Preliminary Exam 2018
Solutions to Afternoon Exam

Part I.
Solve four of the following five problems.

Problem 1. Find the inverse of the matrix

1 0 -1
A=10 2 0
5 0 3

Solution: Any sequence of row operations which puts the matrix (A|l) into row-
reduced upper-echelon form terminates in the matrix (I|B), where

3/8 0 1/8
B=A1'= 0 1/2 0
-5/8 0 1/8

Alternatively, one can use the formula A~! = (b;;), where
bij = (—1)i+j (det A)_l(det Aji),
where Aj; is the matrix obtained from j by removing the jth row and ith column.
Problem 2. The 2 x 2 matrix A has trace 1 and determinant —2. Find the
trace of A190 indicating your reasoning.

Solution: The characteristic polynomial of A is 22—z —2 = (z+1)(z —2). Thus
the eigenvalues of A are —1 and 2, and consequently the eigenvalues of A0 are 1
and 2190, So tr (A4) = 1 + 2109,

Problem 3. Find a basis for the space of solutions to the simultaneous equations

T, + 223+ 314 + 525 =0
ZTo + 5x3 + 4as = 0.

Solution: The associated matrix is already in row-reduced upper-echelon form,
so one can solve for the pivotal variables x; and z5 in terms of the nonpivotal
variables x3, x4, and x5. Thus the general solution to the system is

(—2%‘3 — 33?4 — 5335, —5.133 — 4.135, 3,24, 33‘5) = I3V1 + T4z + T5V3,
where v; = (-2,-5,1,0,0), vo = (=3,0,0,1,0), v3 = (—5,—4,0,0,1), and x3, x4,
and x5 are arbitrary scalars. Hence a basis for the solution space is {v1,vq, v3}.

Problem 4. Let A be a 3 x 3 matrix with coefficients in R. Show that if A* =0
then A3 = 0, and give an example where A3 = 0 but A% # 0.

Solution: If A € C is an eigenvalue of A then for some nonzero column vector X €
C3 we have AX = M\X. By iteration, A*X = A\*X and consequently \*X = 0 and
hence A = 0. Thus 0 is the only eigenvalue of A. It follows that the characteristic
polynomial of A is X3, whence A3 = 0 by the Cayley-Hamilton theorem. If
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then A% = 0 but
0 0 1
A’=10 0 0
0 0 O

Problem 5. Let W be the subspace of R* spanned by the vectors
wy = (1/V3,-1/V/3,0,1/V3)
and
wy = (1/v/3,1/V/3,1/3/3,0).
Let v = (\/57 \/g, \/g, \/§) Write v = w + wL, where w € W and w? is orthogonal
to W relative to the dot product.

Solution: Since {w1,ws} is already an orthonormal basis for W, we have
w = (v-w)wy + (v-we)wy = lwy + 3ws
and wt =v —w. So
w=(4/V3,2/V3,V3,1/V3)
and

wt = (=1/v3,1/V3,0,2/V3).

Part II.
Solve three of the following six problems.

1

Problem 6. In a certain group there are elements g and h satisfying ghg™
h~!. Show that (gh)? = ¢.

Solution: Multiplying both sides of the equation ghg=' = h~! by g~! on the
left and g on the right, we obtain h = gh~!g~!. Returning to ghg~' = h~! and
conjugating by g a second time, we deduce that g2hg~2 = h. Thus

(gh)* = (ghg ") (g°h) = k™ (g°hg?)g* = ¢°.

Problem 7. The linear transformation 7' : R® — R3 with matrix (relative to
the standard basis)

5/8 3/4  \/3/8
A=|-3/4 1/2 3/4
V3/8 —/3/4 T7/8
is a rotation about an axis through the origin. Find the axis.

Solution: The axis is the line spanned by an eigenvector of eigenvalue 1. So we
need to find a basis for the null space of

-3/8 3/4 /3/8
A-T=|-3/4 —1/2 3/4
V3/8 —V3/4 —1/8
Subtract 2 times the first row from the second and add 1/ /3 times the first row to

the third. Then divide the first row by —3/8 and subtract the second row from the
first row. Finally, divide the second row by —2. The matrix is now in row-reduced
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upper-echelon form, and we see that a basis for the kernel in (1,0, /3). So the axis
is the line spanned by this vector.

Problem 8. In this problem you may quote the Rank-Nullity Theorem and
general facts from set theory without proof.

(a) Let V be a finite-dimensional vector space, let idy be the identity map on
V (so idy(v) = v for all v € V), and let f,g : V — V be linear maps satisfying
fog=1idy. Prove that go f =idy .

(b) Is (a) still true if we remove the assumption that V' has finite dimension?
Either prove or give a counterexample.

Solution: (a) It is given that g is a right inverse of f, and we must show that
g is actually a genuine two-sided inverse of f. In other words, we are given that g
is injective, and we must show that g is also surjective. But by the Rank-Nullity
Theorem, dim(V) is the sum of the rank of g and the nullity of g. Since the nullity
is 0 (g is injective), the rank is dim(V'); in other words, the image of g is all of V.
So g is surjective.

(b) The statement no longer holds if the dimension of V' is infinite. For example,
let V' be the space of infinite sequences (a1, as,as,...) of real numbers, and let
flay,as,as,...) = (az,as,...). Let g(ai,as,...) = (0,a1,as,...). Then fog =
idy, but go f # idy: Indeed if v = (1,0,0,...) then g(f(v)) =0, not v.

Problem 9. Let V be the real vector space consisting of polynomials with real
coefficients and degree at most 2, and consider the linear transformation T : V — V
given by T'(f(z)) = f(z) + f'(z) + f”(x). What is the Jordan normal form of T°?
Your answer should be a matrix together with justification.

Solution: As ordered basis for V we take 1, z, 2. The matrix of T relative to
this basis is

2
A= 2
1

O O =

1

1

0

A computation shows that (4 — I)> = 0 but (A — I)?> # 0, whence the Jordan
normal form of T is

10
1 1
01

J=

O O =

Problem 10. Let L be the lattice in Z3 spanned by the vectors (1,1,60),
(2,0,60), and (1,1,0). Write Z3/L as a direct sum of cyclic factors,

Z3)L = (Z)aZ) © (Z)asZ) & - - - © (Z)arZ),
where a; > 2 for 1 < j < k and k, the number of cyclic direct summands, is (i)
minimal, (ii) maximal.

Solution: Using row and column operations over Z, we can put the relevant
matrix in elementary divisor form:

0 1 0 1 2 1 0 -1 1 1 0 0
1 -1 0 1 0 1 0 1 0]=1(0 2 O
0 0 1 60 60 O 1 1 -1 0 0 60



Thus
73 )L = (Z)27) & (Z/60Z)
and hence by the Chinese Remainder Theorem also
Z3|L = (Z)27) ® (Z/AZ) @ (Z/3Z) @ (Z./57).

The first decomposition, where k = 2, is the decomposition with minimal k£, and the
second expression, where k = 4, is the decomposition with maximal k. Indeed k = 1
is not possible because Z3/L is not cyclic (indeed the subgroup (Z/27) @ (Z/AZ) is
not cyclic) and k = 5 is also not possible because (Z/2Z) & (Z/47Z) is not isomorphic
to (Z/27) ® (Z/27) ® (Z/27Z).

Problem 11. Let S, denote the group of permutations of {1,2,3,...,n}. In
each case, give an example of the indicated type or explain why none exists:

(a) an element of order 40 in Si3.

(b) an element of order 34 in Sig

Solution: The order of an element o of S, is the least common multiple of the
lengths of the cycles in a disjoint cycle decomposition of o. In case (a) we can take

o =(1,2,3,4,5)(6,7,8,9,10,11, 12, 13).

However in case (b) we would need either a cycle of length 34 (impossible in Si¢) or
else the product of disjoint cycles of length 2 and length 17. This is again impossible
because a cycle of length 17 does not exist in Sig.

Part III.
Solve one of the following three problems.

Problem 12. Give an example, with supporting justification, of two commuta-
tive rings which are isomorphic as abelian groups under addition but not isomorphic
as rings.

Solution: There are many possiblities. For example, let p be a prime, let F, be
the field with p elements, and take R = F, x Fp, and let R’ = F,[z]/(2?). Then
both R and R’ are two-dimensional vector spaces over IF,, (the cosets of 1 and z are
a basis for R’). But R’ has nilpotent elements, namely the multiples of the coset of
x, whereas R does not have nilpotents. So R and R’ are not isomorphic as rings.

Of course there are many other solutions. For example, we could let R" = [F)
and leave R unchanged. Then R and R’ are not isomorphic as rings because R’ is
a field and R is not. Or take R =Q x Q and R’ = Q(¢): Again, R’ is a field and R
is not.

Problem 13. Let I, be the field with p elements. What are the degrees and
multiplicities of the monic irreducible factors of the polynomial

flx) =2+ 2%+ 32 +2
viewed over (i) Fg, (ii) Fs, (iii) R, and (iv) Q7 Give reasons for your answers.
Solution: (i) Over Fy we have
f@)=23+2* +x=a(@*+2+1).

Since x? + x + 1 is irreducible over Fy (for f(0) = f(1) = 1 # 0) there are two
distinct irreducible factors, one of degree 1 and one of degree 2.
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(ii) Over F3 we have f(z) = 2%+ 2% +2. Since f(0) =2, f(1) =1, and f(2) = 2,
we see that f does not have any degree-one factors and is therefore irreducible of
degree 3.

(iii) Since f is a cubic, it has at least one real zero. But for all x € R,
flx) =32 +22+3>2+20+1= (2 4+ 1)* >0,

so f is strictly increasing on R and therefore has exactly one real zero. So f has one
irreducible factor of degree 1 and one of degree 2.
(iv) Since f is irreducible over Fj it is irreducible over Q.

Problem 14. Consider the matrix

110
A=10 3 1
0 0 7

State the Jordan normal form, with justification, for A as a matrix with coefficients
in (i) Q, (ii) Fy, (iii) F3, and (iv) Fs.
Solution: (i) Over Q, the matrix A has 3 distinct eigenvalues, namely 1, 3, and

7. Since the eigenvalues are distinct the matrix is diagonalizable, so the Jordan
normal form is

100
J=10 3 0
0 0 7

(ii) Over Fa, the matrix A is in Jordan normal form as it stands:

1 10
A=10 1 1
0 0 1

(iii) Over F3, there are two eigenvalues, 0 with multiplicity one and 1 with
multiplicity two. But A is not diagonalizable, for A(A—1I) # 0 by direct calculation.
Hence the Jordan normal form of A is

1 10
J=10 1 0
0 0 0
(iv) Finally, over Fy there are again 3 distinct eigenvalues, namely 1,2, and 3.

So A is diagonalizable and the Jordan normal form is the matrix J in (a), although
now 7 = 2.



