Preliminary Exam 2018 Morning Exam (3 hours)

Part I.

Solve four of the following five problems.

Problem 1. Consider the series $\sum_{n \ge 2} (n \log n)^{-1}$ and $\sum_{n \ge 2} (n (\log n)^2)^{-1}$. Show that one converges and one diverges by applying a standard convergence test.

Problem 2. Show that

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\sqrt{x^2 + y^2}} \, dx \, dy = 2 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(x^2 + y^2)} \, dx \, dy$$

by computing both sides.

Problem 3. Prove that if f(x) is $\sin x$ or $\arctan x$ then $|f(b) - f(a)| \leq |b - a|$ for all $a, b \in \mathbb{R}$ and that this inequality also holds for $f(x) = \log x$ and $a, b \geq 1$.

Problem 4. Let y be a differentiable function and p a continuous function on $(0, \infty)$, and suppose that y'(t) + p(t)y(t) = p(t) for all t > 0. If p(t) > c/t for some constant c > 0 prove that $\lim_{t\to\infty} y(t) = 1$.

Problem 5. Let $f_n(x) = x^n$ on the interval I = [0, 1] in \mathbb{R} . Show that the sequence $\{f_n\}_{n \ge 1}$ does not converge uniformly on I. You may quote general theorems about uniform convergence.

Part II.

Solve three of the following six problems.

Problem 6. Define $f : \mathbb{R}^2 \to \mathbb{R}$ by

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

Show that $\partial f/\partial x$ and $\partial f/\partial y$ exist at (0,0) but f is not differentiable at (0,0). You may quote general facts about differentiability.

Problem 7. Let *I* be any interval in \mathbb{R} . Show that if $f: I \to \mathbb{R}$ is uniformly continuous and $\{x_n\}$ is a Cauchy sequence in *I* then $\{f(x_n)\}$ is also Cauchy. Is the assertion still true if we assume merely that *f* is continuous? Justify your answer.

Problem 8. Show that

$$\frac{1}{(x-1)(x-2)(x-3)} = \sum_{n \ge 0} \left(-\frac{1}{2} + \frac{1}{2^{n+1}} - \frac{1}{2 \cdot 3^{n+1}}\right) x^n$$

for |x| < 1.

Problem 9. Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ and $h : \mathbb{R}^2 \to \mathbb{R}^2$ be the functions

$$f(x,y) = (e^{2x-y} - e^x, e^{-3x+y} - e^{2y})$$

and

$$h(x,y) = (x^3 + x + y, y^2 + 2x + 3y).$$

There is an open neighborhood \mathcal{U} of $(0,0) \in \mathbb{R}^2$ and a differentiable function $g : \mathcal{U} \to \mathbb{R}^2$ such that g(0,0) = (0,0) and $f \circ g = h$. Compute [g'(0,0)], the Jacobian matrix of g at (0,0).

Problem 10. Let $P(x, y) = -y/(x^2 + y^2)$ and $Q(x, y) = x/(x^2 + y^2)$.

(a) Compute $\partial Q/\partial x - \partial P/\partial y$.

(b) Compute the line integral of P(x, y) dx + Q(x, y) dy around the unit circle (oriented counterclockwise) $x^2 + y^2 = 1$.

(c) Explain why (a) and (b) do not contradict Green's Theorem (which you should state, of course).

Problem 11. Let *C* and *C'* be the circles in \mathbb{R}^3 parametrized by $(\cos t, \sin t, 0)$ and $(\cos t, \sin t, 2)$ respectively $(0 \leq t \leq 2\pi)$. Let $\mathbf{F}(x, y, z)$ be a C^{∞} vector field in \mathbb{R}^3 such that $\nabla \times \mathbf{F} = \mathbf{0}$. Show that

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_{C'} \mathbf{F} \cdot d\mathbf{r},$$

where the integrals on the left and right are the line integrals of \mathbf{F} along the oriented circles C and C' respectively.

Part III.

Solve one of the following three problems.

Problem 12. For
$$x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n$$
, put

$$|x|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2},$$

and let S denote the unit sphere ||x|| = 1 in \mathbb{R}^n . Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be any linear transformation. Give a reason why the two sides of the equation

$$\max\{x \in S : ||T(x)||\} = \inf\{C \ge 0 : ||T(x)|| \le C||x|| \text{ for all } x \in \mathbb{R}^n\}$$

both exist, and then prove the equation.

Problem 13. Let X be a metric space with the following property: For every infinite subset S of X,

$$\inf\{d(x,y) : x \neq y, \ x, y \in S\} = 0.$$

Prove that X is *totally bounded*: In other words, show that for every $\varepsilon > 0$, the space X can be covered by *finitely many* open balls of radius ε .

Problem 14. Let S be the surface area of the sphere $x^2 + y^2 + z^2 = 1$ and V the volume of the ball $x^2 + y^2 + z^2 \leq 1$. Let S' be the surface area of the portion of the sphere $x^2 + y^2 + z^2 = 1$ lying above the plane z = 1/2, and let V' be the volume of the portion of the ball $x^2 + y^2 + z^2 \leq 1$ lying above the plane z = 1/2. Show that S' = S/4 and V' = 5V/32.