Preliminary Exam 2015
 Morning Exam (3 hours)

Part I

Solve four of five problems.

Problem 1 Determine, with proof, whether the series

$$
\sum_{k=1}^{\infty} \frac{\sin (1 / k)}{k}
$$

converges,

Problem 2. Calculate the surface integral

$$
\iint_{S} F \cdot d S
$$

where $F(x, y, z)=x y \mathbf{i}+y z \mathbf{j}+z x \mathbf{k}$ and S is the surface of the cylinder $x^{2}+y^{2} \leq 1,0 \leq z \leq 1$ oriented by the outwards normal.

Problem 3 Let $\mathbf{F}(\mathbf{x}, \mathbf{y}, \mathbf{z})=(2 x y z+\sin (x)) \mathbf{i}+x^{2} z \mathbf{j}+x^{2} y \mathbf{k}$. Evaluate

$$
\int_{C} \mathbf{F} \cdot d s
$$

where C is the parametrized curve $c(t)=\left(\cos ^{5}(t), \sin ^{3}(t), t^{4}\right), 0 \leq t \leq \pi$.

Problem 4 Let S be a surface in \mathbb{R}^{3} with piecewise smooth boundary C, and $\mathbf{F}(x, y, z)$ a smooth vector field defined in a neighborhood of S such that \mathbf{F} is orthogonal to the tangent vectors of the boundary curve C. Compute

$$
\iint_{S}(\nabla \times \mathbf{F}) \cdot d S
$$

Problem 5 Prove the following statement, or give a counterexample. "Let $f(x, y)$ be a function of two variables. Then $\lim _{(x, y) \rightarrow(0,0)}$ exists if an only if $\lim _{t \rightarrow 0} f(t v)$ exists for all vectors $v \in \mathbb{R}^{2}$."

Part 2

Solve three of the following six problems.

Problem 6. Let a and b be positive constants, and let $u(t)$ be a differentiable function on $[0, \infty)$ satisfying the inequality $u^{\prime}(t) \leq a u(t), u(0) \leq b$. Find an upper bound on $u(t)$, and prove that it is the best possible.

Problem 7 Consider the system

$$
\begin{aligned}
& \frac{d x}{d t}=-x-6 y \\
& \frac{d y}{d t}=3 x+5 y
\end{aligned}
$$

(a) Find the general solution of the system.
(b) Sketch a phase portrait of the system.

Problem 8. Prove that there exists an $\epsilon>0$ with the property that if A is an $n \times n$ real matrix with $\left|(A-I)_{i, j}\right|<\epsilon$ for $1 \leq i, j \leq n$, then A is invertible (here $B_{i, j}$ denotes the (i, j) entry of $B)$.

Prolem 9. Let $f, g:[0,1] \rightarrow[0, \infty)$ be continuous, non-negative functions such that $\sup _{x}(f)=\sup _{x}(g)$ for $x \in[0,1]$. Show that there exists a $t \in[0,1]$ such that

$$
f^{2}(t)+5 f(t)=g^{2}+5 g(t)
$$

Problem 10 Compute the volume of intersection of the two solid cylinders $x^{2}+y^{2} \leq 1$ and $x^{2}+z^{2} \leq 1$ in \mathbb{R}^{3}.

Problem 11 Consider the sequence of functions on $(0, \infty)$ given by

$$
f_{n}(x)=\frac{n x}{1+n^{2} x^{2}}
$$

(a) Determine if the sequence converges pointwise.
(b) Determine if the sequence converges uniformly.

Part 3

Solve one of the remaining three problems.
Problem 12 Let

$$
\sum_{k=1}^{\infty} a_{k}
$$

be a conditionally convergent series (i.e. $\sum a_{k}$ converges, but $\sum\left|a_{k}\right|$ diverges) and L a real number. Show that there exists a bijection $f: \mathbb{N} \rightarrow \mathbb{N}$ such that the series $\sum_{k=1}^{\infty} a_{f(k)}$ converges to L. In other words, show that a conditionally convergent series can be made to converge to an arbitrary number L by rearranging the order of its terms.

Problem 13 Let

$$
\exp : M_{2 \times 2}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})
$$

denote the function on the space of 2×2 matrices defined by

$$
\exp (A)=I+A+A^{2} / 2!+A^{3} / 3!+\cdots
$$

(a) Show that exp is a C^{∞} function from $M_{2 \times 2}(\mathbb{R})$ to itself. (You may identify $M_{2 \times 2}(\mathbb{R})$ with \mathbb{R}^{4}
(b) Show that there exists an open set U of the zero matrix and an open set V of the identity matrix such that $\exp (U)=V$ and such that \exp possesses a smooth inverse on V.
(c) Derive an expression for the inverse of exp.

Problem 14 Prove the Arithmetic-Mean-Geometric-Mean inequality, namely, that if x_{1}, \cdots, x_{n} are positive real numbers, then

$$
\frac{x_{1}+x_{2}+\cdots+x_{n}}{n} \geq \sqrt[n]{x_{1} \cdot x_{n} \cdots x_{n}}
$$

with equality if an only if $x_{1}=x_{2}=\cdots=x_{n}$.

