
Preliminary Exam 2018
Solutions to Afternoon Exam

Part I.
Solve four of the following five problems.

Problem 1. Find the inverse of the matrix

A =

1 0 −1
0 2 0
5 0 3

 .

Solution: Any sequence of row operations which puts the matrix (A|I) into row-
reduced upper-echelon form terminates in the matrix (I|B), where

B = A−1 =

 3/8 0 1/8
0 1/2 0
−5/8 0 1/8

 .

Alternatively, one can use the formula A−1 = (bij), where

bij = (−1)i+j(detA)−1(detAji),

where Aji is the matrix obtained from j by removing the jth row and ith column.
Problem 2. The 2 × 2 matrix A has trace 1 and determinant −2. Find the

trace of A100, indicating your reasoning.
Solution: The characteristic polynomial of A is x2−x−2 = (x+1)(x−2). Thus

the eigenvalues of A are −1 and 2, and consequently the eigenvalues of A100 are 1
and 2100. So tr (A) = 1 + 2100.

Problem 3. Find a basis for the space of solutions to the simultaneous equations{
x1 + 2x3 + 3x4 + 5x5 = 0
x2 + 5x3 + 4x5 = 0.

Solution: The associated matrix is already in row-reduced upper-echelon form,
so one can solve for the pivotal variables x1 and x2 in terms of the nonpivotal
variables x3, x4, and x5. Thus the general solution to the system is

(−2x3 − 3x4 − 5x5,−5x3 − 4x5, x3, x4, x5) = x3v1 + x4v2 + x5v3,

where v1 = (−2,−5, 1, 0, 0), v2 = (−3, 0, 0, 1, 0), v3 = (−5,−4, 0, 0, 1), and x3, x4,
and x5 are arbitrary scalars. Hence a basis for the solution space is {v1, v2, v3}.

Problem 4. Let A be a 3×3 matrix with coefficients in R. Show that if A4 = 0
then A3 = 0, and give an example where A3 = 0 but A2 6= 0.

Solution: If λ ∈ C is an eigenvalue of A then for some nonzero column vector X ∈
C

3 we have AX = λX. By iteration, A4X = λ4X and consequently λ4X = 0 and
hence λ = 0. Thus 0 is the only eigenvalue of A. It follows that the characteristic
polynomial of A is X3, whence A3 = 0 by the Cayley-Hamilton theorem. If

A =

0 1 0
0 0 1
0 0 0


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then A3 = 0 but

A2 =

0 0 1
0 0 0
0 0 0

 .

Problem 5. Let W be the subspace of R4 spanned by the vectors

w1 = (1/
√

3,−1/
√

3, 0, 1/
√

3)

and

w2 = (1/
√

3, 1/
√

3, 1/
√

3, 0).

Let v = (
√

3,
√

3,
√

3,
√

3). Write v = w +w⊥, where w ∈W and w⊥ is orthogonal
to W relative to the dot product.

Solution: Since {w1, w2} is already an orthonormal basis for W , we have

w = (v · w1)w1 + (v · w2)w2 = 1w1 + 3w2

and w⊥ = v − w. So

w = (4/
√

3, 2/
√

3,
√

3, 1/
√

3)

and

w⊥ = (−1/
√

3, 1/
√

3, 0, 2/
√

3).

Part II.
Solve three of the following six problems.

Problem 6. In a certain group there are elements g and h satisfying ghg−1 =
h−1. Show that (gh)2 = g2.

Solution: Multiplying both sides of the equation ghg−1 = h−1 by g−1 on the
left and g on the right, we obtain h = gh−1g−1. Returning to ghg−1 = h−1 and
conjugating by g a second time, we deduce that g2hg−2 = h. Thus

(gh)2 = (ghg−1)(g2h) = h−1(g2hg−2)g2 = g2.

Problem 7. The linear transformation T : R3 → R
3 with matrix (relative to

the standard basis)

A =

 5/8 3/4
√

3/8
−3/4 1/2

√
3/4√

3/8 −
√

3/4 7/8


is a rotation about an axis through the origin. Find the axis.

Solution: The axis is the line spanned by an eigenvector of eigenvalue 1. So we
need to find a basis for the null space of

A− I =

−3/8 3/4
√

3/8
−3/4 −1/2

√
3/4√

3/8 −
√

3/4 −1/8


Subtract 2 times the first row from the second and add 1/

√
3 times the first row to

the third. Then divide the first row by −3/8 and subtract the second row from the
first row. Finally, divide the second row by −2. The matrix is now in row-reduced
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upper-echelon form, and we see that a basis for the kernel in (1, 0,
√

3). So the axis
is the line spanned by this vector.

Problem 8. In this problem you may quote the Rank-Nullity Theorem and
general facts from set theory without proof.

(a) Let V be a finite-dimensional vector space, let idV be the identity map on
V (so idV (v) = v for all v ∈ V ), and let f, g : V → V be linear maps satisfying
f ◦ g = idV . Prove that g ◦ f = idV .

(b) Is (a) still true if we remove the assumption that V has finite dimension?
Either prove or give a counterexample.

Solution: (a) It is given that g is a right inverse of f , and we must show that
g is actually a genuine two-sided inverse of f . In other words, we are given that g
is injective, and we must show that g is also surjective. But by the Rank-Nullity
Theorem, dim(V ) is the sum of the rank of g and the nullity of g. Since the nullity
is 0 (g is injective), the rank is dim(V ); in other words, the image of g is all of V .
So g is surjective.

(b) The statement no longer holds if the dimension of V is infinite. For example,
let V be the space of infinite sequences (a1, a2, a3, . . . ) of real numbers, and let
f(a1, a2, a3, . . . ) = (a2, a3, . . . ). Let g(a1, a2, . . . ) = (0, a1, a2, . . . ). Then f ◦ g =
idV , but g ◦ f 6= idV : Indeed if v = (1, 0, 0, . . . ) then g(f(v)) = 0, not v.

Problem 9. Let V be the real vector space consisting of polynomials with real
coefficients and degree at most 2, and consider the linear transformation T : V → V
given by T (f(x)) = f(x) + f ′(x) + f ′′(x). What is the Jordan normal form of T?
Your answer should be a matrix together with justification.

Solution: As ordered basis for V we take 1, x, x2. The matrix of T relative to
this basis is

A =

1 1 2
0 1 2
0 0 1

 .

A computation shows that (A − I)3 = 0 but (A − I)2 6= 0, whence the Jordan
normal form of T is

J =

1 1 0
0 1 1
0 0 1

 .

Problem 10. Let L be the lattice in Z3 spanned by the vectors (1, 1, 60),
(2, 0, 60), and (1, 1, 0). Write Z3/L as a direct sum of cyclic factors,

Z
3/L ∼= (Z/a1Z)⊕ (Z/a2Z)⊕ · · · ⊕ (Z/akZ),

where aj > 2 for 1 6 j 6 k and k, the number of cyclic direct summands, is (i)
minimal, (ii) maximal.

Solution: Using row and column operations over Z, we can put the relevant
matrix in elementary divisor form:0 1 0

1 −1 0
0 0 1

 1 2 1
1 0 1
60 60 0

0 −1 1
0 1 0
1 1 −1

 =

1 0 0
0 2 0
0 0 60

 .
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Thus

Z
3/L ∼= (Z/2Z)⊕ (Z/60Z)

and hence by the Chinese Remainder Theorem also

Z
3/L ∼= (Z/2Z)⊕ (Z/4Z)⊕ (Z/3Z)⊕ (Z/5Z).

The first decomposition, where k = 2, is the decomposition with minimal k, and the
second expression, where k = 4, is the decomposition with maximal k. Indeed k = 1
is not possible because Z3/L is not cyclic (indeed the subgroup (Z/2Z)⊕ (Z/4Z) is
not cyclic) and k = 5 is also not possible because (Z/2Z)⊕(Z/4Z) is not isomorphic
to (Z/2Z)⊕ (Z/2Z)⊕ (Z/2Z).

Problem 11. Let Sn denote the group of permutations of {1, 2, 3, . . . , n}. In
each case, give an example of the indicated type or explain why none exists:

(a) an element of order 40 in S13.
(b) an element of order 34 in S16

Solution: The order of an element σ of Sn is the least common multiple of the
lengths of the cycles in a disjoint cycle decomposition of σ. In case (a) we can take

σ = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10, 11, 12, 13).

However in case (b) we would need either a cycle of length 34 (impossible in S16) or
else the product of disjoint cycles of length 2 and length 17. This is again impossible
because a cycle of length 17 does not exist in S16.

Part III.
Solve one of the following three problems.

Problem 12. Give an example, with supporting justification, of two commuta-
tive rings which are isomorphic as abelian groups under addition but not isomorphic
as rings.

Solution: There are many possiblities. For example, let p be a prime, let Fp be
the field with p elements, and take R = Fp × Fp, and let R′ = Fp[x]/(x2). Then
both R and R′ are two-dimensional vector spaces over Fp (the cosets of 1 and x are
a basis for R′). But R′ has nilpotent elements, namely the multiples of the coset of
x, whereas R does not have nilpotents. So R and R′ are not isomorphic as rings.

Of course there are many other solutions. For example, we could let R′ = Fp2

and leave R unchanged. Then R and R′ are not isomorphic as rings because R′ is
a field and R is not. Or take R = Q×Q and R′ = Q(i): Again, R′ is a field and R
is not.

Problem 13. Let Fp be the field with p elements. What are the degrees and
multiplicities of the monic irreducible factors of the polynomial

f(x) = x3 + x2 + 3x+ 2

viewed over (i) F2, (ii) F3, (iii) R, and (iv) Q? Give reasons for your answers.
Solution: (i) Over F2 we have

f(x) = x3 + x2 + x = x(x2 + x+ 1).

Since x2 + x + 1 is irreducible over F2 (for f(0) = f(1) = 1 6= 0) there are two
distinct irreducible factors, one of degree 1 and one of degree 2.
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(ii) Over F3 we have f(x) = x3 +x2 + 2. Since f(0) = 2, f(1) = 1, and f(2) = 2,
we see that f does not have any degree-one factors and is therefore irreducible of
degree 3.

(iii) Since f is a cubic, it has at least one real zero. But for all x ∈ R,

f ′(x) = 3x2 + 2x+ 3 > x2 + 2x+ 1 = (x+ 1)2 > 0,

so f is strictly increasing on R and therefore has exactly one real zero. So f has one
irreducible factor of degree 1 and one of degree 2.

(iv) Since f is irreducible over F3 it is irreducible over Q.
Problem 14. Consider the matrix

A =

1 1 0
0 3 1
0 0 7

 .

State the Jordan normal form, with justification, for A as a matrix with coefficients
in (i) Q, (ii) F2, (iii) F3, and (iv) F5.

Solution: (i) Over Q, the matrix A has 3 distinct eigenvalues, namely 1, 3, and
7. Since the eigenvalues are distinct the matrix is diagonalizable, so the Jordan
normal form is

J =

1 0 0
0 3 0
0 0 7

 .

(ii) Over F2, the matrix A is in Jordan normal form as it stands:

A =

1 1 0
0 1 1
0 0 1

 .

(iii) Over F3, there are two eigenvalues, 0 with multiplicity one and 1 with
multiplicity two. But A is not diagonalizable, for A(A−I) 6= 0 by direct calculation.
Hence the Jordan normal form of A is

J =

1 1 0
0 1 0
0 0 0

 .

(iv) Finally, over F5 there are again 3 distinct eigenvalues, namely 1,2, and 3.
So A is diagonalizable and the Jordan normal form is the matrix J in (a), although
now 7 = 2.


