Preliminary Exam 2018
 Morning Exam (3 hours)

Part I.

Solve four of the following five problems.
Problem 1. Consider the series $\sum_{n \geqslant 2}(n \log n)^{-1}$ and $\sum_{n \geqslant 2}\left(n(\log n)^{2}\right)^{-1}$. Show that one converges and one diverges by applying a standard convergence test.

Problem 2. Show that

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\sqrt{x^{2}+y^{2}}} d x d y=2 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y
$$

by computing both sides.
Problem 3. Prove that if $f(x)$ is $\sin x$ or $\arctan x$ then $|f(b)-f(a)| \leqslant|b-a|$ for all $a, b \in \mathbb{R}$ and that this inequality also holds for $f(x)=\log x$ and $a, b \geqslant 1$.

Problem 4. Let y be a differentiable function and p a continuous function on $(0, \infty)$, and suppose that $y^{\prime}(t)+p(t) y(t)=p(t)$ for all $t>0$. If $p(t)>c / t$ for some constant $c>0$ prove that $\lim _{t \rightarrow \infty} y(t)=1$.

Problem 5. Let $f_{n}(x)=x^{n}$ on the interval $I=[0,1]$ in \mathbb{R}. Show that the sequence $\left\{f_{n}\right\}_{n \geqslant 1}$ does not converge uniformly on I. You may quote general theorems about uniform convergence.

Part II.

Solve three of the following six problems.
Problem 6. Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
f(x, y)= \begin{cases}\frac{x y}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

Show that $\partial f / \partial x$ and $\partial f / \partial y$ exist at $(0,0)$ but f is not differentiable at $(0,0)$. You may quote general facts about differentiability.

Problem 7. Let I be any interval in \mathbb{R}. Show that if $f: I \rightarrow \mathbb{R}$ is uniformly continuous and $\left\{x_{n}\right\}$ is a Cauchy sequence in I then $\left\{f\left(x_{n}\right)\right\}$ is also Cauchy. Is the assertion still true if we assume merely that f is continuous? Justify your answer.

Problem 8. Show that

$$
\frac{1}{(x-1)(x-2)(x-3)}=\sum_{n \geqslant 0}\left(-\frac{1}{2}+\frac{1}{2^{n+1}}-\frac{1}{2 \cdot 3^{n+1}}\right) x^{n}
$$

for $|x|<1$.
Problem 9. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ and $h: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the functions

$$
f(x, y)=\left(e^{2 x-y}-e^{x}, e^{-3 x+y}-e^{2 y}\right)
$$

and

$$
h(x, y)=\left(x^{3}+x+y, y^{2}+2 x+3 y\right)
$$

There is an open neighborhood \mathcal{U} of $(0,0) \in \mathbb{R}^{2}$ and a differentiable function g : $\mathcal{U} \rightarrow \mathbb{R}^{2}$ such that $g(0,0)=(0,0)$ and $f \circ g=h$. Compute $\left[g^{\prime}(0,0)\right]$, the Jacobian matrix of g at $(0,0)$.

Problem 10. Let $P(x, y)=-y /\left(x^{2}+y^{2}\right)$ and $Q(x, y)=x /\left(x^{2}+y^{2}\right)$.
(a) Compute $\partial Q / \partial x-\partial P / \partial y$.
(b) Compute the line integral of $P(x, y) d x+Q(x, y) d y$ around the unit circle (oriented counterclockwise) $x^{2}+y^{2}=1$.
(c) Explain why (a) and (b) do not contradict Green's Theorem (which you should state, of course).

Problem 11. Let C and C^{\prime} be the circles in \mathbb{R}^{3} parametrized by $(\cos t, \sin t, 0)$ and $(\cos t, \sin t, 2)$ respectively $(0 \leqslant t \leqslant 2 \pi)$. Let $\mathbf{F}(x, y, z)$ be a C^{∞} vector field in \mathbb{R}^{3} such that $\nabla \times \mathbf{F}=\mathbf{0}$. Show that

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C^{\prime}} \mathbf{F} \cdot d \mathbf{r}
$$

where the integrals on the left and right are the line integrals of \mathbf{F} along the oriented circles C and C^{\prime} respectively.

Part III.

Solve one of the following three problems.
Problem 12. For $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, put

$$
\|x\|=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}
$$

and let S denote the unit sphere $\|x\|=1$ in \mathbb{R}^{n}. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be any linear transformation. Give a reason why the two sides of the equation

$$
\max \{x \in S:\|T(x)\|\}=\inf \left\{C \geqslant 0:\|T(x)\| \leqslant C\|x\| \text { for all } x \in \mathbb{R}^{n}\right\}
$$

both exist, and then prove the equation.
Problem 13. Let X be a metric space with the following property: For every infinite subset S of X,

$$
\inf \{d(x, y): x \neq y, x, y \in S\}=0
$$

Prove that X is totally bounded: In other words, show that for every $\varepsilon>0$, the space X can be covered by finitely many open balls of radius ε.

Problem 14. Let S be the surface area of the sphere $x^{2}+y^{2}+z^{2}=1$ and V the volume of the ball $x^{2}+y^{2}+z^{2} \leqslant 1$. Let S^{\prime} be the surface area of the portion of the sphere $x^{2}+y^{2}+z^{2}=1$ lying above the plane $z=1 / 2$, and let V^{\prime} be the volume of the portion of the ball $x^{2}+y^{2}+z^{2} \leqslant 1$ lying above the plane $z=1 / 2$. Show that $S^{\prime}=S / 4$ and $V^{\prime}=5 V / 32$.

