
Preliminary Exam 2017
Solutions to Afternoon Exam

Part I.
Solve four of the following five problems.

Problem 1. Find a basis for the solution space of the system of equations{
w + 5x+ y + 2z = 0
3w + 15x+ 4y − 4z = 0.

Solution: The matrix associated to this homogeneous system is(
1 5 1 2
3 15 4 −4

)
.

Subtracting 3 times the first row from the second, and then the second from the
first, we obtain (

1 5 0 12
0 0 1 −10

)
,

a matrix in row-reduced upper-echelon form. Hence a basis for the solution space
is {(−5, 1, 0, 0), (−12, 0, 10, 1)}.

Problem 2. Let

A =
(

3 −4
4 3

)
.

Find an invertible 2×2 matrix U with coefficients in C such that U−1AU is diagonal.
Solution: The characteristic polynomial of A is x2−6x+25. Thus the eigenvalues

of A are

λ± =
6±
√

36− 100
2

= 3± 4i.

The corresponding eigenvectors span the null space of

A− λ±I =
(
∓4i −4

4 ∓4i

)
By a row reduction – or simply by inspection – we see that the vectors (±i, 1) span
the null space. Thus putting

U =
(
i −i
1 1

)
,

we see that U−1AU is diagonal.
Problem 3. Find an orthonormal basis (relative to the dot product) for the

subspace of R4 spanned by the vectors (−1/2, 1/2, 1/2, 1/2), (1/2, 1/2,−1/2, 1/2),
and (1, 1, 2, 2).

Solution: Put v1 = (−1/2, 1/2, 1/2, 1/2), v2 = (1/2, 1/2,−1/2, 1/2), and v3 =
(1, 1, 2, 2). Apply the Gram-Schmidt process to the vectors v1, v2, v3. The vectors
v1 and v2 are already orthonormal, so put u1 = v1 and u2 = v2. So the vector

w = v3 − (v3 · u1)u1 − (v3 · u2)u2
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is orthogonal to both u1 and u2. A calculation shows that w = (3/2,−1/2, 3/2, 1/2).
Putting

u3 =
1√
5

(3/2,−1/2, 3/2, 1/2),

we conclude that {u1, u2, u3} is the desired orthonormal set.
Problem 4. If A and B are 3 × 3 matrices with coefficients in C, then A and

B are similar if there is an invertible matrix U such that UBU−1 = A. Are the
matrices

A =

1 2 0
0 1 −1
0 0 1

 and B =

1 1 0
0 1 0
0 1 1


similar? Why or why not?

Solution: No, A and B are not similar. For suppose on the contrary that
UBU−1 = A with an invertible matrix U . Then U(B − I)U−1 = A− I, so

(A− I)2 = U(B − I)2U−1 = UOU−1 = O,

where I and O are the 3 × 3 identity matrix and zero matrix respectively. But
(A− I)2 6= 0, a contradiction.

Alternatively, the fact that A has characteristic polynomial (x − 1)3 but (A −
I)2 6= 0 means that the Jordan normal form of A is a single 3 × 3 Jordan block
with eigenvalue 1, whereas the fact B has characteristic polynomial (x − 1)3 but
(B − I)2 = O means that the Jordan normal form of B consists of a 1× 1 Jordan
block and a 2 × 2 Jordan block, both with eigenvalue 1. Since the Jordan normal
forms of A and B differ, A and B are not similar.

Problem 5. Let I be the ideal of Z generated by 6670 and 14007. Find the
positive integer c such that I is the principal ideal generated by c.

Solution: We use the Euclidean algrorithm to determine c = gcd(6670, 14007).
Multiplying 6670 by 2 and subtracting from 14007, we obtain 667, so that

c = gcd(6670, 14007) = gcd(6670, 667) = 667.

Part II.
Solve three of the following six problems.

Problem 6. Let L be the subgroup of Z3 generated by (1, 0, 1), (6, 2, 0), and
(7, 2, 5). Find a direct sum of cyclic groups isomorphic to Z3/L.

Solution: By row and column operations over Z we find that UAV = B, where

A =

1 6 7
0 2 2
1 0 5

 ,

B =

1 0 0
0 2 0
0 0 4

 ,

and U and V are invertible matrices over Z. Therefore Z3/L ∼= (Z/2Z)⊕ (Z/4Z).



3

Problem 7. Let An be the n × n matrix with the integers 1, 2, 3, . . . , n along
the first row and column, 1’s down the diagonal, and 0’s elsewhere, so that

An =


1 2 3 4 . . . n
2 1 0 0 . . . 0
3 0 1 0 . . . 0
4 0 0 1 . . . 0

. . .
n 0 0 0 . . . 1

 .

Prove that

det(An) = 2− n(n+ 1)(2n+ 1)
6

.

Solution: By direct calculation, det(A1) = 1 and det(A2) = −3, proving the
formula in these cases. Now suppose that the formula holds for some n > 2.
Expanding det(An+1) along the last column, we obtain

det(An+1) = (−1)n+2(n+ 1) det(B) + det(An),

where

B =


2 1 0 0 . . . 0
3 0 1 0 . . . 0
4 0 0 1 . . . 0

. . .
n 0 0 0 . . . 1

n+ 1 0 0 0 . . . 0

 .

By expansion along the bottom row, we see that det(B) = (−1)n+1(n+ 1), so

det(An+1) = −(n+ 1)2 + det(An) = 2− n(n+ 1)(2n+ 1)
6

− (n+ 1)2

by inductive hypothesis. Doing the arithmetic, we obtain

det(An+1) = 2− (n+ 1)(n+ 2)(2n+ 3)/6,

as desired.
Problem 8. Prove or give a counterexample: If A and B are n×n diagonalizable

matrices over C then AB is also diagonalizable.
Solution: Without the assumption that AB = BA the statement is false. To get

a counterexample, let

A =
(

1 0
0 2

)
and

C =
(

1 1
0 1

)
,

and put B = A−1C. Then A is diagonal, hence diagonalizable, and B is diagonal-
izable because its eigenvalues 1 and 1/2 are distinct. But AB = C, which is not
diagonalizable because it is a nondiagonal Jordan block.

Problem 9. Let A be an n × n matrix with coefficients in R. If the minimal
polynomial of A is (x+ 1)2 then what is the minimal polynomial of A2 +A? Why?
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Solution: Write A = UJU−1, where J is an n×n matrix in Jordan normal form
and U is an n×n invertible matrix. Then the minimal polynomials of A and J are
equal, and as

A2 +A = U(J2 + J)U−1,

so are the minimal polynomials of A2 +A and J2 +J . Now given that the minimal
polynomial of A is (x+ 1)2, we see that J is a diagonal array of one or more 2× 2
Jordan blocks of eigenvalue −1 and zero or more 1× 1 Jordan blocks of eigenvalue
−1. But if

B =
(
−1 1
0 −1

)
is one of the 2× 2 blocks, then

B2 +B =
(

0 −1
0 0

)
,

which has minimal polynomial x2, and ifB = (−1) is a 1×1 block thenB2+B = (0),
which has minimal polynomial x. Since J has at least one 2× 2 block, we conclude
that the minimal polynomial of J2+J , and hence the minimal polynomial of A2+A,
is x2.

Problem 10. Let A be the n × n matrix over R with 1’s on the diagonal and
1/n! everywhere else. Show that det(A) 6= 0.

Solution: Let ai,j be the entry in the ith row and jth column of A. By definition,

det(A) =
∑
σ

sign(σ)a1,σ(1)a2,σ(2) · · · an,σ(n),

where σ runs over all permutations of {1, 2, . . . , n}. Since ai,i = 1 for all i,

det(A) = 1 +
∑
σ 6=1

sign(σ)a1,σ(1)a2,σ(2) · · · an,σ(n),

where σ now runs over the nontrivial permutations. Each summand in the sum is
a product of certain number of factors equal to 1 and a certain number of factors
equal to 1/n!, with at least one factor equal to 1/n!. Since there are a total of n!−1
summands in the sum, we get det(A) = 1 + c, where |c| 6 (n!− 1)/n!. Therefore

det(A) > 1− |c| > 1− ((n!− 1)/n!) > 1/n!,

whence det(A) > 0.
Problem 11. Let R and S be commutative rings, let f : R → S be a ring

homomorphism, and let I be an ideal of R. Prove that if f is surjective (or “onto”)
then f(I) is an ideal of S.

Solution: First we show that f(I) is an additive subgroup of S. Certainly
0 = f(0) ∈ f(I). Now suppose that j, j′ ∈ f(I), and write j = f(i), j′ = f(i′) with
i, i′ ∈ I. Then j − j′ = f(i)− f(i′) = f(i− i′), and since i− i′ ∈ I we deduce that
j − j′ ∈ f(I).

To complete the proof that f(I) is an ideal of S, suppse that j ∈ f(I) and s ∈ S.
As before we can write j = f(i) with i ∈ I, and also, because f is surjective, s = f(r)
with r ∈ R. Since I is an ideal we have ri ∈ I; then sj = f(r)f(i) = f(ri) ∈ f(I).

Part III.
Solve one of the following three problems.
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Problem 12. Let p and q be primes. Show that a nonabelian group of order pq
has trivial center.

Solution: If the center Z(G) of G is nontrivial then it has order p or q, because
if it has order pq then G is abelian. Thus the quotient G/Z(G) is of prime order
and is therefore cyclic. Let cZ(G) be a generator of G/Z(G). We will show that G
is abelian and hence obtain a contradiction. Given g, g′ ∈ G, we can write g = ciz
and g′ = cjz′ with integers i and j and z, z′ ∈ Z(G). Since z and z′ commute with
c and with each other, we get

gg′ = (ciz)(cjz′) = ci+jzz′ = cj+iz′z = (cjz′)(ciz) = g′g,

proving that G is abelian.
Problem 13. Let A : Rn → R

n be an invertible linear map and At : Rn → R
n

the transpose or adjoint relative to the dot product. Put B = AtA, let S be the unit
sphere in Rn centered at the origin, and define f : S → S by f(x) = B(x)/||B(x)||,
where ||x|| =

√
x · x. Show that there are at least n points u ∈ S such that f(u) = u.

Solution: Since B = Bt, we see that B is a symmetric (or self-adjoint) operator,
whence Rn has an orthonormal basis u1, u2, · · · , un consisting of eigenvectors of B.
Let λ1, λ2, . . . , λn ∈ R be the corresponding eigenvalues. For nonzero x ∈ Rn we
have A(x) 6= 0, because A is invertible. Consequently

B(x) · x = A(x) ·A(x) > 0.

If x = uj then B(x) · x = λj , so we deduce that λj > 0. So

f(uj) =
B(uj)
||B(uj)||

=
λjuj

|λj | · ||uj ||
= uj .

Thus u1, u2, . . . , un are the desired n fixed points.

Problem 14. Let α =
√

1 +
√

2 ∈ R.
(a) Find the irreducible monic polynomial of α over Q. Be sure to explain how

you know it is irreducible.
Solution: Let f(x) = x4 − 2x2 − 1. Then f is the irreducible monic polynomial

of Q(α) over Q. Indeed α2 satisfies the equation x2 − 2x − 1 = 0, so α satisfies
f(x) = 0. Thus it suffices to see that [Q(α) : Q] = 4. Write

[Q(α) : Q] = [Q(α) : Q(
√

2)][Q(
√

2) : Q]

and observe that [Q(
√

2) : Q] = 2 because 2 is irrational. On the other hand,
let σ be the field embedding Q(

√
2) → R satisfying σ(

√
2) = −

√
2. Then σ has

an extension to an embedding (which we will also denote σ) of Q(α) in C, and
σ(α) /∈ R because 1 −

√
2 < 0. But Q(

√
2) ⊂ R, so [Q(α) : Q(

√
2)] = 2. Hence

[Q(α) : Q] = 4 and f is irreducible.
(b) Is Q(α) Galois over Q? Why or why not?
Solution: No, Q(α) is not Galois over Q. For let σ be as above. Then Q(α) ⊂ R

but σ(Q(α)) 6⊂ R, so σ(Q(α)) 6= Q(α). Hence Q(α) is not normal over Q and
therefore not Galois.


