Preliminary Exam 2016
 Solutions to Afternoon Exam

Part I.

Solve four of the following five problems.
Problem 1. Let W be the plane $x+2 y+3 z=0$ in \mathbb{R}^{3}. Find a basis for W which is orthonomal relative to the usual dot product.

Solution: The vectors $w_{1}=(2,-1,0)$ and $w_{2}=(3,0,-1)$ are a basis for W. We use the Gram-Schmidt process to obtain an orthogonal basis $\left\{v_{1}, v_{2}\right\}$ for W : Put $v_{1}=w_{1}$ and

$$
v_{2}=w_{2}-\frac{w_{1} \cdot w_{2}}{w_{1} \cdot w_{1}} w_{1}=w_{2}-(6 / 5) w_{1}=(3 / 5,6 / 5,-1)
$$

Finally, an orthonormal basis is $\left\{u_{1}, u_{2}\right\}$, where

$$
u_{1}=v_{1} /\left|v_{1}\right|=(2 / \sqrt{5},-1 / \sqrt{5}, 0)
$$

and

$$
u_{2}=v_{2} /\left|v_{2}\right|=(3 / \sqrt{70}, 6 / \sqrt{70},-5 / \sqrt{70})
$$

Of course there are infinitely many correct answers.
Problem 2. Consider the matrix (with real coefficients)

$$
A=\left(\begin{array}{cc}
5 & -2 \\
3 & 0
\end{array}\right)
$$

Find an invertible matrix C such that $C^{-1} A C$ is diagonal.
Solution: The characteristic polynomial of A is $x^{2}-5 x+6=(x-2)(x-3)$, and one easily computes that $(2,3)$ and $(1,1)$ are eigenvectors corresponding to the eigenvalues 2 and 3 . So the matrix

$$
C=\left(\begin{array}{ll}
2 & 1 \\
3 & 1
\end{array}\right)
$$

has the property that $C^{-1} A C$ is the diagonal matrix with diagonal entries 2 and 3 .
Problem 3. Let A be a 2×2 matrix with real coefficients, and suppose that $A^{4}=I$ but $A^{2} \neq I$, where I is the 2×2 identity matrix.
(a) Find $\operatorname{tr}(A)$.

Solution: Since $A^{4}=I$ the eigenvalues of A are contained in the set $\{ \pm 1, \pm i\}$, and since the equation $x^{4}-1=0$ has 4 distinct roots A is diagonalizable. But since $A^{2} \neq I$, either i or $-i$ is an eigenvalue. In fact if one i or $-i$ is an eigenvalue then both are eigenvalues, because A - and therefore also the characteristic polynomial of A - has real coefficients. Therefore the eigenvalues are precisely i and $-i$, and $\operatorname{tr}(A)=i+(-i)=0$.
(b) Give an example of a 2×2 matrix B with complex coefficients such that $B^{4}=I$ and $B^{2} \neq I$ but $\operatorname{tr}(B) \neq \operatorname{tr}(A)$.

Solution: Let

$$
B=\left(\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right)
$$

so that $\operatorname{tr}(B)=1+i \neq \operatorname{tr}(A)$.

Problem 4. Let $\varphi: \mathbb{Q} \rightarrow \mathbb{Z}$ be a group homomorphism. Show that $\varphi(x)=0$ for all $x \in \mathbb{Q}$.

Solution: Suppose that for some $x \in \mathbb{Q}$ we have $\varphi(x) \neq 0$. Then there is a prime number p not dividing $\varphi(x)$. Since φ is a homomorphism, we find

$$
\varphi(x)=\varphi(p(x / p))=p \varphi(x / p)=p n
$$

where $n=\varphi(x / p) \in \mathbb{Z}$, a contradiction.
Problem 5. A sequence of row operations transforms the matrix

$$
A=\left(\begin{array}{cccc}
1 & 4 & * & * \\
3 & 2 & * & * \\
5 & 3 & * & *
\end{array}\right) \quad \text { into the matrix } \quad B=\left(\begin{array}{cccc}
1 & 0 & 1 & -3 \\
0 & 1 & 2 & 5 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ be the linear transformation which has A as its matrix relative to the standard bases of \mathbb{R}^{4} and \mathbb{R}^{3}. Find a basis for the kernel and image of T, and determine the third and fourth columns of A.

Solution: Because row operations correspond to left-multiplication by an invertible matrix, B is the matrix of T relative to the standard basis $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ for \mathbb{R}^{4} and a new basis $\left\{v_{1}, v_{2}, v_{3},\right\}$ for \mathbb{R}^{3}. By inspection, $T\left(e_{3}\right)=T\left(e_{1}\right)+2 T\left(e_{2}\right)$ and $T\left(e_{4}\right)=-3 T\left(e_{1}\right)+5 T\left(e_{2}\right)$, and consequently the vectors

$$
e_{1}+2 e_{2}-e_{3}=(1,2,-1,0)
$$

and

$$
-3 e_{1}+5 e_{2}-e_{4}=(-3,5,0,-1)
$$

are in the kernel of T. Since the nullity of T is visibly 2 and these vectors are linearly independent, they form a basis for the kernel of T. Using B and A one can also read off a basis for the image of T : A basis is given by

$$
v_{1}=T\left(e_{1}\right)=(1,3,5)
$$

and

$$
v_{2}=T\left(e_{2}\right)=(4,2,3)
$$

Finally, the third and fourth columns of A are the transposes of

$$
v_{1}+2 v_{2}=T\left(e_{1}\right)+2 T\left(e_{2}\right)=(1,3,5)+2(4,2,3)=(9,7,11)
$$

and

$$
-3 v_{1}+5 v_{2}=-3 T\left(e_{1}\right)+5 T\left(e_{2}\right)=-3(1,3,5)+5(4,2,3)=(17,1,0)
$$

respectively.

Part II.

Solve three of the following six problems.
Problem 6. Let A be a 3×3 matrix such that $\left(A^{2}-I\right)(A-I)=0$ but $A^{2}-I \neq 0$. What are the possibilites for the Jordan normal form of A ? (You may take A to have complex coefficients.)

Solution: Let $f(x)$ be the minimal monic polynomial of A. As $(A-I)^{2}(A+I)=0$ but $(A-I)(A+I) \neq 0$ we see that $f(x)$ divides $(x-1)^{2}(x+1)$ but does not divide
$(x-1)(x+1)$. So the possibilities for $f(x)$ are $(x-1)^{2}(x+1)$ and $(x-1)^{2}$. Given that A is a 3×3 matrix, the corresponding Jordan normal forms are

$$
\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Problem 7. Make a list of abelian groups of order 32 so that every abelian group of order 32 is isomorphic to exactly one group on your list.

Solution: By the Elementary Divisor Theorem, there are 7 possibilities:

$$
\begin{gathered}
\mathbb{Z} / 32 \mathbb{Z} \\
(\mathbb{Z} / 16 \mathbb{Z}) \times(\mathbb{Z} / 2 \mathbb{Z}), \\
(\mathbb{Z} / 8 \mathbb{Z}) \times(\mathbb{Z} / 4 \mathbb{Z}), \\
(\mathbb{Z} / 8 \mathbb{Z}) \times(\mathbb{Z} / 2 \mathbb{Z}) \times(\mathbb{Z} / 2 \mathbb{Z}), \\
(\mathbb{Z} / 4 \mathbb{Z}) \times(\mathbb{Z} / 4 \mathbb{Z}) \times(\mathbb{Z} / 2 \mathbb{Z}), \\
(\mathbb{Z} / 4 \mathbb{Z}) \times(\mathbb{Z} / 2 \mathbb{Z}) \times(\mathbb{Z} / 2 \mathbb{Z}) \times(\mathbb{Z} / 2 \mathbb{Z}), \\
(\mathbb{Z} / 2 \mathbb{Z}) \times(\mathbb{Z} / 2 \mathbb{Z}) \times(\mathbb{Z} / 2 \mathbb{Z}) \times(\mathbb{Z} / 2 \mathbb{Z}) \times(\mathbb{Z} / 2 \mathbb{Z})
\end{gathered}
$$

Problem 8. Let R be a commutative ring, and let I be the set of all $r \in R$ such that $r^{k}=0$ for some positive integer k (which may depend on r). Show that I is an ideal of R.

Solution: If $r, s \in I$ then there exist integrers $k, l \geqslant 1$ such that $r^{k}=s^{l}=0$. Since R is commutative, the Binomial Theorem shows that $(r+s)^{k+l}$ is a sum of integer multiples of expressions of the form $r^{j} s^{k+l-j}$ with $0 \leqslant j \leqslant k+l$, and either $j \geqslant k$ or $k+l-j \geqslant l$. Therefore all such terms are 0 and $r+s \in I$. On the other hand, if $a \in R$ then $(a r)^{k}=a^{k} r^{k}=a^{k} \cdot 0=0$. So I is an ideal.

Problem 9. Write \mathbb{Z}^{3} / L as a direct sum (or a direct product) of cyclic groups, where L is the subgroup of \mathbb{Z}^{3} generated by $(1,1,-2),(7,9,-14)$, and $(5,9,-6)$.

Solution: Let A be the matrix with these vectors as columns:

$$
A=\left(\begin{array}{ccc}
1 & 7 & 5 \\
1 & 9 & 9 \\
-2 & -14 & -6
\end{array}\right)
$$

A series of row and column operations over \mathbb{Z} converts A into a diagonal matrix with diagonal entries 1,2 , and 4 . So $\mathbb{Z}^{3} / L \cong(\mathbb{Z} / 2 \mathbb{Z}) \times(\mathbb{Z} / 4 \mathbb{Z})$.

Problem 10. Find an integer $n \geqslant 1$ such that the Galois group over \mathbb{Q} of the polynomial $x^{n}-n$ is isomorphic to $(\mathbb{Z} / 2 \mathbb{Z})^{2}$.

Solution: Take $n=4$. Since $x^{4}-4=\left(x^{2}+2\right)\left(x^{2}-2\right)$, the corresponding Galois extension of \mathbb{Q} is the compositum $K=K_{1} K_{2}$, where $K_{1}=\mathbb{Q}(\sqrt{-2})$ and $K_{2}=\mathbb{Q}(\sqrt{2})$. Note that $\operatorname{Gal}\left(K_{1} / \mathbb{Q}\right) \cong \operatorname{Gal}\left(K_{2} / \mathbb{Q}\right) \cong \mathbb{Z} / 2 \mathbb{Z}$. Also $K_{1} \cap K_{2}=\mathbb{Q}$: Indeed $K_{1} \neq K_{2}$ (since $K_{2} \subset \mathbb{R}$ and $\left.K_{1} \not \subset \mathbb{R}\right)$ and the only subfields of K_{2} are K_{2} itself and $\mathbb{Q}\left(\right.$ since $\left.\left[K_{2}: \mathbb{Q}\right]=2\right)$. Hence the formal properties of the Galois correspondence give $\operatorname{Gal}(K / \mathbb{Q}) \cong \operatorname{Gal}\left(K_{1} / \mathbb{Q}\right) \times \operatorname{Gal}\left(K_{2} / \mathbb{Q}\right) \cong(\mathbb{Z} / 2 \mathbb{Z})^{2}$.

Problem 11. Let A be an $n \times n$ matrix, let $A_{i j}$ be the $(n-1) \times(n-1)$ matrix obtained by deleting the i th row and j th column of A, and let $a_{i j}$ be the entry in the i th row and j th column of A. For $1 \leqslant h, i \leqslant n$, what is $\sum_{j=1}^{n} a_{h j}(-1)^{i+j} \operatorname{det}\left(A_{i j}\right)$? Why? Your answer should depend on whether $h=i$ or $h \neq i$.

Solution: If $h=i$ then the given sum is just the expansion of $\operatorname{det}(A)$ along the i th row, so the value of the sum is $\operatorname{det}(A)$. If $h \neq i$ then the given sum is the expansion of $\operatorname{det}\left(A^{\prime}\right)$ along the i th row, where A^{\prime} is obtained from A by changing the i th row so that it is identical to the h th row and leaving all other rows the same. Thus in A^{\prime} the i th row and h th row are equal, and so $\operatorname{det}\left(A^{\prime}\right)=0$. So the given sum is 0 .

Part III.

Solve one of the following three problems.
Problem 12. Factor the polynomial $x^{3}-2$ into irreducible polynomials in $\mathbb{F}_{p}[x]$ for $p=3,5$, and 7 , where \mathbb{F}_{p} is the field with p elements.

Solution: If $p=3$ then $x^{3}-2=x^{3}+1=(x+1)^{3}$.
If $p=5$ then $\left|\mathbb{F}_{p}^{\times}\right|=4$, so the map $u \mapsto u^{3}$ is an isomorphism and $2=\alpha^{3}$ for some $\alpha \in \mathbb{F}_{5}$. In fact $3^{3}=27=2$ in \mathbb{F}_{5}, so $x-3$ is a factor of $x^{3}-2$ in $\mathbb{F}_{5}[x]$. Using synthetic division or otherwise, one finds that $x^{3}-2=(x-3)\left(x^{2}-2 x-1\right)$, and $f(x)=x^{2}-2 x-1$ is irreducible because all the values of f are nonzero: $f(0)=4$, $f(1)=3, f(2)=4, f(3)=2$, and $f(4)=2$.

Finally, if $p=7$ then $f(x)=x^{3}-2$ is irreducible, either because the values of f are all nonzero or because 2 has order 3 in \mathbb{F}_{7}^{\times}(indeed $2^{3}=8=1$ in \mathbb{F}_{7}) and any cube in a group of order 6 has order dividing 2 .

Problem 13. Let G be a finite group and H a subgroup, and let \mathcal{S} be the group of permutations of G / H, the set of left cosets of H in G. Define a homomorphism $\varphi: G \rightarrow \mathcal{S}$ by setting $\varphi(a)(b H)=a b H$ for $a, b \in G$. Show that the kernel of φ is the largest normal subgroup of G contained in H.

Solution: We have $a \in \operatorname{ker} \varphi$ if and only if $b H=a b H$ for all $b \in G$, or in other words, $b^{-1} a b \in H$ for all $b \in G$. Equivalently, $\operatorname{ker} \varphi=\bigcap_{b \in G} b H b^{-1}$. This intersection is contained in H (take $b=1$), and it is a subgroup of G because it is an intersection of subgroups of G. Furthermore it is normal in G because conjugation by a fixed element of G merely permutes the terms in the intersection. Finally, if N is a normal subgroup of G and $N \subset H$ then for any $b \in G$ we have $N=b N b^{-1} \subset b H b^{-1}$. Therefore N is contained in the intersection $\bigcap_{b \in G} b H b^{-1}$.

Problem 14. Let A be a square matrix with coefficients in \mathbb{C}, and suppose that A is not diagonalizable but that A^{n} is diagonalizable for some $n \geqslant 2$. Show that $\operatorname{det}(A)=0$.

Solution: A square matrix over \mathbb{C} is diagonalizable if and only if its minimal polynomial can be factored into distinct monic linear factors. Thus $f\left(A^{n}\right)=0$ for some polynomial $f(x)=\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right) \cdots\left(x-\lambda_{m}\right)$ such that $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}$ are all distinct. Equivalently, $g(A)=0$, where $g(x)=\prod_{j=1}^{m} \prod_{k=1}^{n}\left(x-\mu_{j} e^{2 \pi i k / n}\right)$ where $\mu_{j}^{n}=\lambda_{j}$. If every λ_{j} is nonzero then $g(x)$ is a product of distinct monic linear factors and therefore the same assertion holds for the minimal polynomial of A, which divides $g(x)$ since $g(A)=0$. Then A is diagonalizable, contrary to hypothesis. So one of the $\lambda_{j}^{\prime} s$ is zero and therefore $\operatorname{det}\left(A^{n}\right)=0$, whence also $\operatorname{det}(A)=0$.

