Preliminary Exam 2018
 Solutions to Morning Exam

Part I.

Solve four of the following five problems.
Problem 1. Consider the series $\sum_{n \geqslant 2}(n \log n)^{-1}$ and $\sum_{n \geqslant 2}\left(n(\log n)^{2}\right)^{-1}$. Show that one converges and one diverges by applying a standard convergence test.

Solution: Use the integral test. An antiderivative for $1 /(x \log x)$ is $\log \log x$ (the substitution $u=\log x$ replaces the integrand by $d u / u)$ and consequently

$$
\int_{2}^{\infty} \frac{d x}{x \log x}=\lim _{T \rightarrow \text { infty }}(\log \log T-\log \log 2)=\infty
$$

So $\sum_{n \geqslant 2}(n \log n)^{-1}$ diverges. On the other hand, an antiderivative for $1 /\left(x(\log x)^{2}\right)$ is $-1 / \log x$ (again, use the substitution $u=\log x$), so

$$
\int_{2}^{\infty} \frac{d x}{x(\log x)^{2}}=\lim _{T \rightarrow i n f t y}\left(-(\log T)^{-1}+(\log 2)^{-1}\right)=(\log 2)^{-1}
$$

Hence $\sum_{n \geqslant 2}\left(n(\log n)^{2}\right)^{-1}$ converges.
Problem 2. Show that

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\sqrt{x^{2}+y^{2}}} d x d y=2 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y
$$

by computing both sides.
Solution: Do the integrals in polar coordinates. On the left-hand side we obtain

$$
\int_{0}^{2 \pi}\left(\int_{0}^{\infty} e^{-r} r d r\right) d \theta=\int_{0}^{2 \pi}\left(-e^{-r} r-\left.e^{-r}\right|_{0} ^{\infty}\right) d \theta
$$

which is $(2 \pi)(1)=2 \pi$. On the right-hand side we obtain

$$
\int_{0}^{2 \pi}\left(\int_{0}^{\infty} e^{-r^{2}} r d r\right) d \theta=\int_{0}^{2 \pi}\left(-e^{-r^{2}} /\left.2\right|_{0} ^{\infty}\right) d \theta
$$

which is $(2 \pi)(1 / 2)=\pi$.
Problem 3. Prove that if $f(x)$ is $\sin x$ or $\arctan x$ then $|f(b)-f(a)| \leqslant|b-a|$ for all $a, b \in \mathbb{R}$ and that this inequality also holds for $f(x)=\log x$ and $a, b \geqslant 1$.

Solution: By the Mean Value Theorem, $f(b)-f(a)=f^{\prime}(c)(b-a)$ for some c strictly between a and b, and consequently

$$
|f(b)-f(a)| \leqslant\left|f^{\prime}(c)\right||b-a|
$$

Since the derivatives of $\sin x$ and $\arctan x$ are $\cos x$ and $1 /\left(1+x^{2}\right)$ respectively, both of which are bounded by 1 in absolute value on \mathbb{R}, we obtain the stated inequality. Also, if $f(x)=\log x$ then $f^{\prime}(x)=1 / x$, which is bounded by 1 for $x \geqslant 1$.

Problem 4. Let y be a differentiable function and p a continuous function on $(0, \infty)$, and suppose that $y^{\prime}(t)+p(t) y(t)=p(t)$ for all $t>0$. If $p(t)>c / t$ for some constant $c>0$ prove that $\lim _{t \rightarrow \infty} y(t)=1$.

Solution: Let $P(t)$ be an antiderivative of $p(t)$ on $(0, \infty)$, say

$$
P(t)=\int_{\substack{1 \\ 1}}^{t} p(t) d t
$$

and put $\mu(t)=e^{P(t)}$. Multiplying both sides of the differential equation by $\mu(t)$, we obtain $(y(t) \mu(t))^{\prime}=\mu^{\prime}(t)$, whence

$$
y(t)=e^{-P(t)}\left(e^{P(t)}+\kappa\right)=1+\kappa e^{-P(t)}
$$

for some constant κ. Now for $t>1$ the fact that $p(t)>c / t$ implies that

$$
P(t)=\int_{1}^{t} p(t) d t>c \log t
$$

whence $e^{-P(t)}<t^{-c}$. Returning to the equation $y(t)=1+\kappa e^{-P(t)}$, we conclude that $\lim _{t \rightarrow \infty} y(t)=1$.

Problem 5. Let $f_{n}(x)=x^{n}$ on the interval $I=[0,1]$ in \mathbb{R}. Show that the sequence $\left\{f_{n}\right\}_{n \geqslant 1}$ does not converge uniformly on I. You may quote general theorems about uniform convergence.

Solution: Each function f_{n} is continuous on I, but the function f to which $\left\{f_{n}\right\}_{n \geqslant 1}$ is pointwise convergent is not continuous: Indeed f is 0 on $[0,1)$ and 1 at 1 , so f is not continuous at 1 . It follows that the convergence is not uniform.

Part II.

Solve three of the following six problems.
Problem 6. Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
f(x, y)= \begin{cases}\frac{x y}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

Show that $\partial f / \partial x$ and $\partial f / \partial y$ exist at $(0,0)$ but f is not differentiable at $(0,0)$. You may quote general facts about differentiability.

Solution: To show that $\partial f / \partial x$ exists at $(0,0)$ we set $x=0$ and attempt to differentiate with respect to y at 0 . Since $f(0, y)$ is identically 0 , we see that $\partial f / \partial x(0,0)$ exists and equals 0 . Similarly $\partial f / \partial y(0,0)$ exists and equals 0 . However, if a function is differentiable at a point then it is continuous at that point, but our f is not continuous at $(0,0)$: Indeed f is identically $1 / 2$ on the line $x=y$ except at the point $(0,0)$, where the value is 0 . Thus f is not differentiable at $(0,0)$.

Problem 7. Let I be any interval in \mathbb{R}. Show that if $f: I \rightarrow \mathbb{R}$ is uniformly continuous and $\left\{x_{n}\right\}$ is a Cauchy sequence in I then $\left\{f\left(x_{n}\right)\right\}$ is also Cauchy. Is the assertion still true if we assume merely that f is continuous? Justify your answer.

Solution: Let $\varepsilon>0$ be given. Since f is uniformly continuous there exists $\delta>0$ such that if $x, x^{\prime} \in I$ and $\left|x-x^{\prime}\right|<\delta$ then $\left|f(x)-f\left(x^{\prime}\right)\right|<\varepsilon$. And since $\left\{x_{n}\right\}$ is Cauchy there exists N such that if $m, n>N$ then $\left|x_{m}-x_{n}\right|<\delta$. So if $m, n>N$ then $\left|f\left(x_{m}\right)-f\left(x_{n}\right)\right|<\varepsilon$, and we conclude that $\left\{f\left(x_{n}\right)\right\}$ is also Cauchy.

Unless I is closed and bounded and therefore compact, the assertion is false without the assumption that f is uniformly continuous. For example, take $I=$ $(0, \infty), f(x)=\log x$, and $x_{n}=1 / n$. Then $\left\{x_{n}\right\}$ is a Cauchy is a sequence in I but $\left\{f\left(x_{n}\right)\right\}$ is not even bounded, because $f\left(x_{n}\right)=-\log n$.

Problem 8. Show that

$$
\frac{1}{(x-1)(x-2)(x-3)}=\sum_{n \geqslant 0}\left(-\frac{1}{2}+\frac{1}{2^{n+1}}-\frac{1}{2 \cdot 3^{n+1}}\right) x^{n}
$$

for $|x|<1$.

Solution: By the method of partial fractions,

$$
\frac{1}{(x-1)(x-2)(x-3)}=\frac{1 / 2}{x-1}-\frac{1}{x-2}+\frac{1 / 2}{x-3} .
$$

So

$$
\frac{1}{(x-1)(x-2)(x-3)}=\frac{-1 / 2}{1-x}+\frac{1 / 2}{1-x / 2}-\frac{1 / 6}{1-x / 3}
$$

Using the geometric series $(1-r)^{-1}=\sum_{n \geqslant 0} r^{n}$, which converges for $|r|<1$, we obtain

$$
\frac{1}{(x-1)(x-2)(x-3)}=(-1 / 2) \sum_{n \geqslant 0} x^{n}+(1 / 2) \sum_{n \geqslant 0} x^{n} / 2^{n}-(1 / 6) \sum_{n \geqslant 0} x^{n} / 3^{n} .
$$

So the coefficient of x^{n} is as asserted.
Problem 9. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ and $h: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the functions

$$
f(x, y)=\left(e^{2 x-y}-e^{x}, e^{-3 x+y}-e^{2 y}\right)
$$

and

$$
h(x, y)=\left(x^{3}+x+y, y^{2}+2 x+3 y\right)
$$

There is an open neighborhood \mathcal{U} of $(0,0) \in \mathbb{R}^{2}$ and a differentiable function g : $\mathcal{U} \rightarrow \mathbb{R}^{2}$ such that $g(0,0)=(0,0)$ and $f \circ g=h$. Compute $\left[g^{\prime}(0,0)\right]$, the Jacobian matrix of g at $(0,0)$.

Solution: The Jacobian matrix of f is

$$
\left[f^{\prime}(x, y)\right]=\left(\begin{array}{cc}
2 e^{2 x-y}-e^{x} & -e^{2 x-y} \\
-3 e^{-3 x+y} & e^{-3 x+y}-2 e^{2 y}
\end{array}\right)
$$

so

$$
f^{\prime}(0,0)=\left(\begin{array}{cc}
1 & -1 \\
-3 & -1
\end{array}\right)
$$

which is invertible. Thus by the Inverse Function Theorem, f has a C^{∞} inverse on an open neighborhood of $(0,0)$, whence $g=f^{-1} \circ h$ on an open neighborhood of $(0,0)$. The Chain Rule gives

$$
\left[g^{\prime}(0,0)\right]=\left[f^{\prime}(0,0)\right]^{-1}\left[h^{\prime}(0,0)\right] .
$$

Now

$$
h^{\prime}(x, y)=\left(\begin{array}{cc}
3 x^{2}+1 & 1 \\
2 & 2 y+3
\end{array}\right)
$$

so

$$
h^{\prime}(0,0)=\left(\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right)
$$

Therefore

$$
\left[g^{\prime}(0,0)\right]=\left(\begin{array}{cc}
1 & -1 \\
-3 & -1
\end{array}\right)^{-1}\left(\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right)=\frac{-1}{4}\left(\begin{array}{cc}
-1 & 1 \\
3 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right)=\frac{-1}{4}\left(\begin{array}{ll}
1 & 2 \\
5 & 6
\end{array}\right)
$$

Problem 10. Let $P(x, y)=-y /\left(x^{2}+y^{2}\right)$ and $Q(x, y)=x /\left(x^{2}+y^{2}\right)$.
(a) Compute $\partial Q / \partial x-\partial P / \partial y$.
(b) Compute the line integral of $P(x, y) d x+Q(x, y) d y$ around the unit circle (oriented counterclockwise) $x^{2}+y^{2}=1$.
(c) Explain why (a) and (b) do not contradict Green's Theorem.

Solution: An easy calculation using the quotient rule shows that

$$
\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}=0
$$

and another easy calculation using the parametrization $\mathbf{r}(t)=(\cos t, \sin t)$ shows that the line integral in (b) is 2π. But there is no contradiction to Green's Theorem

$$
\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y=\int_{C} P(x, y) d x+Q(x, y) d y
$$

(where R is the unit disk $x^{2}+y^{2} \leqslant 1$) because P and Q are not C^{1} functions on R : Indeed neither is continuous at the origin.

Problem 11. Let C and C^{\prime} be the circles in \mathbb{R}^{3} parametrized by $(\cos t, \sin t, 0)$ and $(\cos t, \sin t, 2)$ respectively $(0 \leqslant t \leqslant 2 \pi)$. Let $\mathbf{F}(x, y, z)$ be a C^{∞} vector field in \mathbb{R}^{3} such that $\nabla \times \mathbf{F}=\mathbf{0}$. Show that

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C^{\prime}} \mathbf{F} \cdot d \mathbf{r}
$$

where the integrals on the left and right are the line integrals of \mathbf{F} along the oriented circles C and C^{\prime} respectively.

Solution: Let S be the cylinder $x^{2}+y^{2}=1$ for $0 \leqslant z \leqslant 2$, oriented so that a normal vector point outward. Then

$$
\int_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=0
$$

where n is the unit outward normal vector and $d \sigma$ is the element of surface area on S. By Stokes' Theorem, we deduce that

$$
0=\int_{\partial S} \mathbf{F} \cdot d \mathbf{r}=\int_{C} \mathbf{F} \cdot d \mathbf{r}-\int_{C^{\prime}} \mathbf{F} \cdot d \mathbf{r}
$$

and the stated equality follows.
Actually, an even more direct use of Stokes' Theorem shows that the line integrals over C and C^{\prime} are equal because both are 0 . Indeed, instead of taking S to be the cylinder, take it to be disk having C as boundary. Since $\nabla \times \mathbf{F}=\mathbf{0}$, we deduce that the integral of $\nabla \times \mathbf{F}$ over D is 0 , whence the line integral of \mathbf{F} along C is 0 by Stokes' Theorem, and similarly for C^{\prime}.

Part III.

Solve one of the following three problems.
Problem 12. For $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, put

$$
\|x\|=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}
$$

and let S denote the unit sphere $\|x\|=1$ in \mathbb{R}^{n}. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be any linear transformation. Give a reason why the two sides of the equation

$$
\max \{x \in S:\|T(x)\|\}=\inf \left\{C \geqslant 0:\|T(x)\| \leqslant C\|x\| \text { for all } x \in \mathbb{R}^{n}\right\}
$$

both exist, and then prove the equation.
Solution: The left-hand side exists because a continuous real-valued function (such as $x \mapsto\|T(x)\|$) on a compact set (like S) attains a maximum value, and the right-hand side exists because a nonempty set of real numbers which is bounded
below has a greatest lower bound. Let us denote the left-hand side by M and the right-hand side by I. Then $\|T(x /\|x\|)\| \leqslant M$ for all nonzero $x \in \mathbb{R}^{n}$, and since T is linear it follows that $\|T(x)\| \leqslant M\|x\|$ for all $x \in \mathbb{R}^{n}$, including 0 . So M is an element C of the set on the right-hand side, whence

$$
M \geqslant I
$$

On the other hand, any element C of the set on the right-hand side satisfies $\|T(x)\| \leqslant C$ if $x \in S$, and therefore the maximum of the values $\|T(x)\|$, namely M, satisfies $M \leqslant C$ also. In other words, M is a lower bound for the set on the right-hand side. Therefore M is less than or equal to the greatest lower bound, namely I, in other words

$$
M \leqslant I
$$

We conclude that $M=I$.
Problem 13. Let X be a metric space with the following property: For every infinite subset S of X,

$$
\inf \{d(x, y): x \neq y, x, y \in S\}=0
$$

Prove that X is totally bounded: In other words, show that for every $\varepsilon>0$, the space X can be covered by finitely many open balls of radius ε.

Solution: Suppose the statement is false for a particular $\varepsilon>0$, and choose $x_{1} \in X$. Then there exists $x_{2} \in X$ such that $d\left(x_{2}, x_{1}\right) \geqslant \varepsilon$. Also, there exists $x_{3} \in X$ such that $d\left(x_{3}, x_{1}\right) \geqslant \varepsilon$ and $d\left(x_{3}, x_{2}\right) \geqslant \varepsilon$. Continuing in this way, we obtain an infinite sequence $\left\{x_{n}\right\}$ with the property that $d\left(x_{n}, x_{m}\right) \geqslant \varepsilon$ for $n \neq m$. Let $S=\left\{x_{n}: n \geqslant 1\right\}$. Then

$$
\inf \{d(x, y): x \neq y, x, y \in S\} \geqslant \varepsilon
$$

a contradiction.
Problem 14. Let S be the surface area of the sphere $x^{2}+y^{2}+z^{2}=1$ and V the volume of the ball $x^{2}+y^{2}+z^{2} \leqslant 1$. Let S^{\prime} be the surface area of the portion of the sphere $x^{2}+y^{2}+z^{2}=1$ lying above the plane $z=1 / 2$, and let V^{\prime} be the volume of the portion of the ball $x^{2}+y^{2}+z^{2} \leqslant 1$ lying above the plane $z=1 / 2$. Show that $S^{\prime}=S / 4$ and $V^{\prime}=5 V / 32$.

Solution: Parametrize the sphere by $\Gamma(\theta, \varphi)=(\sin \varphi \cos \theta, \sin \varphi \sin \theta, \cos \varphi)$. Then

$$
(\partial \Gamma / \partial \varphi) \times(\partial \Gamma / \partial \theta)=\left(-\sin ^{2} \varphi \cos \theta, \sin ^{2} \varphi \sin \theta, \cos \varphi \sin \varphi\right)
$$

and consequently the area element is

$$
\|(\partial \Gamma / \partial \varphi) \times(\partial \Gamma / \partial \theta)\|=\sin \varphi d \varphi d \theta
$$

Consequently the surface area of S^{\prime} is

$$
\int_{0}^{2 \pi} \int_{0}^{\pi / 3} \sin \varphi d \varphi d \theta=2 \pi(1-1 / 2)=\pi
$$

(Here recall that φ is the angle between the radial vector $\Gamma(\varphi, \theta)$ and the positive z-axis.) Since the surface area of the whole sphere is 4π (as follows on replacing the integral from 0 to $\pi / 3$ by an integral from 0 to π), we do indeed have $S^{\prime}=S / 4$.

For the volume it is easier to use cylindrical coordinates. Thus

$$
V^{\prime}=\int_{0}^{2 \pi} \int_{0}^{\sqrt{3} / 2} \int_{1 / 2}^{\sqrt{1-r^{2}}} r d z d r d \theta
$$

The innermost integral is $r \sqrt{1-r^{2}}-r / 2$, and then the integral with respect to r is

$$
-\left.\left(\left(1-r^{2}\right)^{3 / 2} / 3+r^{2} / 4\right)\right|_{0} ^{\sqrt{3} / 2}=-\left(\frac{1}{24}+\frac{3}{16}\right)+\frac{1}{3}=\frac{5}{48}
$$

After multiplying by 2π we get

$$
V^{\prime}=\frac{5}{24} \pi=\frac{5}{32} \cdot \frac{4}{3} \pi=\frac{5}{32} V
$$

as claimed.

