
Preliminary Exam 2019
Solutions to Afternoon Exam

Part I.
Solve four of the following five problems.

Problem 1. Find z given that2 2 0
3 4 3
0 1 2

xy
z

 =

 1
−1
2

 .

Solution: By Cramer’s Rule,

z =

det

2 2 1
3 4 −1
0 1 2


det

2 2 0
3 4 3
0 1 2

 = −9/2.

Of course the answer can also be found by row reduction.

Problem 2. Find an invertible matrix U such that U−1AU is diagonal, where

A =

(
2 3
−1 −2

)
.

Solution: The characteristic polynomial of A is x2 − 1 = (x − 1)(x + 1), so the
eigenvalues are ±1. A row reduction of A− I shows that the vector (3,−1) spans
the 1-eigenspace. Similarly, a row reduction of A+ I shows that the vector (1,−1)
spans the (-1)-eigenspace. Therefore the matrix

U =

(
3 1
−1 −1

)
is the desired change-of-basis matrix.

Problem 3. The linear map T : R4 → R3 is given by

T (w, x, y, z) = (w − 3x− y + z, x+ 2y + z, w + 5y + 4z).

Find a basis for the kernel of T and for the image of T .

Solution: The row reduced upper echelon form of the matrix of T (relative to
the standard bases of R4 and R2) is

A =

1 0 5 4
0 1 2 1
0 0 0 0

 .

Therefore the kernel of T consists of vectors (w, x, y, z) satisfying{
w + 5y + 4z = 0

x+ 2y + z = 0
.
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Solving for the pivotal variables in terms of the nonpivotal variables, we get w =
−5y − 4z and x = −2y − z. So the kernel consists of vectors of the form

(−5y − 4z,−2y − z, y, z) = y(−5,−2, 1, 0) + z(−4,−1, 0, 1),

and we conclude that {(−5,−2, 1, 0), (−4,−1, 0, 1)} is a basis for the kernel of T .
The transpose of the columns in the original matrix A corresponding to the pivots
are (1, 0, 1) and (−3, 1, 0), so {(1, 0, 1), (−3, 1, 0)} are a basis for the image of T .

Problem 4. Let Π be the plane 2x− y − z = 0 in R3. Find vectors u1, u2 ∈ Π
such that the formula γ(t) = (cos t)u1 + (sin t)u2 parametrizes the circle of radius
1 on Π centered at the origin.

Solution: We take w1 = (1, 2, 0) and w2 = (1, 0, 2) as a basis for Π and apply
the Gram-Schmidt process orthogonalize this basis. Thus v1 = w1 and

v2 = w2 −
v1 · w2

v1 · v1
v1 = (1, 0, 2)− (1/5)(1, 2, 0),

so v2 = (4/5,−2/5, 2). Finally, we normalize the basis v1, v2, putting

u1 =
1

||v1||
v1 = (1/

√
5, 2/
√

5, 0)

and

u2 =
1

||v2||
v2 = (2/

√
30,−1/

√
30, 5/

√
30).

Problem 5. Let G be a nontrivial cyclic group generated by an element g
satisfying g1028 = 1 and g550 = 1. Find the order of G.

Solution: Since g1028 = 1 and g550 = 1 we have g1028−550 = 1 also, i. e. g478 = 1.
Then g550−478 = 1, i. e. g72 = 1. Now 478 − 6 · 72 = 46, so we have both g78 = 1
and g46 = 1, so g78−46 = 1, i. e. g32 = 1. Next, since g46 = 1 and g32 = 1, we have
g46−32 = 1, i. e. g14 = 1. Also 32−2 ·14 = 4, so g4 = 1. Finally, since 14−3 ·4 = 2,
we get g2 = 1, and since G is nontrivial we conclude that the order of G is 2.

Part II.
Solve three of the following six problems.

Problem 6. Let R and S be rings and let f, g : R→ S be ring homomorphisms.
Define f + g : R → S by the formula (f + g)(r) = f(r) + g(r) and fg : R → S by
the formula (fg)(r) = f(r)g(r).

(a) Is f + g a ring homomorphism? Why or why not?

Solution: No, f+g is not a ring homomorphism. Indeed (f+g)(1) = 1+1, which
is not equal to 1 unless S = {0}. Of course one can also observe that (f + g)(ab) =
f(a)f(b) + g(a)g(b), which is usually not equal to (f(a) + g(a))(f(b) + g(b)) (for
example, if 2 6= 0 in S, take a = b = 1).

(b) Is fg a ring homomorphism? Why or why not?

Solution: Again no. Indeed (fg)(a + b) = (f(a) + f(b))(g(a) + g(b)), which is
not usually the same thing as f(a)g(a) + f(b)g(b). (Again, if 2 6= 0 in S, take
a = b = 1.)

Problem 7. Let A and B be n × n matrices with coefficients in R satisfying
AB = BA. Suppose that A is symmetric (in other words, A equals its transpose)
and has n distinct eigenvalues. Prove that B is symmetric.
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Solution: The condition AB = BA implies that if v is in the λ-eigenspace of A
then so is Bv. Indeed

A(Bv) = B(Av) = B(λv) = λ(Bv).

But A has n distinct eigenvalues, so the eigenspaces of A are one-dimensional, and
consequently the above calculation implies that Bv is a multiple of v. In other
words, the eigenspaces of A are also eigenspaces of B. Since nonzero eigenvectors
for distinct eigenvalues of A are linearly independent, they form a basis for Rn, and
in fact an orthogonal basis, since A is symmetric. We may choose the eigenvectors
to have length 1, and then they form an orthonormal basis for Rn. Let U be the
n × n matrix having the elements of this orthonormal basis as its columns. Then
U−1AU is diagonal, and U−1BU is diagonal also, because the columns of U are
also eigenvectors of B. Write U−1BU = D, with D diagonal. Then B = UDU−1,
and taking transposes of both sides, we have

Bt = (U−1)tDU t = UDU−1 = B

because U t = U−1 (U is orthogonal).

Problem 8. Let Sn denote the group of permutations of n elements, and given
σ ∈ Sn, define an n× n matrix A(σ) by requiring the entry in the ith row and jth
column to be 1 if j = σ(i) and 0 otherwise. Prove that det(A(σ)) = sign(σ).

Solution: Write aij for the entry in the ith row and jth column of A(σ). By
definition,

det(A(σ)) =
∑
ρ∈Sn

sign(ρ)a1ρ(1)a2ρ(2) · · · anρ(n).

Since aij = 0 unless j = σ(i), there is only one nonzero term in the above sum,
namely the term where ρ = σ, and this term is sign(σ).

Problem 9. Let v1 = (1, 2, 1), v2 = (3, 0,−1), and v3 = (−2,−4, 1), and put
L = {n1v1 + n2v2 + n3v3 : nj ∈ Z}. Show that the quotient group Z3/L is cyclic,
and find its order.

Solution: We consider the 3× 3 matrix having v1, v2, and v3 as columns. Using
row and column operations over the integers, we can put this matrix in diagonal
form, where the diagonal entries are 1, 1, and 18. Therefore

Z3/L ∼= Z3/(Z⊕ Z⊕ 18Z) ∼= Z/18Z.

So Z3/L is cyclic of order 18.

Problem 10. Let F be a field, and consider the ring R = F [x, y]. Write (a, b)
for the ideal of R generated by a, b ∈ R.

(a) If F = Q is R/(x + y, x2 + y2) finite-dimensional as a vector space over Q?
If so, what is its dimension?

Solution: Consider the ring homomorphism

Q[x]→ Q[x, y]/(x+ y, x2 + y2)

sending every element to its coset modulo (x+ y, x2 + y2). This map is surjective
because the coset of y is the coset of −x and consequently the coset of a polynomial
f(x, y) is the coset of f(x,−x). Furthermore the coset of x2 + y2 in Q[x, y]/(x+ y)
is the coset of 2x2, so x2 is 0 in Q[x, y]/(x+ y, x2 + y2). So (x2) is contained in the
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kernel of the above map, and in fact (x2) is the precise kernel, because on elements
of the form a+ bx (a, b ∈ Q) the above map is injective. We conclude that

Q[x]/(x2) ∼= Q[x, y]/(x+ y, x2 + y2),

whence the dimension of the right-hand side is 2.

(b) If F = F2 is R/(x+ y, x2 + y2) finite-dimensional as a vector space over F2?
If so, what is its dimension? (Here F2 is the field with 2 elements.)

Solution: The argument in (a) carries over without change until we assert that
the coset of x2 + y2 is 2x2: At that point we are saying that the coset of x2 + y2

is 0. Thus F2[x, y]/(x + y, x2 + y2) ∼= F2[x, y]/(y) ∼= F2[x], so the dimension of
F2[x, y]/(x+ y, x2 + y2) is infinite.

Problem 11. By the minimal polynomial of a square matrix A we mean the
monic polynomial f(x) of smallest positive degree such that f(A) = 0. Also, given
a square matrix A with coefficients in C, we say that A is nilpotent if An = 0 for
some n > 1, and for A nilpotent we put

exp(A) =
∑
j>0

Aj/j!.

If xm is the minimal polynomial of A then what is the minimal polynomial of
exp(A)? Justify your answer.

Solution: The minimal polynomial of A and of exp(A) depends only on the
Jordan normal form of A, so we may assume that A is in Jordan normal form. Then
A is a diagonal array of nilpotent Jordan blocks N with 1’s on the superdiagonal
and 0’s elsewhere (i. e. the entry in the ith row and j column is 1 if j = i+ 1 and
0 otherwise). Furthermore, the minimal polynomial of A is xm, where m is the
size of the largest Jordan block in A. One readily sees that exp(A) is a diagonal
array of the blocks exp(N) where N runs over the Jordan blocks in A, so we are
reduced to showing that if N is a nilpotent Jordan block of size m, then the minimal
polynomial of exp(N) is (x− 1)m. Now

exp(N) = I +N +
1

2!
N2 + · · ·+ 1

m!
Nm = I +N +B,

where the entry in the ith row and jth column of B is 0 unless j > i+ 2. Thus the
binomial theorem gives (exp(N) − I)k = Nk + C, where the entry in the ith row
and jth column of C is 0 unless j > i + k + 1. Since the entry in the ith row and
jth column of Nk is 0 unless j = i + k, we deduce that (exp(N) − I)k = 0 if and
only if k > m, as claimed.

Part III.
Solve one of the following three problems.

Problem 12. Let d and d′ be positive integers such that [Q(
√
d,
√
d′) : Q] = 4.

Put α =
√
d+
√
d′. Show that Q(α) = Q(

√
d,
√
d′).

Solution: By the binomial theorem, we have

α3 = d
√
d+ 3d

√
d′ + 3d′

√
d+ d′

√
d′,

and consequently, {
α =
√
d+
√
d′

α3 = (d+ 3d′)
√
d+ (3d+ d′)

√
d′.
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Using Cramer’s Rule, we deduce that

√
d =

det

(
α 1
α3 (3d+ d′)

)
det

(
1 1

(d+ 3d′) (3d+ d′)

) =
α(3d+ d′)− α3

2(d− d′)

and

√
d′ =

det

(
1 α

(d+ 3d′) α3

)
det

(
1 1

(d+ 3d′) (3d+ d′)

) =
α3 − α(d+ 3d′)

2(d− d′)
.

So Q(α) contains, and hence equals, Q(
√
d,
√
d′).

Problem 13. Let G be a group. In each case, say whether the given condition
on G implies that G is abelian, justifying your answer either with a proof or a
counterexample.

(i) The function f : G×G→ G given by f(a, b) = ab is a group homomorphism.

Solution: Yes, this does imply that G is abelian. Since f is a homomorphism,
we have

f(a, b)f(a−1, b−1) = f(aa−1, bb−1) = f(1, 1) = 1

for all a, b ∈ G. This means that (ab)(a−1b−1) = 1. Multiplying by ba on the right,
we obtain ab = ba.

(ii) G has a normal subgroup H such that G/H is cyclic.

Solution: No, this does not imply that G is abelian. Take G = S3, the group of
permutations of a set of three elements. Let H be the unique subgroup of order 3,
which is therefore normal. Then G/H has order 2 and is therefore cyclic, but G is
not abelian.

(iii) G has a normal subgroup H such that G/H is cyclic and gh = hg for all
g ∈ G and h ∈ H.

Solution: Yes, this does imply that G is abelian. Since G/H is cyclic choose
c ∈ G so that cH is a generator of G/H. Then every element of G has the form
cjh for some j ∈ Z and some h ∈ H. Given two elements of G, say a = cjh and
b = cj

′
h′, we then have

ab = (cjh)(cj
′
h′) = cj+j

′
(hh′) = cj

′+j(h′h) = (cj
′
h′)(cjh) = ba,

so G is abelian.

Problem 14. Let A be a 3×3 matrix with coefficients in a field F , and suppose
that A3 = I, the identity matrix. Write Fp for the field with p elements, where p
denotes a prime. For the purposes of this problem, two matrices in Jordan canonical
form are considered the same if they differ simply in the order in which the Jordan
blocks are listed.

(a) Suppose F = F3. List the possibilities for the Jordan canonical form of A.

Solution: Since A3 − I = (A− I)3 the Jordan canonical form of A is either I or1 1 0
0 1 0
0 0 1


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or 1 1 0
0 1 1
0 0 1

 .

(b) Suppose F = F7. How many possibilities are there for the Jordan canonical
form of A? Justify your answer.

Solution: Since x3 − 1 has three distinct roots, say 1, ω, ω2 ∈ F7, the Jordan
form of A is diagonal. Let a, b, and c represent the number of times that 1, ω, and
ω2 appear on the diagonal. Then a, b, c > 0 and a+ b+ c = 3. Thus the number of
possible Jordan canonical forms is (

5
3

)
= 10.

(c) Suppose F = R and A 6= I. Explain why there is no invertible matrix U with
coefficients in R such that UAU−1 is in Jordan canonical form.

Solution: As in (b), the fact that A3 − I has no repeated roots tells us that the
Jordan form of A is diagonal, and since A 6= I at least one of the diagonal entries is
e±2πi/3. Hence there cannot be a matrix U as above such that UAU−1 is diagonal,
because at least one of the diagonal entries would have to be e±2πi/3, whereas the
coefficients of UAU−1 are real.


