Preliminary Exam 2017
 Solutions to Morning Exam

Part I.

Solve four of the following five problems.
Problem 1. Verify that

$$
\int_{0}^{2 \pi} \cos ^{2} x d x=6 \sum_{n \geqslant 0}(-1)^{n} \frac{3^{-(2 n+1) / 2}}{2 n+1}
$$

by computing both sides.
Solution: The left-hand side can be computed using either integration by parts $(u=\cos x, v=\sin x)$, or the identity $\cos ^{2} x=(1+\cos (2 x)) / 2$, the antiderivatives obtained being respectively $(x+\cos x \sin x) / 2$ and $x / 2+\sin (2 x) / 4$ up to an additive constant. Thus the left-hand side is π. The right-hand side is $6 f(1 / \sqrt{3})$, where

$$
f(x)=\sum_{n \geqslant 0}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}
$$

Differentiating, we find

$$
f^{\prime}(x)=\sum_{n \geqslant 0}(-1)^{n} x^{2 n}=\frac{1}{1+x^{2}}
$$

so $f(x)=\int \frac{d x}{1+x^{2}}=\tan ^{-1} x+C$, and since $f(0)=0$ we get $C=0$. Thus the right-hand side is $6 \tan ^{-1}(1 / \sqrt{3})=\pi$, which is the left-hand side.

Problem 2. Suppose that $y=y(t)$ is a differentiable function on \mathbb{R} satisfying $y^{\prime}(t)-\sin (2 t) y(t)=e^{\sin ^{2} t}$. If $y(0)=0$ what is $y(\pi) ?$

Solution: Since $-\int \sin (2 t) d t=\cos ^{2} t+C$, we multiply both sides of the differential equation by $e^{\cos ^{2} t}$, obtaining

$$
\frac{d}{d t}\left(y(t) e^{\cos ^{2} t}\right)=e
$$

Therefore $y(t) e^{\cos ^{2} t}=e t+C$ and $y(t)=(e t+C) e^{-\cos ^{2} t}$. Setting $t=0$ and using $y(0)=0$, we obtain $C=0$, so $y(t)=e t e^{-\cos ^{2} t}$ or in other words $y(t)=t e^{\sin ^{2} t}$. Putting $t=\pi$ gives $y(\pi)=\pi$.

Problem 3. Let D be the upper half of the standard unit ball in \mathbb{R}^{3}, defined by the inequalities $x^{2}+y^{2}+z^{2} \leqslant 1$ and $z \geqslant 0$. Assuming that D is of constant density, find the "centroid" or "center of mass" of D. You may use symmetry considerations and a standard volume formula to reduce the amount of calculation.

Solution: Write the centroid as $(\bar{x}, \bar{y}, \bar{z})$. Symmetry considerations (i. e. the invariance of D under rotation about the z-axis) give $\bar{x}=\bar{y}=0$, and since the volume of D is $(4 \pi / 3) / 2=2 \pi / 3$, we have

$$
\bar{z}=\frac{3}{2 \pi} \iiint_{D} z d x d y d z
$$

Switching to spherical coordinates, we find that \bar{z} is

$$
\frac{3}{2 \pi} \int_{0}^{2 \pi} \int_{0}^{\pi / 2} \int_{0}^{1}(\rho \cos \phi)\left(\rho^{2} \sin \phi\right) d \rho d \phi d \theta=3 / 8
$$

Problem 4. Let f be a continuous function on \mathbb{R}, define $F(x)=\int_{0}^{x} f(t) d t$, and suppose that a and b are real numbers with $a<b$. Apply the Mean Value Theorem to F on $[a, b]$, simplifying your answer and expressing the result entirely in terms of f. Then interpret the result geometrically.

Solution: The Mean Value Theorem asserts that $F(b)-F(a)=F^{\prime}(c)(b-a)$ for some $c \in(a, b)$. By the Fundamental Theorem of Calculus, $F^{\prime}=f$, so we get

$$
\int_{a}^{b} f(x) d x=f(c)(b-a)
$$

So the area under the graph of f from a to b is equal to the area under the horizontal line $y=f(c)$ for some c between a and b. We can also write

$$
\frac{1}{b-a} \int_{a}^{b} f(x) d x=f(c)
$$

and then we are saying that the average value of f from a to b is an actual value of f between a and b (the Intermediate Value Theorem for Integrals).

Problem 5. Let $\varepsilon(n)$ be the nth digit in the decimal expansion of π, so that $\varepsilon(1)=3, \varepsilon(2)=1, \varepsilon(3)=4, \varepsilon(4)=1, \varepsilon(5)=5$, and so on. Does the infinite series $\sum_{n \geqslant 1}(-1)^{\varepsilon(n)}(\ln (1+1 / n)-1 / n)$ converge? Why or why not?

Solution: Since a series converges if it converges absolutely, it suffices to see that $\sum_{n \geqslant 1}|\ln (1+1 / n)-1 / n|$ converges. Now $\ln (1+x)=x-x^{2} / 2+x^{3} / 3-\ldots$ for $|x|<1$, and consequently $|\ln (1+x)-x| \leqslant C x^{2}$ for some constant C and all x near 0 . Thus for large n we have

$$
|\ln (1+1 / n)-1 / n| \leqslant C / n^{2} .
$$

Since the series $\sum_{n \geqslant 1} 1 / n^{2}$ converges (p-series with $p=2>1$) we conclude that $\sum_{n \geqslant 1}|\ln (1+1 / n)-1 / n|$ converges and hence that the given series converges.

Part II.

Solve three of the following six problems.
Problem 6. Find the value of the line integral $\int_{C}\left(y+e^{x}\right) d x+\left(x^{2}-x+e^{y}\right) d y$, where C is the ellipse $x^{2} / 4+y^{2} / 9=1$ in the $x y$-plane, oriented counterclockwise.

Solution: Let R be the region $x^{2} / 4+y^{2} / 9 \leqslant 1$. By Green's theorem, the given line integral is

$$
\iint_{R}\left(\frac{\partial\left(x^{2}-x+e^{y}\right)}{\partial x}-\frac{\partial\left(y+e^{x}\right)}{\partial y}\right) d x d y=\iint_{R}(2 x-2) d x d y
$$

The integral of $2 x$ over R is 0 because $2 x$ is odd and R is symmetric about the y-axis. So the integral is -2 times the area of R. The area of the ellipse $x^{2} / a^{2}+y^{2} / b^{2}=1$ is $\pi a b$, so we conclude that the value of the given integral is $-2(6 \pi)=-12 \pi$.

Problem 7. Let f and g be real-valued functions on \mathbb{R}. Assume $|f(x)| \leqslant M$ for some constant $M>0$ and $\lim _{x \rightarrow 0} g(x)=0$.
(a) Using the formal definition of "limit," prove that $\lim _{x \rightarrow 0} f(x) g(x)=0$.

Solution: Let $\varepsilon>0$ be given. Since $\lim _{x \rightarrow 0} g(x)=0$, there exists $\delta>0$ such that if $0<|x|<\delta$ then $|g(x)|<\varepsilon / M$. Hence if $0<|x|<\delta$ then $|f(x) g(x)|<$ $M(\varepsilon / M)=\varepsilon$, and we conclude that $\lim _{x \rightarrow 0} f(x) g(x)=0$.
(b) Use (a) to show that the function

$$
r(x)= \begin{cases}x^{2} \sin (1 / x) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

is differentiable at 0 .
Solution: Let $f(x)=\sin (1 / x)$ for $x \neq 0$, and put $f(0)=0$. Also put $M=1$. Then $|f(x)| \leqslant M$. Let $g(x)=x$, so that $\lim _{x \rightarrow 0} g(x)=0$. We have

$$
\lim _{h \rightarrow 0} \frac{r(0+h)-r(0)}{h}=\lim _{h \rightarrow 0} f(h) g(h)=0
$$

by (a), so r is differentiable at 0 and $r^{\prime}(0)=0$.
Problem 8. Find the maximum and minimum values of $f(x)=x z+y z$ on the sphere $S=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=4\right\}$.

Solution: Let $g(x, y, z)=x^{2}+y^{2}+z^{2}$. According to the method of Lagrange multipliers, the points where an extreme value occurs are among the points $P \in S$ where $\nabla f(P)=\lambda \nabla g(P)$ for some $\lambda \in \mathbb{R}$. Thus we seek solutions to the system

$$
\left\{\begin{array}{l}
z=\lambda 2 x \\
z=\lambda 2 y \\
x+y=\lambda 2 z \\
x^{2}+y^{2}+z^{2}=4
\end{array}\right.
$$

The first and third equations show that if $\lambda=0$ then $z=0$ and $x=-y$, whence the fourth equation gives $P= \pm(\sqrt{2},-\sqrt{2}, 0)$, so that $f(P)=0$. On the other hand, if $\lambda \neq 0$, then the first and second equations give $x=z /(2 \lambda)$ and $y=z /(2 \lambda)$, whence the third equation gives $z /\left(2 \lambda^{2}\right)=z$. Since $z \neq 0$ (else $x=y=0$ also, contradicting the fourth equation) we get $\lambda= \pm 1 / \sqrt{2}$. The first two equations then give $x=y$ and $z= \pm \sqrt{2} x$, so the fourth equations gives $4 x^{2}=4$. Thus $x= \pm 1$ and $P= \pm(1,1, \varepsilon \sqrt{2})$ with $\varepsilon \in\{ \pm 1\}$. Taking account of all possible signs, we find $f(P)= \pm 2 \sqrt{2}$. So $2 \sqrt{2}$ is the maximum value of f and $-2 \sqrt{2}$ is the minimum value.

Problem 9. Let $\left\{x_{n}\right\}$ be the sequence of positive real numbers defined by $x_{1}=1$ and, for $n \geqslant 1$,

$$
x_{n+1}=\frac{1}{x_{n}+x_{n}^{-1}}
$$

Show that $\left\{x_{n}\right\}$ converges. To what number does it converge?
Solution: Since $x_{n}>0$ for all n, we have

$$
x_{n+1}=\frac{x_{n}}{x_{n}^{2}+1}<x_{n}
$$

Thus $\left\{x_{n}\right\}$ is a decreasing sequence bounded below (by 0), and so it converges. If $x=\lim _{n \rightarrow \infty} x_{n}$ then

$$
x=\lim _{n \rightarrow \infty} x_{n+1}=\lim _{n \rightarrow \infty} \frac{x_{n}}{x_{n}^{2}+1}=\frac{x}{x^{2}+1} .
$$

The only solution in \mathbb{R} to $x=x /\left(x^{2}+1\right)$ is $x=0$, so $\left\{x_{n}\right\}$ converges to 0 .
Problem 10. Define functions $f_{n}:[0,1] \rightarrow \mathbb{R}$ for $n \geqslant 1$ by

$$
f_{n}(x)= \begin{cases}x^{n} \ln x & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

a) Is f_{n} is continuous at 0 ? Justify your answer.

Solution: Yes. By L'Hôpital's Rule,

$$
\lim _{x \rightarrow 0^{+}} f_{n}(x)=\lim _{x \rightarrow 0^{+}} \frac{\ln x}{x^{-n}}=\lim _{x \rightarrow 0} \frac{x^{n}}{-n}=0
$$

which is $f_{n}(0)$.
b) Is $\left\{f_{n}\right\}$ a uniformly convergent sequence of functions? Justify your answer.

Solution: Yes. Since $\ln x<0$ for $x \in(0,1)$, we see that $f_{n}(x) \leqslant 0$. Also, $f_{n}^{\prime}(x)=n x^{n-1} \ln x+x^{n-1}$ and therefore $f_{n}^{\prime}(x)=0$ if and only if $x=e^{-1 / n}$. We see in fact that $f_{n}^{\prime}(x)<0$ for $x<e^{-1 / n}$ and $f_{n}^{\prime}(x)>0$ for $x>e^{-1 / n}$, so the minimum value of the continuous function f_{n} on $[0,1]$ is $f\left(e^{-1 / n}\right)=-1 /(n e)$. Thus $\left|f_{n}(x)\right| \leqslant 1 /(n e)$ for $x \in[0,1]$. Since the upper bound $1 /(n e)$ is independent of x and goes to 0 as n goes to infinity, we see that $\left\{f_{n}\right\}$ is uniformly convergent to 0 on $[0,1]$.

Problem 11. Find the value of the surface integral $\iint_{S} \mathbf{F} \cdot \mathbf{d S}$, where the vector field \mathbf{F} is given by $\mathbf{F}(x, y, z)=\left(e^{y}+x z, e^{x}-y z, z\right)$, the surface S is the tetrahedron with vertices $(0,0,0),(1,0,0),(0,1,0)$, and $(0,0,1)$, and the normal vector points outward.

Solution: By the Divergence Theorem, the given integral equals

$$
\iiint_{D} \nabla \cdot \mathbf{F} d V=\iiint_{D} 1 d x d y d z
$$

where D is the interior of S and $d V$ is the volume element. The right-hand side is

$$
\int_{0}^{1} \int_{0}^{1-z} \int_{0}^{1-y-z} 1 d x d y d z=\int_{0}^{1} \frac{(1-z)^{2}}{2} d z
$$

which is $1 / 6$.

Part III.

Solve one of the following three problems.
Problem 12. Let S be the set of finite sums of the form $\sum_{n=a}^{b} 1 / n$, where $1 \leqslant a \leqslant b$. Prove that S is dense in the set of nonnegative real numbers.

Solution: Given $x \in[0, \infty)$ and $\varepsilon>0$, we must show that there exists $s \in S$ such that $|x-s|<\varepsilon$. If $x=0$ we choose n such that $1 / n<\varepsilon$ and we take $s=1 / n$ (i. e. $a=b=n$). Now suppose $x>0$, and choose a so that $1 / a<\min (x, \varepsilon)$. The set

$$
B=\left\{c \geqslant a: \sum_{n=a}^{c} 1 / n<x\right\}
$$

is nonempty because $a \in B$ and is finite because $\sum_{n=a}^{\infty} 1 / n=\infty$, i. e. the harmonic series diverges. Put $b=\max (B)$ and $s=\sum_{n=a}^{b} 1 / n$. Then $0<s<x$. On the
other hand, $\sum_{n=a}^{b+1} 1 / n>x$ by the definition of b. But $\sum_{n=a}^{b+1} 1 / n=s+1 /(b+1)$, so we conclude that $s<x<s+1 /(b+1)$, and thus

$$
0<x-s<\frac{1}{b+1}<\frac{1}{b} \leqslant \frac{1}{a}<\varepsilon
$$

Hence $|x-s|<\varepsilon$.
Problem 13. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the function $f(x, y)=\left(x^{3}+e^{y}, y^{5}-e^{x}\right)$. Prove that f is an open mapping. In other words, show that if U is an open subset of \mathbb{R}^{2} then so is $f(U)$.

Solution: We must show that for every point $P=(x, y) \in U$ there is an open neighborhood N of $f(P)$ such that $N \subset f(U)$. Now the Jacobian determinant of f is

$$
\operatorname{det}\left(\begin{array}{cc}
3 x^{2} & e^{y} \\
-e^{x} & 5 y^{4}
\end{array}\right)=15 x^{2} y^{4}+e^{x+y}
$$

and the right-hand side is >0, and in particular $\neq 0$, for all (x, y). So by the Inverse Function Theorem, there are open neighborhoods V of P and and W of $f(P)$ such that $f \mid V$ is a C^{∞}-diffeomorphism, and thus in particular a homeomorphism, of V onto W. Thus $N=f(U \cap V)$ is an open neighborhood of $f(P)$ contained in $f(U)$.

Problem 14. Let X be a complete metric space with metric d satisfying the following condition: For every $\varepsilon>0$ there is a collection of finitely many open balls of radius ε which covers X. Prove that X is compact.

Solution: Given a sequence $\left\{x_{n}\right\}$ in X we will choose a subsequence $\left\{y_{n}\right\}$ such that for every $N \geqslant 1$, if $m, n \geqslant N$ then $d\left(y_{n}, y_{m}\right)<2 / N$. Since X is complete it will follow that the Cauchy subsequence $\left\{y_{n}\right\}$ converges, whence X is compact.

To construct the subsequence $\left\{y_{n}\right\}$, we proceed inductively. First, choose finitely many open balls of radius 1 which cover X. Then one of the open balls contains infinitely many terms of the sequence $\left\{x_{n}\right\}$, and so we can choose a subsequence $\left\{y_{n}^{(1)}\right\}$ satisfying

$$
d\left(y_{n}^{(1)}, y_{m}^{(1)}\right)<2
$$

for all $n, m \geqslant 1$.
Now suppose that we have chosen sequences $\left\{y_{n}^{(i)}\right\}$ for $1 \leqslant i \leqslant N$ such that $\left\{y_{n}^{(i)}\right\}$ is a subsequence of $\left\{y_{n}^{(i-1)}\right\}$ for $1 \leqslant i \leqslant N$ (with $\left\{y_{n}^{(0)}\right\}$ understood to be $\left\{x_{n}\right\}$) and

$$
d\left(y_{n}^{(i)}, y_{m}^{(i)}\right)<2 / i
$$

for all $n, m \geqslant 1$. Choose finitely many open balls of radius $1 /(N+1)$ which cover X. Then one of the open balls contains infinitely many terms of the sequence $\left\{y_{n}^{(N)}\right\}$, and so we can choose a subsequence $\left\{y_{n}^{(N+1)}\right\}$ satisfying

$$
d\left(y_{n}^{(N+1)}, y_{m}^{(N+1)}\right)<2 /(N+1)
$$

for all $n, m \geqslant 1$.
Finally, put $y_{\nu}=y_{\nu}^{(\nu)}$. Then for every $N \geqslant 1$ and all $n, m \geqslant N$, the terms y_{n} and y_{m} are terms of the sequence $\left\{y_{\nu}^{(N)}\right\}$, and consequently they satisfy $d\left(y_{n}, y_{m}\right)<$ $2 / N$, as desired.

