Preliminary Exam 2016

Afternoon Exam (3 hours)

Part I.

Solve four of the following five problems.
Problem 1. Let W be the plane $x+2 y+3 z=0$ in \mathbb{R}^{3}. Find a basis for W which is orthonomal relative to the usual dot product.

Problem 2. Consider the matrix (with real coefficients)

$$
A=\left(\begin{array}{cc}
5 & -2 \\
3 & 0
\end{array}\right)
$$

Find an invertible matrix C such that $C^{-1} A C$ is diagonal.
Problem 3. Let A be a 2×2 matrix with real coefficients, and suppose that $A^{4}=I$ but $A^{2} \neq I$, where I is the 2×2 identity matrix.
(a) Find $\operatorname{tr}(A)$.
(b) Give an example of a 2×2 matrix B with complex coefficients such that $B^{4}=I$ and $B^{2} \neq I$ but $\operatorname{tr}(B) \neq \operatorname{tr}(A)$.

Problem 4. Let $\varphi: \mathbb{Q} \rightarrow \mathbb{Z}$ be a group homomorphism. Show that $\varphi(x)=0$ for all $x \in \mathbb{Q}$.

Problem 5. A sequence of row operations transforms the matrix

$$
A=\left(\begin{array}{cccc}
1 & 4 & * & * \\
3 & 2 & * & * \\
5 & 3 & * & *
\end{array}\right) \quad \text { into the matrix } \quad B=\left(\begin{array}{cccc}
1 & 0 & 1 & -3 \\
0 & 1 & 2 & 5 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ be the linear transformation which has A as its matrix relative to the standard bases of \mathbb{R}^{4} and \mathbb{R}^{3}. Find a basis for the kernel and image of T, and determine the third and fourth columns of A.

Part II.

Solve three of the following six problems.
Problem 6. Let A be a 3×3 matrix such that $\left(A^{2}-I\right)(A-I)=0$ but $A^{2}-I \neq 0$. What are the possibilites for the Jordan normal form of A ? (You may take A to have complex coefficients.)

Problem 7. Make a list of abelian groups of order 32 so that every abelian group of order 32 is isomorphic to exactly one group on your list.

Problem 8. Let R be a commutative ring, and let I be the set of all $r \in R$ such that $r^{k}=0$ for some positive integer k (which may depend on r). Show that I is an ideal of R.

Problem 9. Write \mathbb{Z}^{3} / L as a direct sum (or a direct product) of cyclic groups, where L is the subgroup of \mathbb{Z}^{3} generated by $(1,1,-2),(7,9,-14)$, and $(5,9,-6)$.

Problem 10. Find an integer $n \geqslant 1$ such that the Galois group over \mathbb{Q} of the polynomial $x^{n}-n$ is isomorphic to $(\mathbb{Z} / 2 \mathbb{Z})^{2}$.

Problem 11. Let A be an $n \times n$ matrix, let $A_{i j}$ be the $(n-1) \times(n-1)$ matrix obtained by deleting the i th row and j th column of A, and let $a_{i j}$ be the entry in the i th row and j th column of A. For $1 \leqslant h, i \leqslant n$, what is $\sum_{j=1}^{n} a_{h j}(-1)^{i+j} \operatorname{det}\left(A_{i j}\right)$? Why? Your answer should depend on whether $h=i$ or $h \neq i$.

Part III.
Solve one of the following three problems.
Problem 12. Factor the polynomial $x^{3}-2$ into irreducible polynomials in $\mathbb{F}_{p}[x]$ for $p=3,5$, and 7 , where \mathbb{F}_{p} is the field with p elements.

Problem 13. Let G be a finite group and H a subgroup, and let \mathcal{S} be the group of permutations of G / H, the set of left cosets of H in G. Define a homomorphism $\varphi: G \rightarrow \mathcal{S}$ by setting $\varphi(a)(b H)=a b H$ for $a, b \in G$. Show that the kernel of φ is the largest normal subgroup of G contained in H.

Problem 14. Let A be a square matrix with coefficients in \mathbb{C}, and suppose that A is not diagonalizable but that A^{n} is diagonalizable for some $n \geqslant 2$. Show that $\operatorname{det}(A)=0$.

