
Preliminary Exam 2019
Solutions to Morning Exam

Part I.
Solve four of the following five problems.

Problem 1. Consider the function f on R such that f(x) = x2 ln |x| if x 6= 0
and f(0) = 0. Prove that f ′(0) exists but f ′′(0) does not.

Solution: The limit of the difference quotient for f at 0 is

lim
x→0

x2 ln |x|
x

= lim
x→0

x ln |x| = 0

by L’Hôpital’s Rule. So f ′(0) exists and equals 0. Now if x 6= 0 then f ′(x) =
2x ln |x|+ x, so the limit of the difference quotient for f ′ at 0 is

lim
x→0

2x ln |x|+ x

x
= 1 + 2 lim

x→0
ln |x|,

which does not exist as a finite quantity (the limit is −∞).

Problem 2. Suppose that y : R → R is twice-differentiable and satisfies the
differential equation y′′ + y′ + y = 0. If y(0) = 1 and y(π/

√
3) = 0 then what is

y(2π/
√

3)? Simplify your answer to the extent possible.

Solution: Since r2 + r+1 = (r−eλ)(r−eλ) with λ = e2πi/3 = −1/2+ i
√

3/2, we

can write y = aeλt + beλt with constants a, b ∈ C. But y(0) = 1 and y(π/
√

3) = 0,
or in other words. {

a+ b = 1

e−π/
√
3(a− b)i = 0,

so a = b = 1/2. Therefore

y = (e(−1/2+i
√
3/2)t + e(−1/2−i

√
3/2)t)/2 = e−t/2 cos(

√
3t/2),

so y(2π/
√

3) = −e−π/
√
3.

Problem 3. Let f(x) = ex
2

and g(x) =
∫ tan x

0
f(t) dt. Find g′(x), and then find

a constant c 6= 0 such that cg′(x) = h(x)eh(x) for some function h(x).

Solution: By the Fundamental Theorem of Calculus and the Chain Rule,

g′(x) = f(tanx) sec2 x = etan
2 x sec2 x.

Recalling that tan2 x+1 = sec2 x, we see that we may take c = e and h(x) = sec2 x.

Problem 4. Decide whether each series converges, justifying your answer:
(a)

∑
n>2(cos(1/ log n)− 1)n−1

Solution: From the Taylor series of the cosine function (or simply by Taylor’s
theorem) we have | cosx− 1| 6Mx2 for x near 0, so in particular

| cos(1/ log n)− 1|n−1 6Mn−1(log n)−2.

Now
∑
n>2 n

−1(log n)−2 converges by the Integral Test, because∫ T

2

dx

x(log x)2
= −(log x)−1|T2 = (log 2)−1 − (log T )−1 → (log 2)−1

1
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as T goes to infinity. Therefore
∑
n>2(cos(1/ log n)−1)n−1 is absolutely convergent

(and hence convergent) by the Comparison Test.
(b)

∑
n>2 sin(1/ log n)n−1

Solution: Since limx→0 sinx/x = 1, we see that for some M > 0 we have sinx >
Mx if x is close to 0 and positive. In particular,

(M/ log n)n−1 < sin(1/ log n)n−1.

But
∑
n>2 n

−1(log n)−1 diverges by the Integral Test, because∫ T

2

dx

x log x
= log(log x)|T2 = log log T − log log 2→∞

as T goes to infinity. So
∑
n>2 sin(1/ log n)n−1 diverges by the Comparison Test.

Problem 5. Let I be an open interval in R and f a differentiable function on
I, and suppose that f ′ is identically 0. Prove that f is a constant function. You
may quote theorems from calculus that are logically prior to the present assertion.

Solution: Fix a ∈ I. By the Mean Value Theorem, for any b ∈ I there exists a
number c between a and b such that f(b) − f(a) = f ′(c)(b − 1). Since f ′ = 0, we
get f(b) = f(a), and since b ∈ I was arbitrary we conclude that f is constant.

Part II.
Solve three of the following six problems.

Problem 6. If n 7→ an is a surjective or “onto” map from the set of positive
integers to the set Q∩ [0, 1] of rational numbers between 0 and 1, what is the radius
of convergence of the power series

∑
n>1 anx

n? Prove your answer.

Solution: Let ρ be the radius of convergence. Then 1/ρ = lim supn→∞ a
1/n
n . Put

L = lim supn→∞ a
1/n
n . We claim that L = 1, whence ρ = 1. Certainly L 6 1,

because an 6 1 for all n, whence a
1/n
n 6 1 for all n also. On the other hand,

given ε > 0, there are infinitely many rational numbers between 1− ε and 1, hence
infinitely many n such that 1− ε 6 an 6 1. Therefore

1− ε < (1− ε)1/n 6 a1/nn

for infinitely many n. Therefore L > 1−ε, and since ε > 0 is arbitrary, we conclude
that L > 1, whence L = 1.

Problem 7. Show that∑
n>0

(−1)n

(2n+ 1)(2n+ 2)
=

∫ 1

0

(
1√

2− x2
− x

1 + x2
) dx

by computing both sides explicitly.

Solution: The left-hand side can be rewritten as∑
n>0

(−1)n(
1

2n+ 1
− 1

2n+ 2
) =

∑
n>0

(−1)n

2n+ 1
− 1

2

∑
n>0

(−1)n

n+ 1
.

The first and second series on the right-hand side converge by the Alternating Series
Test, and they are the values at x = 1 of the Taylor series

tan−1 x =
∑
n>0

(−1)n
x2n+1

2n+ 1
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and

log(x+ 1) =
∑
n>0

(−1)n
xn+1

n+ 1

respectively. Thus the left-hand side is tan−1(1)− (log 2)/2 = π/4− log
√

2. (The
Taylor series are obtained by integrating the geometric series for (1 + t2)−1 and
(1 + t)−1 respectively for 0 6 t 6 x. Strictly speaking, since the geometric series
converges only for |x| < 1, one should also quote Abel’s theorem that a power series
that converges on a closed interval is continuous there.)

The right-hand side can be written as

sin−1(x/
√

2)|10 −
log(1 + x2)

2
|10 = π/4− (log 2)/2,

which coincides with the left-hand side.

Problem 8. Find the value of the line integral
∫
C
x dy − y dx, where C is the

curve r = cos 2θ for −π/4 6 θ 6 π/4, oriented counterclockwise.

Solution: By Green’s Theorem, the line integral coincides with∫ ∫
R

(
∂

∂x
x− ∂

∂y
(−y)) dx dy = 2

∫ ∫
R

dx dy,

where R is the region enclosed by C. Thus the line integral coincides with

2

∫ π/4

−π/4

∫ cos 2θ

0

r dr =

∫ π/4

π/4

cos2(2θ) dθ.

Since cos2(2θ) is an even function, the right-hand side coincides with

2

∫ π/4

0

cos2(2θ) dθ =

∫ π/4

0

(1 + cos 4θ) dθ,

which is π/4.

Problem 9. Let D be the solid region inside the cone z =
√
x2 + y2 and

between the two hemispheres z =
√

4− x2 − y2 and z =
√

1− x2 − y2. Given that
D has uniform density, find the “center of mass” or “centroid” of D. You may use
symmetry considerations to reduce the amount of computation.

Solution: Let (x, y, z) be the center of mass. The rotational symmetry of D
about the z-axis ensures that x = y = 0. We must compute the quantity z = I/J ,
where

I =

∫ ∫ ∫
D

z dx dy dz

and

J =

∫ ∫ ∫
D

dx dy dz.

We compute I and J in spherical coordinates: Thus

J =

∫ 2π

0

∫ π/4

0

∫ 2

1

ρ2 sinϕ dρ dϕ dθ = 2π(1−
√

2/2)(7/3)

and

I =

∫ 2π

0

∫ π/4

0

∫ 2

1

ρ3 cosϕ sinϕ dρ dϕ dθ = 15π/8.

So z = I/J = 45/(56(2−
√

2)).
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Problem 10. Let S be the portion of the sphere x2 + y2 + z2 = 4 defined by
z > 1, and let F(x, y, z) = (−y+ z, x+ z, z2). Find the value of the surface integral∫ ∫

S

(∇× F) · dS =

∫ ∫
S

(∇× F) · n dσ,

(to use two common notations), where n is the unit outward normal vector, dσ is
an infinitesimal unit of surface area, and dS = n dσ.

Solution: By Stokes’ Theorem, the surface integral equals a line integral:∫ ∫
S

(∇× F) · dS =

∫
∂S

F · dr,

where ∂S is the boundary of S oriented counterclockwise. Now ∂S is a circle, and
we can parametrize it by

r(t) = (
√

3 cos t,
√

3 sin t, 1) (0 6 t 6 2π).

Also F(r(t)) = (−
√

3 sin t+ 1,
√

3 cos t+ 1, 1) and r′(t) = (−
√

3 sin t,
√

3 cos t, 0), so

F(r(t)) · dr′(t) = 3−
√

3 sin t+
√

3 cos t.

Hence ∫
∂S

F · dr =

∫ 2π

0

(3−
√

3 sin t+
√

3 cos t) dt = 6π.

Problem 11. Show that there are open neighborhoods D and D′ of (0, 0) ∈ R2

such that if (a, b) ∈ D′ then the system of equations{
2ex − e2y − e4x−7y = a

e3x + 4ey − 5ex+y = b

has a unique solution (x, y) ∈ D.

Solution: Define f : R2 → R2 by f(x, y) = (2ex−e2y−e4x−7y, e3x+4ey−5ex+y).
The Jacobian matrix of f is

[f ′(x, y)] =

(
2ex − 4e4x−7y −2e2y + 7e4x−7y

3e3x − 5ex+y 4ey − 5ex+y

)
,

so

f ′(0, 0) =

(
−2 5
−2 −1

)
,

and consequently det f ′(0, 0) = 12 6= 0. Thus f ′(0, 0) is invertible Note also that
f(0, 0) = (0, 0). Applying the Inverse Function Theorem, we deduce that there are
open neighborhoods D and D′ of (0, 0) such that f is a C∞ diffeomorphism of D
onto D′. In particular, f is a bijection of D onto D′, so given (a, b) ∈ D′ there
exists a unique point (x, y) ∈ D such that f(x, y) = (a, b).

Solution:

Part III.
Solve one of the following three problems.

Problem 12. Let X be a metric space with metric d, and let {xn}n>1 and
{yn}n>1 be two Cauchy sequences in X. Show that {d(xn, yn)}n>1 is a Cauchy
sequences of real numbers. Do not use the fact that X can be embedded in a
complete metric space.
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Solution: By the triangle inequality we have

d(xn, yn) 6 d(xn, xm) + d(xm, ym) + d(ym, yn),

whence

d(xn, yn)− d(xm, ym) 6 d(xn, xm) + d(ym, yn).

Similarly

d(xm, ym)− d(xn, yn) 6 d(xn, xm) + d(ym, yn),

so we get

|d(xm, ym)− d(xn, yn)| 6 d(xn, xm) + d(ym, yn).

Now if ε > 0 is given, there exists N such that if n,m > N then d(xn, xm) < ε/2
and d(ym, yn) < ε/2. Hence if n,m > N then |d(xm, ym)−d(xn, yn)| < ε, so indeed,
{d(xn, yn)}n>1 is a Cauchy sequences of real numbers.

Problem 13. Let I be an interval in R and {fn}n>1 a sequence of continuous
real-valued functions on I which is uniformly convergent to a real-valued function
f on I. In the following questions, “prove” means “justify by quoting general
theorems,” and “give a counterexample” includes proving that your counterexample
does what you claim.

(a) If I = [0, 1] then is f uniformly continuous? Prove or give a counterexample.

Solution: Yes, because (i) f , being the limit of a uniformly convergent sequence
of continuous functions, is continuous, and (ii) a continuous function on a compact
set is uniformly continuous.

(b) If I = R then is f uniformly continuous? Prove or give a counterexample.

Solution: No, f need not be uniformly continuous. For example, let fn(x) =
ex + 1/n and f(x) = ex. Then {fn} is uniformly convergent to f , because

|fn(x)− f(x)| = 1/n

for all x ∈ R, whence |fn(x) − f(x)| < ε for n > 1/ε. But f is not uniformly
continuous. Indeed let ε = 1, and suppose that there exists δ > 0 such that
|ex − ey| < 1 whenever |x − y| < δ. Then |ex − ex+δ/2| < 1 for all x ∈ R. So
|1− eδ/2| < e−x for all x ∈ R. Taking the limit as x→∞, we obtain |1− eδ/2| 6 0,
contradicting our assumption that δ > 0.

Problem 14. Define f, g : Rn → R by f(x1, x2, . . . , xn) = x1 + x2 + · · · + xn
and g(x1, x2, . . . , xn) = x1x2 · · ·xn. Given c > 0, consider the surface

S = {(x1, x2, . . . , xn) ∈ Rn : g(x1, x2, . . . , xn) = c and xi > 0 for 1 6 i 6 n}.
(a) Show that f attains a minimum value on S even though S is not compact.

Solution: Choose a number L > nc1/n. If (x1, x2, . . . , xn) ∈ S and xi > L
for some i then f(x1, x2, . . . xn) > L, whereas f(c1/n, c1/n, . . . , c1/n) < L. Hence
writing x = (x1, x2, . . . , xn), we have

inf{f(x) : x ∈ S} = inf{f(x) : x ∈ S and xi 6 L for 1 6 i 6 n}.
Let X be the set of x on the right-hand side, in other words, the set of x ∈ S
such that xi 6 L for all i. Then X is nonempty because (c1/n, c1/n, . . . , c1/n) ∈ X.
Hence {f(x) : x ∈ X} is nonempty, and since the latter set is bounded below by
0, we see that inf{f(x) : x ∈ X} does exist. But X is compact (note that the
condition xi 6 L amounts to 0 6 xi 6 L) so inf{f(x) : x ∈ X} is actually the
minimum of f on X and hence on S.
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(b) Show that the minimum value of f on S occurs at (c1/n, c1/n, . . . , c1/n) and
at no other point.

Solution: If the minimum value of f on S occurs at the point x ∈ S then by
the method of Lagrange multipliers, we have ∇f(x) = λ∇g(x). In other words, for
1 6 i 6 n we have 1 = λc/xi. Taking the product of these equations for 1 6 i 6 n,
we obtain 1 = λncn/c, whence λ = c−(n−1)/n. Substituting this value in 1 = λc/xi,
we find that xi = c1/n for all i.

(c) Deduce that (x1x2 · · ·xn)1/n 6 (x1+x2+· · ·+xn)/n for all x1, x2, . . . , xn > 0,
with equality if and only if x1 = x2 = · · · = xn.

Solution: Let c = x1x2 · · ·xn. Then x ∈ S, so we know from (b) that f(x) >
nc1/n, the minimum value of f on S. Furthermore, this minimum is attained if and
only if x = (c1/n, c1/n, . . . , c1/n). Thus f(x)/n > c1/n, with equality if and only if
all the xi are equal.


