Preliminary Exam 2016
 Solutions to Morning Exam

Part I.

Solve four of the following five problems.
Problem 1. Find the volume of the "ice cream cone" defined by the inequalities $x^{2}+y^{2}+z^{2} \leqslant 1$ and $x^{2}+y^{2} \leqslant z^{2} / 3$ for $z \geqslant 0$.

Solution: Since $\tan ^{-1} \sqrt{3}=\pi / 3=\pi / 2-\pi / 6$, the volume is

$$
\int_{0}^{2 \pi} \int_{0}^{\pi / 6} \int_{0}^{1} \rho^{2} \sin \varphi d \rho d \varphi d \theta=(2 \pi)(1 / 3)(1-\sqrt{3} / 2)
$$

which is $(2-\sqrt{3}) \pi / 3$.
One can also do this problem in cylindrical coordinates: Since the intersection of the surfaces $r^{2}=z^{2} / 3$ and $r^{2}+z^{2}=1$ projects to the circle $r^{2}=1 / 4$, we get

$$
\int_{0}^{2 \pi} \int_{0}^{1 / 2} \int_{\sqrt{3} r}^{\sqrt{1-r^{2}}} r d z d r d \theta=(2 \pi) \int_{0}^{1 / 2}\left(r \sqrt{1-r^{2}}-\sqrt{3} r^{2}\right) d r
$$

which is

$$
\left.(2 \pi)\left(-\frac{1}{3}\left(1-r^{2}\right)^{3 / 2}-\frac{r^{3}}{\sqrt{3}}\right)\right|_{0} ^{1 / 2}
$$

After some simplifications, we get the same answer as before.
Problem 2. Determine the radius of convergence and interval of convergence of the power series $\sum_{n \geqslant 1}(1+1 / n)^{n^{2}} x^{n}$.

Solution: Since $\lim _{n \rightarrow \infty}(1+1 / n)^{n}|x|=e|x|$, we see that the radius of convergence is $1 / e$. Thus we must check convergence at the endpoints $1 / e$ and $-1 / e$. Now

$$
\log (1+1 / n)^{n^{2}}=n^{2}\left(\frac{1}{n}-\frac{1}{2 n^{2}}+\frac{1}{3 n^{4}}-\ldots\right)
$$

which is $n-1 / 2+O\left(1 / n^{2}\right)$. Thus

$$
\log \left((1+1 / n)^{n^{2}}(1 / e)^{n}\right)=-1 / 2+O\left(1 / n^{2}\right)
$$

and consequently $\lim _{n \rightarrow \infty}(1+1 / n)^{n^{2}}(1 / e)^{n}=e^{-1 / 2}$. In particular, at $1 / e$ the limit of the nth term of the series is nonzero, and at $-1 / e$ the limit does not even exist. So the interval of convergence is $(-1 / e, 1 / e)$.

Problem 3. Prove that $\cos x_{0}=x_{0}$ for a unique $x_{0} \in[0,1]$, and show in addition that $\pi / 6<x_{0}<\pi / 4$.

Solution: Consider the function $f(x)=\cos x-x$. We have $f(0)=1>0$, and since $\cos x$ is strictly decreasing on $[0, \pi / 2]$ we also have

$$
f(1)=\cos (1)-1<\cos (\pi / 2)-1=-1<0
$$

So the existence of x_{0} follows from the Intermediate Value Theorem (or the fact that the continuous image of a connected set is connected). The uniqueness follows from the fact that $f^{\prime}(x)=-\sin x-1$ is strictly negative on $[0,1]$, whence f is strictly decreasing on $[0,1]$. [Remark: One could get the existence and uniqueness simultaneously by appealing to the Contraction Fixed Point Theorem.]

For the second assertion, observe that

$$
f(\pi / 6)=\sqrt{3} / 2-\pi / 6=\frac{3 \sqrt{3}-\pi}{6}>0
$$

while

$$
f(\pi / 4)=\sqrt{2} / 2-\pi / 4=\frac{2 \sqrt{2}-\pi}{4}<0
$$

Since f is strictly decreasing on $[0,1]$ it follows that $x_{0} \in(\pi / 6, \pi / 4)$.
Problem 4. Using standard techniques of integration, find antiderivatives on some open interval where the integrand is defined and continuous:
(a) $\int \tan \left(\cos ^{2} x\right) \sin (2 x) d x$.

Solution: Let $u=\cos ^{2} x$, so that $d u=-2 \sin x \cos x d x=-\sin (2 x) d x$. We get
$\int \tan \left(\cos ^{2} x\right) \sin (2 x) d x=-\int \tan u d u=\log |\cos u|+C=\log \left|\cos \left(\cos ^{2} x\right)\right|+C$
(b) $\int \cos (\log x) d x$. (Here "log" is understood to be "ln.")

Solution: Let $u=\cos (\log x)$ and $v=x$, so that $d u=-x \sin (\log x) d x$ and $d v=d x$. We get

$$
\int \cos (\log x) d x=x \cos (\log x)+\int \sin (\log x) d x
$$

A second integration by parts with $u=\sin (\log x)$ and $v=x$ then gives

$$
\int \cos (\log x) d x=x(\cos \log x+\sin \log x) / 2+C
$$

Problem 5. Find all solutions to the differential equation $y^{\prime \prime}-y^{\prime}-6 y=\cos t$ that are bounded on $[0, \infty)$ and satisfy the condition $y(0)=0$.

Solution: Since $x^{2}-x-6=(x-3)(x+2)$, the general solution to the homogeneous equation is $y(t)=a e^{3 t}+b e^{-2 t}$. Substituting $y(t)=c \cos t+d \sin t$ into the inhomogeneous equation, one finds that $c=-7 / 50$ and $d=-1 / 50$, so the general solution to the inhomogeneous equation is

$$
y(t)=a e^{3 t}+b e^{-2 t}+(-7 / 50) \cos t+(-1 / 50) \sin t
$$

The boundedness on $[0, \infty)$ holds if and only if $a=0$, and given that $a=0$, the condition $y(0)=0$ holds if and only if $b=7 / 50$. So the above $y(t)$ with $a=0$, $b=7 / 50, c=-7 / 50$, and $d=-1 / 50$ is the unique function satisfying the stated conditions.

Part II.

Solve three of the following six problems.
Problem 6. Let $\mathbf{F}(x, y, z)=(2 x+3 y) \mathbf{i}+(3 x+2 y) \mathbf{j}+z \mathbf{k}$.
(a) Compute $\nabla \times \mathbf{F}$.

Solution: Using the definition of $\nabla \times \mathbf{F}$ as a symbolic determinant, we compute

$$
\nabla \times \mathbf{F}=\operatorname{det}\left(\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
2 x+3 y & 3 x+2 y & z
\end{array}\right)
$$

which is $\mathbf{0}$.
(b) Let C be the curve given parametrically by $\mathbf{r}(t)=e^{t} \cos t \mathbf{i}+e^{t} \sin t \mathbf{j}$ for $0 \leqslant t \leqslant 2 \pi$. Find the value of the line integral $\int_{C} \mathbf{F} \cdot d s$.

Solution: Since $\nabla \times \mathbf{F}$ is zero and \mathbb{R}^{3} is simply connected, \mathbf{F} has a potential function, which is easily computed to be

$$
\varphi(x, y, z)=x^{2}+3 x y+y^{2}+z^{2} / 2+C
$$

Note also that $\mathbf{r}(0)=\mathbf{i}$ and $\mathbf{r}(2 \pi)=e^{2 \pi} \mathbf{i}$. Hence $\int_{C} \mathbf{F} \cdot d s=\varphi\left(e^{2 \pi}, 0,0\right)-\varphi(1,0,0)$, which is $e^{4 \pi}-1$.

Problem 7. Fix an element $c \in \mathbb{R}$, and define a function $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=|x-c|$. Show that f is uniformly continuous.

Solution: By the Triangle Inequality, $||x-c|-|y-c|| \leqslant|x-y|$, or in other words, $|f(x)-f(y)| \leqslant|x-y|$. So given $\varepsilon>0$ let $\delta=\varepsilon$; then $|f(x)-f(y)|<\varepsilon$ whenever $|x-y|<\delta$.

Problem 8. The formula $f(x, y, z)=\left(x+y^{2}+z^{2}, x^{2}+y+z^{2}, x^{2}+y^{2}+z\right)$ defines a function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$.
(a) Explain why there are open neighborhoods U and $V=f(U)$ of $(0,0,0) \in \mathbb{R}^{3}$ and a C^{1} function $g: V \rightarrow U$ such that $g(f(x, y, z))=(x, y, z)$ for $(x, y, z) \in U$ and $f(g(x, y, z))=(x, y, z)$ for $(x, y, z) \in V$.

Solution: The Jacobian matrix of f at $(0,0,0)$ is

$$
\left.\left(\begin{array}{ccc}
1 & 2 y & 2 z \\
2 x & 1 & 2 z \\
2 x & 2 y & 1
\end{array}\right)\right|_{(0,0,0)}=I
$$

the 3×3 identity matrix. In particular, this matrix is invertible, so by the Inverse Function Theorem, there exist U, V, and g as above.
(b) Now let $h(x, y, z)=\left(x+e^{y}+e^{z}-2, e^{x}+y+e^{z}-2, e^{x}+e^{y}+z-2\right)$. Show that if f is replaced by h then no such U, V, and g exist.

Solution: In this case, the Jacobian matrix of h at $(0,0,0)$ is

$$
\left.\left(\begin{array}{ccc}
1 & e^{y} & e^{z} \\
e^{x} & 1 & e^{z} \\
e^{x} & e^{y} & 1
\end{array}\right)\right|_{(0,0,0)}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

a matrix of row rank 1 , not 3 , and therefore not invertible. Denote this matrix by A. If U, V, and g as above exist, and if B is the Jacobian matrix of g at $(0,0,0)$, then $A B=I$ and hence $\operatorname{det}(A) \operatorname{det}(B)=1$, a contradiction since $\operatorname{det}(A)=0$.

Problem 9. Let $f_{n}(x)=n x e^{-n x}$. Show that the sequence $\left\{f_{n}\right\}$ is pointwise convergent on $[0,1]$ but not uniformly convergent.

Solution: If $x=0$ then $f_{n}(x)=0$ for all n; otherwise

$$
\lim _{n \rightarrow \infty} \frac{n x}{e^{n x}}=\lim _{y \rightarrow \infty} \frac{y}{e^{y}}=0
$$

by L'Hôpital's Rule. Thus $\left\{f_{n}\right\}$ converges pointwise to the zero function on $[0,1]$. But the convergence is not uniform, for take $\varepsilon<1 / e$, let $N \geqslant 1$ be arbitrary, and observe that if $x=1 /(N+1)$ and $n=N+1$ then $\left|f_{n}(x)-0\right|=1 / e$ and thus $\left|f_{n}(x)-0\right|>\varepsilon$.

Problem 10. Let V be the real vector space of C^{∞} functions $f: \mathbb{R} \rightarrow \mathbb{R}$ with compact support (in other words, f vanishes outside some closed bounded interval).

Define an operator $T: V \rightarrow V$ by $T(f)=f^{\prime \prime}$. Show that T is self-adjoint relative to the L^{2} inner product on V. In other words, letting

$$
\langle f, g\rangle=\int_{-\infty}^{\infty} f(x) g(x) d x
$$

for $f, g \in V$, show that $\langle T(f), g\rangle=\langle f, T(g)\rangle$.
Solution: Using integration by parts, we have

$$
\int_{-\infty}^{\infty} f(x) g^{\prime}(x) d x=-\int_{-\infty}^{\infty} f^{\prime}(x) g(x) d x
$$

because both f and g vanish outside a closed bounded interval. Replacing g by g^{\prime} we obtain an expression on the right-hand which is symmetric in f and g. Therefore so is the expression on the left-hand side, which is $\langle f, T(g)\rangle$. In other words, $\langle f, T(g)\rangle$ equals $\langle g, T(f)\rangle$ and hence $\langle T(f), g\rangle$. [Aternatively, just do integration by parts again.]

Problem 11. Find the surface area of the torus described parametrically by

$$
\mathbf{r}(\theta, \varphi)=\cos \theta\left(1+\frac{\cos \varphi}{2}\right) \mathbf{i}+\sin \theta\left(1+\frac{\cos \varphi}{2}\right) \mathbf{j}+\frac{\sin \varphi}{2} \mathbf{k} \quad(0 \leqslant \theta, \varphi \leqslant 2 \pi)
$$

Solution: The surface area is by definition

$$
A=\int_{0}^{2 \pi} \int_{0}^{2 \pi}\left|\mathbf{r}_{\theta} \times \mathbf{r}_{\varphi}\right| d \theta d \varphi
$$

Now

$$
\mathbf{r}_{\theta} \times \mathbf{r}_{\varphi}=\operatorname{det}\left(\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-\sin \theta\left(1+\frac{\cos \varphi}{2}\right) & \cos \theta\left(1+\frac{\cos \varphi}{2}\right) & 0 \\
\cos \theta\left(\frac{-\sin \varphi}{2}\right) & \sin \theta\left(\frac{-\sin \varphi}{2}\right) & \frac{\cos \varphi}{2}
\end{array}\right)
$$

which is $(\cos \theta)\left(1+\frac{\cos \varphi}{2}\right) \frac{\cos \varphi}{2} \mathbf{i}+(\sin \theta)\left(1+\frac{\cos \varphi}{2}\right) \frac{\cos \varphi}{2} \mathbf{j}+\left(1+\frac{\cos \varphi}{2}\right) \frac{\sin \varphi}{2} \mathbf{k}$. So

$$
\left|\mathbf{r}_{\theta} \times \mathbf{r}_{\varphi}\right|=\left(\frac{1}{2}+\frac{\cos \varphi}{4}\right)
$$

and consequently $A=2 \pi^{2}$. [Alternatively, one could use the theorem of Pappus that the surface area of a surface of revolution is $2 \pi r L$, where $2 \pi r$ is the distance traveled by the centroid of the curve being rotated and L is its length.]

Part III.

Solve one of the following three problems.
Problem 12. Let f be a $C^{2 n}$ function in some neighborhood of a point $a \in \mathbb{R}$, and suppose that $f^{(k)}(a)=0$ for $1 \leqslant k \leqslant 2 n-1$. Show that if $f^{(2 n)}(a)>0$ then f has a local minimum at a.

Solution: By Taylor's theorem, f is represented in some neighborhood of a by the relevant Taylor polynomial of order $2 n-1$ plus the remainder term:

$$
f(x)=f(a)+f^{(2 n)}(c) \frac{(x-a)^{2 n}}{(2 n)!}
$$

where c is strictly between a and x. Furthermore, since $f^{(2 n)}$ is continuous in some neighborhood of a and $f^{(2 n)}(a)>0$, we see that $f^{(2 n)}(c)>0$ for x near a. Of
course also $(x-a)^{2 n}>0$ for $x \neq a$. So for x near a but not equal to a it follows that $f(x)>f(a)$.

Problem 13. Let X and Y be metric spaces with respective metrics $d_{X}(*, *)$ and $d_{Y}(*, *)$, let x_{0} be a point of X, and let $f: X \rightarrow Y$ be a function.
(a) Consider the following definitions:
(A) f is continuous at x_{0} if for every $\varepsilon>0$ there exists $\delta>0$ such that if $x \in X$ and $d_{X}\left(x, x_{0}\right)<\delta$ then $d_{Y}\left(f(x), f\left(x_{0}\right)\right)<\varepsilon$.
(B) f is continuous at x_{0} if for every sequence $\left\{x_{n}\right\}_{n \geqslant 1}$ in X which converges to x_{0} the sequence $\left\{f\left(x_{n}\right)\right\}_{n \geqslant 1}$ converges to $f\left(x_{0}\right)$.

Show that these definitions are equivalent.
Solution: Assume that f is continuous at x_{0} according to definition (A), and suppose that $\left\{x_{n}\right\}_{n \geqslant 1}$ is a sequence in X which converges to x_{0}. We must show that $\left\{f\left(x_{n}\right)\right\}_{n \geqslant 1}$ converges to $f\left(x_{0}\right)$. Let $\varepsilon>0$ be given. Choose $\delta>0$ as in (A), and then choose $N \geqslant 1$ so that if $n>N$ then $d_{X}\left(x_{n}, x_{0}\right)<\delta$. Since (A) is in force, it follows that $d_{Y}\left(f\left(x_{n}\right), f\left(x_{0}\right)\right)<\epsilon$, as desired.

Now assume that f is continuous at x_{0} according to definition (B), and let $\varepsilon>0$ be given. Suppose that there does not exist $\delta>0$ with the property asserted in (A). Then for every positive integer n we cannot take $\delta=1 / n$, so there exists $x_{n} \in X$ such that $d_{X}\left(x_{n}, x_{0}\right)<1 / n$ but $d_{Y}\left(f\left(x_{n}\right), f\left(x_{0}\right)\right) \geqslant \varepsilon$. Then $\left\{x_{n}\right\}_{n \geqslant 1}$ is a sequence in X which converges to x_{0} but $\left\{f\left(x_{n}\right)\right\}_{n \geqslant 1}$ does not converge to $f\left(x_{0}\right)$, contradicting (B). So the required $\delta>0$ does exist and (A) follows.
(b) Let $I=[0,2 \pi) \subset \mathbb{R}$ and $T=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=1\right\}$, and consider I and T as metric spaces by restricting the standard Euclidean metrics on \mathbb{R} and \mathbb{R}^{2} respectively. Define $g: I \rightarrow T$ by $g(x)=(\cos x, \sin x)$, and put $f=g^{-1}$. Is f continuous at $(1,0) \in T$? Justify your answer using (B).

Solution: To see that f is not continuous at $(1,0)$, consider the sequence $\left\{x_{n}\right\}_{n \geqslant 1}$ in T given by $x_{n}=(\cos (1 / n), \sin (-1 / n))$, which converges to the point $x_{0}=(1,0)$. However $f\left(x_{n}\right)=2 \pi-1 / n$, whence $\left\{f\left(x_{n}\right)\right\}_{n \geqslant 1}$ does not converge to the point $f\left(x_{0}\right)=0$ (or in fact to any point of I).

Problem 14. Define a real-valued function f on \mathbb{R} by setting $f(x)=e^{-1 / x^{2}}$ for $x \neq 0$ and $f(0)=0$.
(a) Show by induction on n that $f^{(n)}(x)=e^{-1 / x^{2}} P_{n}(1 / x)$ for $x \neq 0$, where P_{n} is a polynomial.

Solution: In the base case $n=0$ we take $P_{0}(x)=1$. Now suppose that for some $n \geqslant 0$ we have $f^{(n)}(x)=e^{-1 / x^{2}} P_{n}(1 / x)$ for $x \neq 0$. Then

$$
f^{(n+1)}(x)=e^{-1 / x^{2}}\left(2 / x^{3}\right) P_{n}(1 / x)+e^{-1 / x^{2}} P_{n}^{\prime}(1 / x)\left(-1 / x^{2}\right)
$$

Therefore $f^{(n+1)}(x)=e^{-1 / x^{2}} P_{n+1}(1 / x)$ with $P_{n+1}(y)=2 y^{3} P_{n}(y)-y^{2} P_{n}^{\prime}(y)$.
(b) Deduce that f is a C^{∞} function on \mathbb{R} and that $f^{(n)}(0)=0$ for all n.

Solution: The fact that f is a C^{∞} function for $x \neq 0$ is verifiable by inspection. We show by induction on n that $f^{(n)}$ exists and is continuous at 0 and that $f^{(n)}(0)=$ 0 . For $n=0$ the continuity is obvious, and $f(0)=0$ by definition. Now suppose that for some $n \geqslant 0$ we know that $f^{(n)}$ exists and is continuous at 0 and that $f^{(n)}(0)=0$. To verify that $f^{(n+1)}(0)$ exists, we compute the limit of the relevant
difference quotient. By (a), we have

$$
\lim _{h \rightarrow 0} \frac{f^{(n)}(h)-f^{(n)}(0)}{h}=\lim _{h \rightarrow 0} \frac{e^{-1 / h^{2}} P_{n}(1 / h)}{h}
$$

and the right-hand side is $\lim _{y \rightarrow \infty} e^{-y^{2}} P_{n}(y) y$ provided this limit coincides with $\lim _{y \rightarrow-\infty} e^{-y^{2}} P_{n}(y) y$. It does, because both limits are 0 . Thus $f^{(n+1)}(0)$ exists and equals 0 , and then $f^{(n+1)}$ is continuous at 0 by (a).

