
Preliminary Exam 2017
Solutions to Morning Exam

Part I.
Solve four of the following five problems.

Problem 1. Verify that∫ 2π

0

cos2 x dx = 6
∑
n>0

(−1)n
3−(2n+1)/2

2n+ 1

by computing both sides.
Solution: The left-hand side can be computed using either integration by parts

(u = cosx, v = sinx), or the identity cos2 x = (1 + cos(2x))/2, the antiderivatives
obtained being respectively (x+cosx sinx)/2 and x/2+sin(2x)/4 up to an additive
constant. Thus the left-hand side is π. The right-hand side is 6f(1/

√
3), where

f(x) =
∑
n>0

(−1)n
x2n+1

2n+ 1
.

Differentiating, we find

f ′(x) =
∑
n>0

(−1)nx2n =
1

1 + x2
,

so f(x) =
∫ dx

1 + x2
= tan−1 x + C, and since f(0) = 0 we get C = 0. Thus the

right-hand side is 6 tan−1(1/
√

3) = π, which is the left-hand side.
Problem 2. Suppose that y = y(t) is a differentiable function on R satisfying

y′(t)− sin(2t)y(t) = esin2 t. If y(0) = 0 what is y(π)?
Solution: Since −

∫
sin(2t) dt = cos2 t+ C, we multiply both sides of the differ-

ential equation by ecos2 t, obtaining

d

dt
(y(t)ecos2 t) = e.

Therefore y(t)ecos2 t = et+ C and y(t) = (et+ C)e− cos2 t. Setting t = 0 and using
y(0) = 0, we obtain C = 0, so y(t) = ete− cos2 t or in other words y(t) = tesin2 t.
Putting t = π gives y(π) = π.

Problem 3. Let D be the upper half of the standard unit ball in R3, defined by
the inequalities x2 +y2 +z2 6 1 and z > 0. Assuming that D is of constant density,
find the “centroid” or “center of mass” of D. You may use symmetry considerations
and a standard volume formula to reduce the amount of calculation.

Solution: Write the centroid as (x, y, z). Symmetry considerations (i. e. the
invariance of D under rotation about the z-axis) give x = y = 0, and since the
volume of D is (4π/3)/2 = 2π/3, we have

z =
3

2π

∫ ∫ ∫
D

z dx dy dz.
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Switching to spherical coordinates, we find that z is

3
2π

∫ 2π

0

∫ π/2

0

∫ 1

0

(ρ cosφ)(ρ2 sinφ) dρ dφ dθ = 3/8.

Problem 4. Let f be a continuous function on R, define F (x) =
∫ x

0
f(t) dt, and

suppose that a and b are real numbers with a < b. Apply the Mean Value Theorem
to F on [a, b], simplifying your answer and expressing the result entirely in terms
of f . Then interpret the result geometrically.

Solution: The Mean Value Theorem asserts that F (b)− F (a) = F ′(c)(b− a) for
some c ∈ (a, b). By the Fundamental Theorem of Calculus, F ′ = f , so we get∫ b

a

f(x) dx = f(c)(b− a).

So the area under the graph of f from a to b is equal to the area under the horizontal
line y = f(c) for some c between a and b. We can also write

1
b− a

∫ b

a

f(x) dx = f(c),

and then we are saying that the average value of f from a to b is an actual value
of f between a and b (the Intermediate Value Theorem for Integrals).

Problem 5. Let ε(n) be the nth digit in the decimal expansion of π, so that
ε(1) = 3, ε(2) = 1, ε(3) = 4, ε(4) = 1, ε(5) = 5, and so on. Does the infinite series∑
n>1(−1)ε(n)(ln(1 + 1/n)− 1/n) converge? Why or why not?
Solution: Since a series converges if it converges absolutely, it suffices to see that∑
n>1 | ln(1 + 1/n) − 1/n| converges. Now ln(1 + x) = x − x2/2 + x3/3 − . . . for

|x| < 1, and consequently | ln(1 +x)−x| 6 Cx2 for some constant C and all x near
0. Thus for large n we have

| ln(1 + 1/n)− 1/n| 6 C/n2.

Since the series
∑
n>1 1/n2 converges (p-series with p = 2 > 1) we conclude that∑

n>1 | ln(1 + 1/n)− 1/n| converges and hence that the given series converges.

Part II.
Solve three of the following six problems.

Problem 6. Find the value of the line integral
∫
C

(y + ex)dx+ (x2 − x+ ey)dy,
where C is the ellipse x2/4 + y2/9 = 1 in the xy-plane, oriented counterclockwise.

Solution: Let R be the region x2/4 + y2/9 6 1. By Green’s theorem, the given
line integral is∫ ∫

R

(
∂(x2 − x+ ey)

∂x
− ∂(y + ex)

∂y
) dx dy =

∫ ∫
R

(2x− 2) dx dy.

The integral of 2x over R is 0 because 2x is odd and R is symmetric about the y-axis.
So the integral is −2 times the area of R. The area of the ellipse x2/a2 + y2/b2 = 1
is πab, so we conclude that the value of the given integral is −2(6π) = −12π.

Problem 7. Let f and g be real-valued functions on R. Assume |f(x)| 6M for
some constant M > 0 and limx→0 g(x) = 0.

(a) Using the formal definition of “limit,” prove that limx→0 f(x)g(x) = 0.
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Solution: Let ε > 0 be given. Since limx→0 g(x) = 0, there exists δ > 0 such
that if 0 < |x| < δ then |g(x)| < ε/M . Hence if 0 < |x| < δ then |f(x)g(x)| <
M(ε/M) = ε, and we conclude that limx→0 f(x)g(x) = 0.

(b) Use (a) to show that the function

r(x) =

{
x2 sin(1/x) if x 6= 0,
0 if x = 0

is differentiable at 0.
Solution: Let f(x) = sin(1/x) for x 6= 0, and put f(0) = 0. Also put M = 1.

Then |f(x)| 6M . Let g(x) = x, so that limx→0 g(x) = 0. We have

lim
h→0

r(0 + h)− r(0)
h

= lim
h→0

f(h)g(h) = 0

by (a), so r is differentiable at 0 and r′(0) = 0.
Problem 8. Find the maximum and minimum values of f(x) = xz + yz on the

sphere S = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 4}.
Solution: Let g(x, y, z) = x2 + y2 + z2. According to the method of Lagrange

multipliers, the points where an extreme value occurs are among the points P ∈ S
where ∇f(P ) = λ∇g(P ) for some λ ∈ R. Thus we seek solutions to the system

z = λ2x
z = λ2y
x+ y = λ2z
x2 + y2 + z2 = 4.

The first and third equations show that if λ = 0 then z = 0 and x = −y, whence
the fourth equation gives P = ±(

√
2,−
√

2, 0), so that f(P ) = 0. On the other
hand, if λ 6= 0, then the first and second equations give x = z/(2λ) and y = z/(2λ),
whence the third equation gives z/(2λ2) = z. Since z 6= 0 (else x = y = 0 also,
contradicting the fourth equation) we get λ = ±1/

√
2. The first two equations then

give x = y and z = ±
√

2x, so the fourth equations gives 4x2 = 4. Thus x = ±1
and P = ±(1, 1, ε

√
2) with ε ∈ {±1}. Taking account of all possible signs, we find

f(P ) = ±2
√

2. So 2
√

2 is the maximum value of f and −2
√

2 is the minimum
value.

Problem 9. Let {xn} be the sequence of positive real numbers defined by x1 = 1
and, for n > 1,

xn+1 =
1

xn + x−1
n

.

Show that {xn} converges. To what number does it converge?
Solution: Since xn > 0 for all n, we have

xn+1 =
xn

x2
n + 1

< xn.

Thus {xn} is a decreasing sequence bounded below (by 0), and so it converges. If
x = limn→∞ xn then

x = lim
n→∞

xn+1 = lim
n→∞

xn
x2
n + 1

=
x

x2 + 1
.
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The only solution in R to x = x/(x2 + 1) is x = 0, so {xn} converges to 0.
Problem 10. Define functions fn : [0, 1]→ R for n > 1 by

fn(x) =

{
xn lnx if x 6= 0,
0 if x = 0.

a) Is fn is continuous at 0? Justify your answer.
Solution: Yes. By L’Hôpital’s Rule,

lim
x→0+

fn(x) = lim
x→0+

lnx
x−n

= lim
x→0

xn

−n
= 0,

which is fn(0).
b) Is {fn} a uniformly convergent sequence of functions? Justify your answer.
Solution: Yes. Since lnx < 0 for x ∈ (0, 1), we see that fn(x) 6 0. Also,

f ′n(x) = nxn−1 lnx + xn−1 and therefore f ′n(x) = 0 if and only if x = e−1/n.
We see in fact that f ′n(x) < 0 for x < e−1/n and f ′n(x) > 0 for x > e−1/n, so the
minimum value of the continuous function fn on [0, 1] is f(e−1/n) = −1/(ne). Thus
|fn(x)| 6 1/(ne) for x ∈ [0, 1]. Since the upper bound 1/(ne) is independent of x
and goes to 0 as n goes to infinity, we see that {fn} is uniformly convergent to 0
on [0, 1].

Problem 11. Find the value of the surface integral
∫ ∫

S
F · dS, where the vector

field F is given by F(x, y, z) = (ey +xz, ex−yz, z), the surface S is the tetrahedron
with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1), and the normal vector points
outward.

Solution: By the Divergence Theorem, the given integral equals∫ ∫ ∫
D

∇ · F dV =
∫ ∫ ∫

D

1 dx dy dz,

where D is the interior of S and dV is the volume element. The right-hand side is∫ 1

0

∫ 1−z

0

∫ 1−y−z

0

1 dx dy dz =
∫ 1

0

(1− z)2

2
dz,

which is 1/6.

Part III.
Solve one of the following three problems.

Problem 12. Let S be the set of finite sums of the form
∑b
n=a 1/n, where

1 6 a 6 b. Prove that S is dense in the set of nonnegative real numbers.
Solution: Given x ∈ [0,∞) and ε > 0, we must show that there exists s ∈ S such

that |x− s| < ε. If x = 0 we choose n such that 1/n < ε and we take s = 1/n (i. e.
a = b = n). Now suppose x > 0, and choose a so that 1/a < min(x, ε). The set

B = {c > a :
c∑

n=a

1/n < x}

is nonempty because a ∈ B and is finite because
∑∞
n=a 1/n =∞, i. e. the harmonic

series diverges. Put b = max(B) and s =
∑b
n=a 1/n. Then 0 < s < x. On the



5

other hand,
∑b+1
n=a 1/n > x by the definition of b. But

∑b+1
n=a 1/n = s + 1/(b + 1),

so we conclude that s < x < s+ 1/(b+ 1), and thus

0 < x− s < 1
b+ 1

<
1
b
6

1
a
< ε.

Hence |x− s| < ε.
Problem 13. Let f : R2 → R

2 be the function f(x, y) = (x3 + ey, y5 − ex).
Prove that f is an open mapping. In other words, show that if U is an open subset
of R2 then so is f(U).

Solution: We must show that for every point P = (x, y) ∈ U there is an open
neighborhood N of f(P ) such that N ⊂ f(U). Now the Jacobian determinant of f
is

det
(

3x2 ey

−ex 5y4

)
= 15x2y4 + ex+y,

and the right-hand side is > 0, and in particular 6= 0, for all (x, y). So by the Inverse
Function Theorem, there are open neighborhoods V of P and and W of f(P ) such
that f |V is a C∞-diffeomorphism, and thus in particular a homeomorphism, of V
onto W . Thus N = f(U ∩ V ) is an open neighborhood of f(P ) contained in f(U).

Problem 14. Let X be a complete metric space with metric d satisfying the
following condition: For every ε > 0 there is a collection of finitely many open balls
of radius ε which covers X. Prove that X is compact.

Solution: Given a sequence {xn} in X we will choose a subsequence {yn} such
that for every N > 1, if m,n > N then d(yn, ym) < 2/N . Since X is complete it
will follow that the Cauchy subsequence {yn} converges, whence X is compact.

To construct the subsequence {yn}, we proceed inductively. First, choose finitely
many open balls of radius 1 which cover X. Then one of the open balls contains
infinitely many terms of the sequence {xn}, and so we can choose a subsequence
{y(1)
n } satisfying

d(y(1)
n , y(1)

m ) < 2

for all n,m > 1.
Now suppose that we have chosen sequences {y(i)

n } for 1 6 i 6 N such that
{y(i)
n } is a subsequence of {y(i−1)

n } for 1 6 i 6 N (with {y(0)
n } understood to be

{xn}) and

d(y(i)
n , y(i)

m ) < 2/i

for all n,m > 1. Choose finitely many open balls of radius 1/(N+1) which cover X.
Then one of the open balls contains infinitely many terms of the sequence {y(N)

n },
and so we can choose a subsequence {y(N+1)

n } satisfying

d(y(N+1)
n , y(N+1)

m ) < 2/(N + 1)

for all n,m > 1.
Finally, put yν = y

(ν)
ν . Then for every N > 1 and all n,m > N , the terms yn

and ym are terms of the sequence {y(N)
ν }, and consequently they satisfy d(yn, ym) <

2/N , as desired.


