Preliminary Exam 2017

 Solutions to Afternoon Exam

 Solutions to Afternoon Exam}

Part I.

Solve four of the following five problems.
Problem 1. Find a basis for the solution space of the system of equations

$$
\left\{\begin{array}{l}
w+5 x+y+2 z=0 \\
3 w+15 x+4 y-4 z=0
\end{array}\right.
$$

Solution: The matrix associated to this homogeneous system is

$$
\left(\begin{array}{cccc}
1 & 5 & 1 & 2 \\
3 & 15 & 4 & -4
\end{array}\right)
$$

Subtracting 3 times the first row from the second, and then the second from the first, we obtain

$$
\left(\begin{array}{cccc}
1 & 5 & 0 & 12 \\
0 & 0 & 1 & -10
\end{array}\right)
$$

a matrix in row-reduced upper-echelon form. Hence a basis for the solution space is $\{(-5,1,0,0),(-12,0,10,1)\}$.

Problem 2. Let

$$
A=\left(\begin{array}{cc}
3 & -4 \\
4 & 3
\end{array}\right)
$$

Find an invertible 2×2 matrix U with coefficients in \mathbb{C} such that $U^{-1} A U$ is diagonal.
Solution: The characteristic polynomial of A is $x^{2}-6 x+25$. Thus the eigenvalues of A are

$$
\lambda_{ \pm}=\frac{6 \pm \sqrt{36-100}}{2}=3 \pm 4 i
$$

The corresponding eigenvectors span the null space of

$$
A-\lambda_{ \pm} I=\left(\begin{array}{cc}
\mp 4 i & -4 \\
4 & \mp 4 i
\end{array}\right)
$$

By a row reduction - or simply by inspection - we see that the vectors $(\pm i, 1)$ span the null space. Thus putting

$$
U=\left(\begin{array}{cc}
i & -i \\
1 & 1
\end{array}\right)
$$

we see that $U^{-1} A U$ is diagonal.
Problem 3. Find an orthonormal basis (relative to the dot product) for the subspace of \mathbb{R}^{4} spanned by the vectors $(-1 / 2,1 / 2,1 / 2,1 / 2),(1 / 2,1 / 2,-1 / 2,1 / 2)$, and $(1,1,2,2)$.

Solution: Put $v_{1}=(-1 / 2,1 / 2,1 / 2,1 / 2), v_{2}=(1 / 2,1 / 2,-1 / 2,1 / 2)$, and $v_{3}=$ $(1,1,2,2)$. Apply the Gram-Schmidt process to the vectors v_{1}, v_{2}, v_{3}. The vectors v_{1} and v_{2} are already orthonormal, so put $u_{1}=v_{1}$ and $u_{2}=v_{2}$. So the vector

$$
w=v_{3}-\left(v_{3} \cdot u_{1}\right) u_{1}-\left(v_{3} \cdot u_{2}\right) u_{2}
$$

is orthogonal to both u_{1} and u_{2}. A calculation shows that $w=(3 / 2,-1 / 2,3 / 2,1 / 2)$. Putting

$$
u_{3}=\frac{1}{\sqrt{5}}(3 / 2,-1 / 2,3 / 2,1 / 2)
$$

we conclude that $\left\{u_{1}, u_{2}, u_{3}\right\}$ is the desired orthonormal set.
Problem 4. If A and B are 3×3 matrices with coefficients in \mathbb{C}, then A and B are similar if there is an invertible matrix U such that $U B U^{-1}=A$. Are the matrices

$$
A=\left(\begin{array}{ccc}
1 & 2 & 0 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right) \text { and } B=\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)
$$

similar? Why or why not?
Solution: No, A and B are not similar. For suppose on the contrary that $U B U^{-1}=A$ with an invertible matrix U. Then $U(B-I) U^{-1}=A-I$, so

$$
(A-I)^{2}=U(B-I)^{2} U^{-1}=U O U^{-1}=O
$$

where I and O are the 3×3 identity matrix and zero matrix respectively. But $(A-I)^{2} \neq 0$, a contradiction.

Alternatively, the fact that A has characteristic polynomial $(x-1)^{3}$ but $(A-$ $I)^{2} \neq 0$ means that the Jordan normal form of A is a single 3×3 Jordan block with eigenvalue 1 , whereas the fact B has characteristic polynomial $(x-1)^{3}$ but $(B-I)^{2}=O$ means that the Jordan normal form of B consists of a 1×1 Jordan block and a 2×2 Jordan block, both with eigenvalue 1. Since the Jordan normal forms of A and B differ, A and B are not similar.

Problem 5. Let I be the ideal of \mathbb{Z} generated by 6670 and 14007. Find the positive integer c such that I is the principal ideal generated by c.

Solution: We use the Euclidean algrorithm to determine $c=\operatorname{gcd}(6670,14007)$. Multiplying 6670 by 2 and subtracting from 14007, we obtain 667 , so that

$$
c=\operatorname{gcd}(6670,14007)=\operatorname{gcd}(6670,667)=667
$$

Part II.

Solve three of the following six problems.
Problem 6. Let L be the subgroup of \mathbb{Z}^{3} generated by $(1,0,1),(6,2,0)$, and $(7,2,5)$. Find a direct sum of cyclic groups isomorphic to \mathbb{Z}^{3} / L.

Solution: By row and column operations over \mathbb{Z} we find that $U A V=B$, where

$$
\begin{aligned}
& A=\left(\begin{array}{lll}
1 & 6 & 7 \\
0 & 2 & 2 \\
1 & 0 & 5
\end{array}\right), \\
& B=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 4
\end{array}\right),
\end{aligned}
$$

and U and V are invertible matrices over \mathbb{Z}. Therefore $\mathbb{Z}^{3} / L \cong(\mathbb{Z} / 2 \mathbb{Z}) \oplus(\mathbb{Z} / 4 \mathbb{Z})$.

Problem 7. Let A_{n} be the $n \times n$ matrix with the integers $1,2,3, \ldots, n$ along the first row and column, 1's down the diagonal, and 0's elsewhere, so that

$$
A_{n}=\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & \ldots & n \\
2 & 1 & 0 & 0 & \ldots & 0 \\
3 & 0 & 1 & 0 & \ldots & 0 \\
4 & 0 & 0 & 1 & \ldots & 0 \\
& & & & \ldots & \\
n & 0 & 0 & 0 & \ldots & 1
\end{array}\right)
$$

Prove that

$$
\operatorname{det}\left(A_{n}\right)=2-\frac{n(n+1)(2 n+1)}{6}
$$

Solution: By direct calculation, $\operatorname{det}\left(A_{1}\right)=1$ and $\operatorname{det}\left(A_{2}\right)=-3$, proving the formula in these cases. Now suppose that the formula holds for some $n \geqslant 2$. Expanding $\operatorname{det}\left(A_{n+1}\right)$ along the last column, we obtain

$$
\operatorname{det}\left(A_{n+1}\right)=(-1)^{n+2}(n+1) \operatorname{det}(B)+\operatorname{det}\left(A_{n}\right)
$$

where

$$
B=\left(\begin{array}{cccccc}
2 & 1 & 0 & 0 & \ldots & 0 \\
3 & 0 & 1 & 0 & \ldots & 0 \\
4 & 0 & 0 & 1 & \ldots & 0 \\
& & & & \ldots & \\
n & 0 & 0 & 0 & \ldots & 1 \\
n+1 & 0 & 0 & 0 & \ldots & 0
\end{array}\right)
$$

By expansion along the bottom row, we see that $\operatorname{det}(B)=(-1)^{n+1}(n+1)$, so

$$
\operatorname{det}\left(A_{n+1}\right)=-(n+1)^{2}+\operatorname{det}\left(A_{n}\right)=2-\frac{n(n+1)(2 n+1)}{6}-(n+1)^{2}
$$

by inductive hypothesis. Doing the arithmetic, we obtain

$$
\operatorname{det}\left(A_{n+1}\right)=2-(n+1)(n+2)(2 n+3) / 6
$$

as desired.
Problem 8. Prove or give a counterexample: If A and B are $n \times n$ diagonalizable matrices over \mathbb{C} then $A B$ is also diagonalizable.

Solution: Without the assumption that $A B=B A$ the statement is false. To get a counterexample, let

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)
$$

and

$$
C=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

and put $B=A^{-1} C$. Then A is diagonal, hence diagonalizable, and B is diagonalizable because its eigenvalues 1 and $1 / 2$ are distinct. But $A B=C$, which is not diagonalizable because it is a nondiagonal Jordan block.

Problem 9. Let A be an $n \times n$ matrix with coefficients in \mathbb{R}. If the minimal polynomial of A is $(x+1)^{2}$ then what is the minimal polynomial of $A^{2}+A$? Why?

Solution: Write $A=U J U^{-1}$, where J is an $n \times n$ matrix in Jordan normal form and U is an $n \times n$ invertible matrix. Then the minimal polynomials of A and J are equal, and as

$$
A^{2}+A=U\left(J^{2}+J\right) U^{-1}
$$

so are the minimal polynomials of $A^{2}+A$ and $J^{2}+J$. Now given that the minimal polynomial of A is $(x+1)^{2}$, we see that J is a diagonal array of one or more 2×2 Jordan blocks of eigenvalue -1 and zero or more 1×1 Jordan blocks of eigenvalue -1 . But if

$$
B=\left(\begin{array}{cc}
-1 & 1 \\
0 & -1
\end{array}\right)
$$

is one of the 2×2 blocks, then

$$
B^{2}+B=\left(\begin{array}{cc}
0 & -1 \\
0 & 0
\end{array}\right)
$$

which has minimal polynomial x^{2}, and if $B=(-1)$ is a 1×1 block then $B^{2}+B=(0)$, which has minimal polynomial x. Since J has at least one 2×2 block, we conclude that the minimal polynomial of $J^{2}+J$, and hence the minimal polynomial of $A^{2}+A$, is x^{2}.

Problem 10. Let A be the $n \times n$ matrix over \mathbb{R} with 1 's on the diagonal and $1 / n!$ everywhere else. Show that $\operatorname{det}(A) \neq 0$.

Solution: Let $a_{i, j}$ be the entry in the i th row and j th column of A. By definition,

$$
\operatorname{det}(A)=\sum_{\sigma} \operatorname{sign}(\sigma) a_{1, \sigma(1)} a_{2, \sigma(2)} \cdots a_{n, \sigma(n)}
$$

where σ runs over all permutations of $\{1,2, \ldots, n\}$. Since $a_{i, i}=1$ for all i,

$$
\operatorname{det}(A)=1+\sum_{\sigma \neq 1} \operatorname{sign}(\sigma) a_{1, \sigma(1)} a_{2, \sigma(2)} \cdots a_{n, \sigma(n)}
$$

where σ now runs over the nontrivial permutations. Each summand in the sum is a product of certain number of factors equal to 1 and a certain number of factors equal to $1 / n$!, with at least one factor equal to $1 / n!$. Since there are a total of $n!-1$ summands in the sum, we get $\operatorname{det}(A)=1+c$, where $|c| \leqslant(n!-1) / n!$. Therefore

$$
\operatorname{det}(A) \geqslant 1-|c| \geqslant 1-((n!-1) / n!) \geqslant 1 / n!
$$

whence $\operatorname{det}(A)>0$.
Problem 11. Let R and S be commutative rings, let $f: R \rightarrow S$ be a ring homomorphism, and let I be an ideal of R. Prove that if f is surjective (or "onto") then $f(I)$ is an ideal of S.

Solution: First we show that $f(I)$ is an additive subgroup of S. Certainly $0=f(0) \in f(I)$. Now suppose that $j, j^{\prime} \in f(I)$, and write $j=f(i), j^{\prime}=f\left(i^{\prime}\right)$ with $i, i^{\prime} \in I$. Then $j-j^{\prime}=f(i)-f\left(i^{\prime}\right)=f\left(i-i^{\prime}\right)$, and since $i-i^{\prime} \in I$ we deduce that $j-j^{\prime} \in f(I)$.

To complete the proof that $f(I)$ is an ideal of S, suppse that $j \in f(I)$ and $s \in S$. As before we can write $j=f(i)$ with $i \in I$, and also, because f is surjective, $s=f(r)$ with $r \in R$. Since I is an ideal we have $r i \in I$; then $s j=f(r) f(i)=f(r i) \in f(I)$.

Part III.
Solve one of the following three problems.

Problem 12. Let p and q be primes. Show that a nonabelian group of order $p q$ has trivial center.

Solution: If the center $Z(G)$ of G is nontrivial then it has order p or q, because if it has order $p q$ then G is abelian. Thus the quotient $G / Z(G)$ is of prime order and is therefore cyclic. Let $c Z(G)$ be a generator of $G / Z(G)$. We will show that G is abelian and hence obtain a contradiction. Given $g, g^{\prime} \in G$, we can write $g=c^{i} z$ and $g^{\prime}=c^{j} z^{\prime}$ with integers i and j and $z, z^{\prime} \in Z(G)$. Since z and z^{\prime} commute with c and with each other, we get

$$
g g^{\prime}=\left(c^{i} z\right)\left(c^{j} z^{\prime}\right)=c^{i+j} z z^{\prime}=c^{j+i} z^{\prime} z=\left(c^{j} z^{\prime}\right)\left(c^{i} z\right)=g^{\prime} g
$$

proving that G is abelian.
Problem 13. Let $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be an invertible linear map and $A^{\mathrm{t}}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ the transpose or adjoint relative to the dot product. Put $B=A^{\mathrm{t}} A$, let S be the unit sphere in \mathbb{R}^{n} centered at the origin, and define $f: S \rightarrow S$ by $f(x)=B(x) /\|B(x)\|$, where $\|x\|=\sqrt{x \cdot x}$. Show that there are at least n points $u \in S$ such that $f(u)=u$.

Solution: Since $B=B^{\mathrm{t}}$, we see that B is a symmetric (or self-adjoint) operator, whence \mathbb{R}^{n} has an orthonormal basis $u_{1}, u_{2}, \cdots, u_{n}$ consisting of eigenvectors of B. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in \mathbb{R}$ be the corresponding eigenvalues. For nonzero $x \in \mathbb{R}^{n}$ we have $A(x) \neq 0$, because A is invertible. Consequently

$$
B(x) \cdot x=A(x) \cdot A(x)>0
$$

If $x=u_{j}$ then $B(x) \cdot x=\lambda_{j}$, so we deduce that $\lambda_{j}>0$. So

$$
f\left(u_{j}\right)=\frac{B\left(u_{j}\right)}{\left\|B\left(u_{j}\right)\right\|}=\frac{\lambda_{j} u_{j}}{\left|\lambda_{j}\right| \cdot\left\|u_{j}\right\|}=u_{j}
$$

Thus $u_{1}, u_{2}, \ldots, u_{n}$ are the desired n fixed points.
Problem 14. Let $\alpha=\sqrt{1+\sqrt{2}} \in \mathbb{R}$.
(a) Find the irreducible monic polynomial of α over \mathbb{Q}. Be sure to explain how you know it is irreducible.

Solution: Let $f(x)=x^{4}-2 x^{2}-1$. Then f is the irreducible monic polynomial of $\mathbb{Q}(\alpha)$ over \mathbb{Q}. Indeed α^{2} satisfies the equation $x^{2}-2 x-1=0$, so α satisfies $f(x)=0$. Thus it suffices to see that $[\mathbb{Q}(\alpha): \mathbb{Q}]=4$. Write

$$
[\mathbb{Q}(\alpha): \mathbb{Q}]=[\mathbb{Q}(\alpha): \mathbb{Q}(\sqrt{2})][\mathbb{Q}(\sqrt{2}): \mathbb{Q}]
$$

and observe that $[\mathbb{Q}(\sqrt{2}): \mathbb{Q}]=2$ because 2 is irrational. On the other hand, let σ be the field embedding $\mathbb{Q}(\sqrt{2}) \rightarrow \mathbb{R}$ satisfying $\sigma(\sqrt{2})=-\sqrt{2}$. Then σ has an extension to an embedding (which we will also denote σ) of $\mathbb{Q}(\alpha)$ in \mathbb{C}, and $\sigma(\alpha) \notin \mathbb{R}$ because $1-\sqrt{2}<0$. But $\mathbb{Q}(\sqrt{2}) \subset \mathbb{R}$, so $[\mathbb{Q}(\alpha): \mathbb{Q}(\sqrt{2})]=2$. Hence $[\mathbb{Q}(\alpha): \mathbb{Q}]=4$ and f is irreducible.
(b) Is $\mathbb{Q}(\alpha)$ Galois over \mathbb{Q} ? Why or why not?

Solution: No, $\mathbb{Q}(\alpha)$ is not Galois over \mathbb{Q}. For let σ be as above. Then $\mathbb{Q}(\alpha) \subset \mathbb{R}$ but $\sigma(\mathbb{Q}(\alpha)) \not \subset \mathbb{R}$, so $\sigma(\mathbb{Q}(\alpha)) \neq \mathbb{Q}(\alpha)$. Hence $\mathbb{Q}(\alpha)$ is not normal over \mathbb{Q} and therefore not Galois.

