Preliminary Exam 2019
 Morning Exam (3 hours)

Part I.

Solve four of the following five problems.
Problem 1. Consider the function f on \mathbb{R} such that $f(x)=x^{2} \ln |x|$ if $x \neq 0$ and $f(0)=0$. Prove that $f^{\prime}(0)$ exists but $f^{\prime \prime}(0)$ does not.

Problem 2. Suppose that $y: \mathbb{R} \rightarrow \mathbb{R}$ is twice-differentiable and satisfies the differential equation $y^{\prime \prime}+y^{\prime}+y=0$. If $y(0)=1$ and $y(\pi / \sqrt{3})=0$ then what is $y(2 \pi / \sqrt{3})$? Simplify your answer to the extent possible.

Problem 3. Let $f(x)=e^{x^{2}}$ and $g(x)=\int_{0}^{\tan x} f(t) d t$. Find $g^{\prime}(x)$, and then find a constant $c \neq 0$ such that $c g^{\prime}(x)=h(x) e^{h(x)}$ for some function $h(x)$.

Problem 4. Decide whether each series converges, justifying your answer:
(a) $\sum_{n \geqslant 2}(\cos (1 / \log n)-1) n^{-1}$
(b) $\sum_{n \geqslant 2} \sin (1 / \log n) n^{-1}$

Problem 5. Let I be an open interval in \mathbb{R} and f a differentiable function on I, and suppose that f^{\prime} is identically 0 . Prove that f is a constant function. You may quote theorems from calculus that are logically prior to the present assertion.

Part II.

Solve three of the following six problems.
Problem 6. If $n \mapsto a_{n}$ is a surjective or "onto" map from the set of positive integers to the set $\mathbb{Q} \cap[0,1]$ of rational numbers between 0 and 1 , what is the radius of convergence of the power series $\sum_{n \geqslant 1} a_{n} x^{n}$? Prove your answer.

Problem 7. Show that

$$
\sum_{n \geqslant 0} \frac{(-1)^{n}}{(2 n+1)(2 n+2)}=\int_{0}^{1}\left(\frac{1}{\sqrt{2-x^{2}}}-\frac{x}{1+x^{2}}\right) d x
$$

by computing both sides explicitly.
Problem 8. Find the value of the line integral $\int_{C} x d y-y d x$, where C is the curve $r=\cos 2 \theta$ for $-\pi / 4 \leqslant \theta \leqslant \pi / 4$, oriented counterclockwise.

Problem 9. Let D be the solid region inside the cone $z=\sqrt{x^{2}+y^{2}}$ and between the two hemispheres $z=\sqrt{4-x^{2}-y^{2}}$ and $z=\sqrt{1-x^{2}-y^{2}}$. Given that D has uniform density, find the "center of mass" or "centroid" of D. You may use symmetry considerations to reduce the amount of computation.

Problem 10. Let S be the portion of the sphere $x^{2}+y^{2}+z^{2}=4$ defined by $z \geqslant 1$, and let $\mathbf{F}(x, y, z)=\left(-y+z, x+z, z^{2}\right)$. Find the value of the surface integral

$$
\iint_{S}(\nabla \times \mathbf{F}) \cdot d \mathbf{S}=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma
$$

(to use two common notations), where n is the unit outward normal vector, $d \sigma$ is an infinitesimal unit of surface area, and $d \mathbf{S}=\mathbf{n} d \sigma$.

Problem 11. Show that there are open neighborhoods D and D^{\prime} of $(0,0) \in \mathbb{R}^{2}$ such that if $(a, b) \in D^{\prime}$ then the system of equations

$$
\left\{\begin{array}{l}
2 e^{x}-e^{2 y}-e^{4 x-7 y}=a \\
e^{3 x}+4 e^{y}-5 e^{x+y}=b
\end{array}\right.
$$

has a unique solution $(x, y) \in D$.

Part III.

Solve one of the following three problems.
Problem 12. Let X be a metric space with metric d, and let $\left\{x_{n}\right\}_{n \geqslant 1}$ and $\left\{y_{n}\right\}_{n \geqslant 1}$ be two Cauchy sequences in X. Show that $\left\{d\left(x_{n}, y_{n}\right)\right\}_{n \geqslant 1}$ is a Cauchy sequences of real numbers. Do not use the fact that X can be embedded in a complete metric space.

Problem 13. Let I be an interval in \mathbb{R} and $\left\{f_{n}\right\}_{n \geqslant 1}$ a sequence of continuous real-valued functions on I which is uniformly convergent to a real-valued function f on I. In the following questions, "prove" means "justify by quoting general theorems," and "give a counterexample" includes proving that your counterexample does what you claim.
(a) If $I=[0,1]$ then is f uniformly continuous? Prove or give a counterexample.
(b) If $I=\mathbb{R}$ then is f uniformly continuous? Prove or give a counterexample.

Problem 14. Define $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1}+x_{2}+\cdots+x_{n}$ and $g\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1} x_{2} \cdots x_{n}$. Given $c>0$, consider the surface

$$
S=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: g\left(x_{1}, x_{2}, \ldots, x_{n}\right)=c \text { and } x_{i}>0 \text { for } 1 \leqslant i \leqslant n\right\}
$$

(a) Show that f attains a minimum value on S even though S is not compact.
(b) Show that the minimum value of f on S occurs at $\left(c^{1 / n}, c^{1 / n}, \ldots, c^{1 / n}\right)$ and at no other point.
(c) Deduce that $\left(x_{1} x_{2} \cdots x_{n}\right)^{1 / n} \leqslant\left(x_{1}+x_{2}+\cdots+x_{n}\right) / n$ for all $x_{1}, x_{2}, \ldots, x_{n}>0$, with equality if and only if $x_{1}=x_{2}=\cdots=x_{n}$.

