )| = loglog T — loglog 2 — oo

9 zlogx

as T goes to infinity. So 3~ -, sin(1/log n)n~! diverges by the Comparison Test.
Problem 5. Let I be an open interval in R and f a differentiable function on

I, and suppose that f’ is identically 0. Prove that f is a constant function. You

may quote theorems from calculus that are logically prior to the present assertion.

Solution: Fix a € I. By the Mean Value Theorem, for any b € I there exists a
number ¢ between a and b such that f(b) — f(a) = f'(¢)(b —1). Since f' =0, we
get f(b) = f(a), and since b € I was arbitrary we conclude that f is constant.

Part II.
Solve three of the following six problems.

Problem 6. If n — a, is a surjective or “onto” map from the set of positive
integers to the set QN0, 1] of rational numbers between 0 and 1, what is the radius
of convergence of the power series Zn21 anx™? Prove your answer.

Solution: Let p be the radius of convergence. Then 1/p = limsup,,_, a/™. Put

L = limsup, . ay’™. We claim that L = 1, whence p = 1. Certainly L < 1,

because a,, < 1 for all n, whence a}/n < 1 for all n also. On the other hand,
given € > 0, there are infinitely many rational numbers between 1 — ¢ and 1, hence

infinitely many n such that 1 — e < a,, < 1. Therefore
l—e<(1—g)/"<al/m
for infinitely many n. Therefore L > 1—¢, and since € > 0 is arbitrary, we conclude
that L > 1, whence L = 1.
Problem 7. Show that

(-1)™ L | T
2 G DT ‘/0 e i

n=0

by computing both sides explicitly.

Solution: The left-hand side can be rewritten as
n

n 1 I (=" (-1
Z(*D(2n+1*2n+2)722n+1752n+1‘

n=0 n>=0 n=0

The first and second series on the right-hand side converge by the Alternating Series
Test, and they are the values at x = 1 of the Taylor series
x2n+1

—1 . n
tan xfz(fl) 1




and
In+1

log(z+1) = 3(~1)"
n=0
respectively. Thus the left-hand side is tan=1(1) — (log2)/2 = 7/4 — logv/2. (The
Taylor series are obtained by integrating the geometric series for (1 + t?)~! and
(1 +t)~! respectively for 0 < ¢t < z. Strictly speaking, since the geometric series
converges only for |z| < 1, one should also quote Abel’s theorem that a power series
that converges on a closed interval is continuous there.)
The right-hand side can be written as

sin~t(z/V2)|} — 710g(12+ )

which coincides with the left-hand side.

Problem 8. Find the value of the line integral fc x dy — y dx, where C' is the
curve 7 = cos 20 for —m/4 < 0 < /4, oriented counterclockwise.

n+1

lo = /4 - (log2)/2,

Solution: By Green’s Theorem, the line integral coincides with

| [ o dedy=2 [ [ doay

where R is the region enclosed by C'. Thus the line integral coincides with

/4 cos 20 /4
2/ / rdr :/ cos?(20) db.
—mw/4J0 /4

Since cos?(26) is an even function, the right-hand side coincides with

w/4 /4
2/ cos?(26) df = / (14 cos40) db,
0 0

which is 7 /4.
Problem 9. Let D be the solid region inside the cone z = \/x2 + 32 and

between the two hemispheres z = \/4 — 22 — 2 and z = /1 — 22 — y2. Given that

D has uniform density, find the “center of mass” or “centroid” of D. You may use
symmetry considerations to reduce the amount of computation.

Solution: Let (Z,7,Z) be the center of mass. The rotational symmetry of D
about the z-axis ensures that T =7 = 0. We must compute the quantity z = 1/J,

where
Iz///zdxdydz
D
J:/// dx dy dz.
D

We compute I and J in spherical coordinates: Thus

J= /O% /Om /12 P2 sin g dp dip df = 25(1 — v/2/2)(7/3)

27 pm/4 p2
I:/ / / P cos psing dp dp df = 157/8.
o Jo 1

Soz=1/J=45/(56(2—/2)).
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Problem 10. Let S be the portion of the sphere 22 + y? + 22 = 4 defined by
z>1,and let F(z,y,2) = (—y+ 2,2+ 2, 2%). Find the value of the surface integral

//VXF -dS = //VXF ‘n do,

(to use two common notations), where n is the unit outward normal vector, do is
an infinitesimal unit of surface area, and dS = n do.

Solution: By Stokes’ Theorem, the surface integral equals a line integral:

//(VxF)-dS: F - dr,
S oS

where 0S is the boundary of S oriented counterclockwise. Now 05 is a circle, and
we can parametrize it by

r(t) = (V3cost,V3sint,1) (0 <t < 2m).
Also F(r(t)) = (—V/3sint +1,v/3cost +1,1) and r'(t) = (—v/3sint, /3 cost,0), so
F(r(t))-dr'(t) = 3 — V3sint + V3 cost.
Hence

2
/ F-dr:/ (3 —V/3sint + v3cost) dt = 6.
as 0

Problem 11. Show that there are open neighborhoods D and D’ of (0,0) € R?
such that if (a,b) € D’ then the system of equations

et — e — =Ty — ¢
e3® 4 4e¥ — e Y =

has a unique solution (x,y) € D.
Solution: Define f : R? — R? by f(z,y) = (2% —e?¥ — e~V 3% 4 4e¥ —5e? 1Y),
The Jacobian matrix of f is

e = (240 AehT=TY 902y 4 Tede—Ty
LY =\ 3¢30 _ 5erty 4e¥ — ety ’

roo=(75 %)

and consequently det f'(0,0) = 12 # 0. Thus f/(0,0) is invertible Note also that
£(0,0) = (0,0). Applying the Inverse Function Theorem, we deduce that there are
open neighborhoods D and D’ of (0,0) such that f is a C*° diffeomorphism of D
onto D’. In particular, f is a bijection of D onto D', so given (a,b) € D’ there
exists a unique point (x,y) € D such that f(z,y) = (a,b).

SO

Solution:

Part III.
Solve one of the following three problems.

Problem 12. Let X be a metric space with metric d, and let {z,},>1 and
{Yn}n>1 be two Cauchy sequences in X. Show that {d(z,yn)}n>1 is a Cauchy
sequences of real numbers. Do not use the fact that X can be embedded in a
complete metric space.



Solution: By the triangle inequality we have

d(@n,yn) < d(Tns Tm) + d(Zims Ym) + A(Ym, Yn),

whence

AT, yn) — AT, Ym) < d(@n, Tm) + d(Yms Yn)-
Similarly

ATy Ym) — A(@n, Yn) < d(Tny Tm) + d(Yms Yn)s
so we get

|d(Zrms Ym) — d(Tn, Yn)| < d(Tp, Trm) + d(Ym, Yn)-
Now if € > 0 is given, there exists N such that if n,m > N then d(x,,zn,) < /2
and d(Ym, yn) < €/2. Hence if n,m > N then |d(@m, Ym) —d(Xn, yn)| < &, so indeed,
{d(Zn,Yn)n>1 is a Cauchy sequences of real numbers.

Problem 13. Let I be an interval in R and {f,}»>1 a sequence of continuous
real-valued functions on I which is uniformly convergent to a real-valued function
f on I. In the following questions, “prove” means “justify by quoting general
theorems,” and “give a counterexample” includes proving that your counterexample
does what you claim.

(a) If I = [0,1] then is f uniformly continuous? Prove or give a counterexample.

Solution: Yes, because (i) f, being the limit of a uniformly convergent sequence
of continuous functions, is continuous, and (ii) a continuous function on a compact
set is uniformly continuous.

(b) If I =R then is f uniformly continuous? Prove or give a counterexample.

Solution: No, f need not be uniformly continuous. For example, let f,(z) =
e’ +1/n and f(z) = e®. Then {f,} is uniformly convergent to f, because

|fn(@) = f(z)] = 1/n

for all z € R, whence |f,(z) — f(z)] < € for n > 1/e. But f is not uniformly
continuous. Indeed let ¢ = 1, and suppose that there exists § > 0 such that
le* — Y| < 1 whenever |z —y| < 6. Then |e* — e"T%/2| < 1 for all z € R. So
|1 —e%/2| < e=® for all z € R. Taking the limit as 2 — 0o, we obtain |1 —¢%/?| <0,
contradicting our assumption that § > 0.

Problem 14. Define f,g: R® — R by f(z1,22,...,Zn) = 1 + T2 + -+ + 2z,
and g(x1,xa,...,2,) = 122 - Tp,. Given ¢ > 0, consider the surface

S={(x1,22,...,2,) ER" : g(x1,22,...,2,) =cand x; > 0 for 1 < i< n}.
(a) Show that f attains a minimum value on S even though S is not compact.
Solution: Choose a number L > nc/™. If (x1,22,...,2,) € S and x; > L

for some 4 then f(xy,s,...2,) > L, whereas f(c'/™,c'/", ... c'/") < L. Hence
writing x = (21,22, ..., ZTy), we have

inf{f(z):x € S} =inf{f(z): 2 € Sand x; < Lfor 1 < i< n}.

Let X be the set of x on the right-hand side, in other words, the set of x € S
such that x; < L for all i. Then X is nonempty because (cl/”, arm, cl/") € X.
Hence {f(x) : € X} is nonempty, and since the latter set is bounded below by
0, we see that inf{f(z) : # € X} does exist. But X is compact (note that the
condition z; < L amounts to 0 < z; < L) so inf{f(z) : + € X} is actually the
minimum of f on X and hence on S.



(b) Show that the minimum value of f on S occurs at (¢'/”,¢'/", ..., ¢/") and
at no other point.

Solution: If the minimum value of f on S occurs at the point x € S then by
the method of Lagrange multipliers, we have V f(z) = AVg(z). In other words, for
1 < i < n wehave 1 = A¢/x;. Taking the product of these equations for 1 < i < n,
we obtain 1 = A"c" /¢, whence A = ¢~ (»~1)/" Substituting this value in 1 = A\¢/x;,
we find that x; = c'/™ for all 4.

(c) Deduce that (zqz2 - - xn)l/" < (x1+x9+- - +axy,)/nforall 2, zo,. ..,z > 0,
with equality if and only if x1 =z = -+ = x,,.

Solution: Let ¢ = x122---x,. Then z € S, so we know from (b) that f(z) >
nct/™, the minimum value of f on S. Furthermore, this minimum is attained if and
only if & = (¥, c"/", ... /™). Thus f(z)/n > c¢'/™, with equality if and only if
all the z; are equal.



