Preliminary Exam 2016
 Morning Exam (3 hours)

Part I.

Solve four of the following five problems.
Problem 1. Find the volume of the "ice cream cone" defined by the inequalities $x^{2}+y^{2}+z^{2} \leqslant 1$ and $x^{2}+y^{2} \leqslant z^{2} / 3$ for $z \geqslant 0$.

Problem 2. Determine the radius of convergence and interval of convergence of the power series $\sum_{n \geqslant 1}(1+1 / n)^{n^{2}} x^{n}$.

Problem 3. Prove that $\cos x_{0}=x_{0}$ for a unique $x_{0} \in[0,1]$, and show in addition that $\pi / 6<x_{0}<\pi / 4$.

Problem 4. Using standard techniques of integration, find antiderivatives on some open interval where the integrand is defined and continuous:
(a) $\int \tan \left(\cos ^{2} x\right) \sin (2 x) d x$.
(b) $\int \cos (\log x) d x$. (Here "log" is understood to be "ln.")

Problem 5. Find all solutions to the differential equation $y^{\prime \prime}-y^{\prime}-6 y=\cos t$ that are bounded on $[0, \infty)$ and satisfy the condition $y(0)=0$.

Part II.

Solve three of the following six problems.
Problem 6. Let $\mathbf{F}(x, y, z)=(2 x+3 y) \mathbf{i}+(3 x+2 y) \mathbf{j}+z \mathbf{k}$.
(a) Compute $\nabla \times \mathbf{F}$.
(b) Let C be the curve given parametrically by $\mathbf{r}(t)=e^{t} \cos t \mathbf{i}+e^{t} \sin t \mathbf{j}$ for $0 \leqslant t \leqslant 2 \pi$. Find the value of the line integral $\int_{C} \mathbf{F} \cdot d s$.

Problem 7. Fix an element $c \in \mathbb{R}$, and define a function $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=|x-c|$. Show that f is uniformly continuous.

Problem 8. The formula $f(x, y, z)=\left(x+y^{2}+z^{2}, x^{2}+y+z^{2}, x^{2}+y^{2}+z\right)$ defines a function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$.
(a) Explain why there are open neighborhoods U and $V=f(U)$ of $(0,0,0) \in \mathbb{R}^{3}$ and a C^{1} function $g: V \rightarrow U$ such that $g(f(x, y, z))=(x, y, z)$ for $(x, y, z) \in U$ and $f(g(x, y, z))=(x, y, z)$ for $(x, y, z) \in V$.
(b) Now let $h(x, y, z)=\left(x+e^{y}+e^{z}-2, e^{x}+y+e^{z}-2, e^{x}+e^{y}+z-2\right)$. Show that if f is replaced by h then no such U, V, and g exist.

Problem 9. Let $f_{n}(x)=n x e^{-n x}$. Show that the sequence $\left\{f_{n}\right\}$ is pointwise convergent on $[0,1]$ but not uniformly convergent.

Problem 10. Let V be the real vector space of C^{∞} functions $f: \mathbb{R} \rightarrow \mathbb{R}$ with compact support (in other words, f vanishes outside some closed bounded interval). Define an operator $T: V \rightarrow V$ by $T(f)=f^{\prime \prime}$. Show that T is self-adjoint relative to the L^{2} inner product on V. In other words, letting

$$
\langle f, g\rangle=\int_{-\infty}^{\infty} f(x) g(x) d x
$$

for $f, g \in V$, show that $\langle T(f), g\rangle=\langle f, T(g)\rangle$.
Problem 11. Find the surface area of the torus described parametrically by

$$
\mathbf{r}(\theta, \varphi)=\cos \theta\left(1+\frac{\cos \varphi}{2}\right) \mathbf{i}+\sin \theta\left(1+\frac{\cos \varphi}{2}\right) \mathbf{j}+\frac{\sin \varphi}{2} \mathbf{k} \quad(0 \leqslant \theta, \varphi \leqslant 2 \pi)
$$

Part III.

Solve one of the following three problems.
Problem 12. Let f be a $C^{2 n}$ function in some neighborhood of a point $a \in \mathbb{R}$, and suppose that $f^{(k)}(a)=0$ for $1 \leqslant k \leqslant 2 n-1$. Show that if $f^{(2 n)}(a)>0$ then f has a local minimum at a.

Problem 13. Let X and Y be metric spaces with respective metrics $d_{X}(*, *)$ and $d_{Y}(*, *)$, let x_{0} be a point of X, and let $f: X \rightarrow Y$ be a function.
(a) Consider the following definitions:
(A) f is continuous at x_{0} if for every $\varepsilon>0$ there exists $\delta>0$ such that if $x \in X$ and $d_{X}\left(x, x_{0}\right)<\delta$ then $d_{Y}\left(f(x), f\left(x_{0}\right)\right)<\varepsilon$.
(B) f is continuous at x_{0} if for every sequence $\left\{x_{n}\right\}_{n \geqslant 1}$ in X which converges to x_{0} the sequence $\left\{f\left(x_{n}\right)\right\}_{n \geqslant 1}$ converges to $f\left(x_{0}\right)$.
Show that these definitions are equivalent.
(b) Let $I=[0,2 \pi) \subset \mathbb{R}$ and $T=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=1\right\}$, and consider I and T as metric spaces by restricting the standard Euclidean metrics on \mathbb{R} and \mathbb{R}^{2} respectively. Define $g: I \rightarrow T$ by $g(x)=(\cos x, \sin x)$, and put $f=g^{-1}$. Is f continuous at $(1,0) \in T$? Justify your answer using (B).

Problem 14. Define a real-valued function f on \mathbb{R} by setting $f(x)=e^{-1 / x^{2}}$ for $x \neq 0$ and $f(0)=0$.
(a) Show by induction on n that $f^{(n)}(x)=e^{-1 / x^{2}} P_{n}(1 / x)$ for $x \neq 0$, where P_{n} is a polynomial.
(b) Deduce that f is a C^{∞} function on \mathbb{R} and that $f^{(n)}(0)=0$ for all n.

