Preliminary Exam 2017
Solutions to Afternoon Exam

Part I.
Solve four of the following five problems.

Problem 1. Find a basis for the solution space of the system of equations

w4+dr+y+2z=0
3w+ 15z + 4y — 42 = 0.

Solution: The matrix associated to this homogeneous system is

1 5 1 2
3 15 4 —-4)°

Subtracting 3 times the first row from the second, and then the second from the
first, we obtain

1 5 0 12

0 01 -10/"

a matrix in row-reduced upper-echelon form. Hence a basis for the solution space

is {(-5,1,0,0), (—12,0,10,1)}.
3 —4
=13

Problem 2. Let
Find an invertible 2 x 2 matrix U with coefficients in C such that U~ AU is diagonal.
Solution: The characteristic polynomial of A is 22 —62+25. Thus the eigenvalues
of A are

6+ /36 — 100
Ap = o =3 i

The corresponding eigenvectors span the null space of

_ (Fh 4
A=Al = ( 4 ;41')
By a row reduction — or simply by inspection — we see that the vectors (+i, 1) span
the null space. Thus putting

we see that U1 AU is diagonal.

Problem 3. Find an orthonormal basis (relative to the dot product) for the
subspace of R* spanned by the vectors (—1/2,1/2,1/2,1/2), (1/2,1/2,-1/2,1/2),
and (1,1,2,2).

Solution: Put v1 = (—1/2,1/2,1/2,1/2), vo = (1/2,1/2,-1/2,1/2), and vz =
(1,1,2,2). Apply the Gram-Schmidt process to the vectors vy, v, v3. The vectors
v1 and vy are already orthonormal, so put u; = v; and us = vo. So the vector

w=wvsg — (v3 - uy)uy — (V3 - uz)ug
1
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is orthogonal to both u; and us. A calculation shows that w = (3/2,—1/2,3/2,1/2).
Putting

1
G

we conclude that {u1,ug,us} is the desired orthonormal set.

Problem 4. If A and B are 3 x 3 matrices with coefficients in C, then A and
B are similar if there is an invertible matrix U such that UBU~! = A. Are the
matrices

us3 (3/2,-1/2,3/2,1/2),

1 2 1 10
A=10 1 —-1] and B=|0 1 0
0 0 0 1 1

similar? Why or why not?

Solution: No, A and B are not similar. For suppose on the contrary that
UBU~! = A with an invertible matrix U. Then U(B —I)U~! = A —1, so

(A-1)?=UB-N*U"'=Uv0U =0,

where I and O are the 3 x 3 identity matrix and zero matrix respectively. But
(A —1)% # 0, a contradiction.

Alternatively, the fact that A has characteristic polynomial (z — 1) but (A —
I)? # 0 means that the Jordan normal form of A is a single 3 x 3 Jordan block
with eigenvalue 1, whereas the fact B has characteristic polynomial (z — 1) but
(B —I)? = O means that the Jordan normal form of B consists of a 1 x 1 Jordan
block and a 2 x 2 Jordan block, both with eigenvalue 1. Since the Jordan normal
forms of A and B differ, A and B are not similar.

Problem 5. Let I be the ideal of Z generated by 6670 and 14007. Find the
positive integer ¢ such that I is the principal ideal generated by c.

Solution: We use the Euclidean algrorithm to determine ¢ = ged (6670, 14007).
Multiplying 6670 by 2 and subtracting from 14007, we obtain 667, so that

¢ = ged (6670, 14007) = ged(6670, 667) = 667.

Part II.
Solve three of the following six problems.

Problem 6. Let L be the subgroup of Z* generated by (1,0,1), (6,2,0), and
(7,2,5). Find a direct sum of cyclic groups isomorphic to Z3/L.

Solution: By row and column operations over Z we find that UAV = B, where

16 7
A=10 2 2],
105
100
B=[0 2 0],
00 4

and U and V are invertible matrices over Z. Therefore Z3/L = (Z/2Z) @ (Z/4AZ).
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Problem 7. Let A, be the n x n matrix with the integers 1,2,3,...,n along
the first row and column, 1’s down the diagonal, and 0’s elsewhere, so that

1 2 3 4 n

2 1 0 0 0

3 010 0

An = 4 0 0 1 0

n 00 0 ... 1

Prove that

1)(2 1
det(A,) =2 M D+ 1)

6

Solution: By direct calculation, det(A;) = 1 and det(As) = —3, proving the
formula in these cases. Now suppose that the formula holds for some n > 2.
Expanding det(A,+1) along the last column, we obtain

det(Anq1) = (—=1)"2(n + 1) det(B) + det(A,,),

where
2 1 0 0 0
3 1 0 0
B— 4 0 0 1 0
n 0 0 O 1
n+1 0 0 O 0

By expansion along the bottom row, we see that det(B) = (—1)"*1(n + 1), so

n+1)(2n+1)
6
by inductive hypothesis. Doing the arithmetic, we obtain

det(An41) =2—(n+1)(n+2)(2n + 3)/6,

det(Any1) = —(n+1)% +det(4,) =2 — n( —(n+1)?

as desired.

Problem 8. Prove or give a counterexample: If A and B are nxn diagonalizable
matrices over C then AB is also diagonalizable.

Solution: Without the assumption that AB = B A the statement is false. To get

a counterexample, let
1 0
= 2)

11
(1)

and put B = A7'C. Then A is diagonal, hence diagonalizable, and B is diagonal-
izable because its eigenvalues 1 and 1/2 are distinct. But AB = C, which is not
diagonalizable because it is a nondiagonal Jordan block.

and

Problem 9. Let A be an n x n matrix with coefficients in R. If the minimal
polynomial of A is (z + 1)? then what is the minimal polynomial of A2 + A? Why?



Solution: Write A = UJU !, where J is an n x n matrix in Jordan normal form
and U is an n X n invertible matrix. Then the minimal polynomials of A and J are
equal, and as

A2+ A=UP+ U,

so are the minimal polynomials of A2+ A and .J? +.J. Now given that the minimal
polynomial of A is (z + 1)2, we see that J is a diagonal array of one or more 2 x 2
Jordan blocks of eigenvalue —1 and zero or more 1 x 1 Jordan blocks of eigenvalue

—1. But if
-1 1
(04
is one of the 2 x 2 blocks, then

2 (0 -1
wr=(g ).

which has minimal polynomial 22, and if B = (—1) is a 1 x 1 block then B2+ B = (0),
which has minimal polynomial . Since J has at least one 2 x 2 block, we conclude
that the minimal polynomial of J2+.J, and hence the minimal polynomial of A%+ A,
o 2
is x”.

Problem 10. Let A be the n x n matrix over R with 1’s on the diagonal and
1/n! everywhere else. Show that det(A) # 0.

Solution: Let a; ; be the entry in the ¢th row and jth column of A. By definition,
det(A) = Z Sign(a)al,a(l)a2,a(2) ©Qnuo(n)s

where o runs over all permutations of {1,2,...,n}. Since a;; = 1 for all 3,
det(A) =1+ Z Sign(a)al7a(1)a2,o(2) ©Qnuo(n)s
o#1

where o now runs over the nontrivial permutations. Each summand in the sum is

a product of certain number of factors equal to 1 and a certain number of factors

equal to 1/n!, with at least one factor equal to 1/n!. Since there are a total of n!—1

summands in the sum, we get det(A) = 1+ ¢, where |¢| < (n! — 1)/nl. Therefore
det(A) 21— 21— ((n!—1)/n!) > 1/nl,

whence det(A4) > 0.

Problem 11. Let R and S be commutative rings, let f : R — S be a ring
homomorphism, and let I be an ideal of R. Prove that if f is surjective (or “onto”)
then f(I) is an ideal of S.

Solution: First we show that f(I) is an additive subgroup of S. Certainly
0= f(0) € f(I). Now suppose that j,j" € f(I), and write j = f(i), j/ = f(i’) with
i,i’ € I. Then j — j' = f(i) — f(i') = f(i — '), and since i — ¢’ € T we deduce that
j—J e f).

To complete the proof that f(I) is an ideal of S, suppse that j € f(I) and s € S.
As before we can write j = f(¢) with ¢ € I, and also, because f is surjective, s = f(r)
with € R. Since I is an ideal we have ri € I; then sj = f(r)f(i) = f(ri) € f(I).

Part III.
Solve one of the following three problems.
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Problem 12. Let p and ¢ be primes. Show that a nonabelian group of order pg
has trivial center.

Solution: If the center Z(G) of G is nontrivial then it has order p or g, because
if it has order pq then G is abelian. Thus the quotient G/Z(G) is of prime order
and is therefore cyclic. Let ¢Z(G) be a generator of G/Z(G). We will show that G
is abelian and hence obtain a contradiction. Given g, ¢’ € G, we can write g = c'z
and ¢’ = ¢/2’ with integers i and j and z, 2’ € Z(G). Since z and 2’ commute with
c and with each other, we get

g9 = ('2) (7)) = 22 = IV 2 = (P2)(c'2) = ¢y,
proving that G is abelian.

Problem 13. Let A : R® — R"” be an invertible linear map and A : R® — R"
the transpose or adjoint relative to the dot product. Put B = A% A, let S be the unit
sphere in R™ centered at the origin, and define f : S — S by f(x) = B(x)/||B(x)||,
where ||z|| = v/z - x. Show that there are at least n points v € S such that f(u) = u.

Solution: Since B = B*, we see that B is a symmetric (or self-adjoint) operator,
whence R™ has an orthonormal basis u1, ug, - - , u, consisting of eigenvectors of B.
Let A1, Ao,..., A\n € R be the corresponding eigenvalues. For nonzero x € R™ we
have A(x) # 0, because A is invertible. Consequently

B(z) -z = A(z) - A(z) > 0.
If = u; then B(z) -z = A;, so we deduce that A; > 0. So

B(uy) Aju;j
Fluy) = e = i = .
Bl N gl
Thus uy,us,...,u, are the desired n fixed points.

Problem 14. Let a = V1 4+ V2 € R.

(a) Find the irreducible monic polynomial of « over Q. Be sure to explain how
you know it is irreducible.
Solution: Let f(z) = 2* —22% — 1. Then f is the irreducible monic polynomial

of Q(a) over Q. Indeed o? satisfies the equation 22 — 22 — 1 = 0, so « satisfies
f(z) = 0. Thus it suffices to see that [Q(a) : Q] = 4. Write

[Q(e) : @] = [Q(e) : QV2)[Q(v2) : Q)
and observe that [Q(v/2) : Q] = 2 because 2 is irrational. On the other hand,

let o be the field embedding Q(v/2) — R satisfying o(v/2) = —v/2. Then ¢ has
an extension to an embedding (which we will also denote o) of Q(«) in C, and

o(a) ¢ R because 1 — 2 < 0. But Q(+v2) C R, so [Q(a) : Q(+v/2)] = 2. Hence
[Q(r) : Q] =4 and f is irreducible.

(b) Is Q() Galois over Q? Why or why not?

Solution: No, Q(«) is not Galois over Q. For let o be as above. Then Q(a) C R
but o(Q(a)) ¢ R, so 0(Q(r)) # Q(«). Hence Q(«) is not normal over Q and
therefore not Galois.



