Preliminary Exam 2015
 Afternoon Exam (3 hours)
 Part I

Solve four of five problems.

Problem 1. Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ be the linear map

$$
T\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(2 x_{1}+x_{2}-x_{3}, x_{1}+x_{2}+2 x_{4}, 3 x_{1}+2 x_{2}-x_{3}+2 x_{4}\right)
$$

(a) Find a basis for $\operatorname{Ker}(T)$ (the kernel of T)
(b) Find a basis for $\operatorname{Im}(T)$ (the image of T)
(c) What is the rank of T ? Is T surjective?

Problem 2. Let

$$
R_{\theta}=\left(\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right)
$$

(a) Prove that if A is a 2×2 matrix A such that $A R_{\theta}=R_{\theta} A$ for every $\theta \in \mathbb{R}$ then $A=t R_{\phi}$ for some $t, \phi \in \mathbb{R}$.
(b) Give a geometric interpretation of the result in (a).

Problem 3. Let p be a prime. Up to isomorphism, list all abelian groups of order p^{4}. Prove that your list is complete and irredundant.

Problem 4. Let V be the real vector space of continuous functions $f:[0,1] \rightarrow \mathbb{R}$, and $\langle *, *\rangle$ an inner product on V given by

$$
\langle f(x), g(x)\rangle=\int_{0}^{1} f(x) g(x) x^{2} d x
$$

Let W be the subspace of V spanned by $f_{1}(x)=1$ and $f_{2}(x)=x^{3}$. Find an orthonormal basis for W.

Problem 5. Show that the polynomial $x^{6}+30 x^{5}-15 x^{3}+6 x-120$ is irreducible in $\mathbb{Q}[x]$.

Part II

Solve three out of six problems.

Problem 6. Let S_{n} denote the symmetric group on n elements. What is the smallest n such that S_{n} contains a permutation of order 42. Explain and justify your answer.

Problem 7. Are the matrices

$$
A=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right) \text { and } B=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Similar over \mathbb{R} ? Why or why not ?

Problem 8. (a) Let A be a 4×4 real matrix with characteristic polynomial $(x-1) x(x+1)(x+2)$, and B a 4×4 real matrix such that $A B=B A$. Prove that B is diagonalizable.
(b) Suppose A is a diagonalizable real matrix with characteristic polynomial $(x+1)^{2} x(x+$ 2), and B a 4×4 real matrix such that $A B=B A$. Does B have to be diagonzalizable ? Describe all such matrices B.

Problem 9 Let $A_{n} \subset S_{n}$ denote the alternating group on n letters (i.e. the subgroup of permutations having even sign). Show that A_{n} is generated by 3 -cycles for $n \geq 3$.

Problem 10 Let p be a prime, and G a group of order p^{n}. Show that G has a non-trivial center.

Problem 11 Let R_{1} and R_{2} be commutative rings, and $R_{1} \times R_{2}$ the product ring.
(a) Prove that every ideal of $R_{1} \times R_{2}$ is of the form $I_{1} \times I_{2}$ where $I_{j} \subset R_{j}$ are ideals for $j=1,2$.
(b) Which ideals $I_{1} \times I_{2}$ are prime ? Which are maximal ? Explain.

Part III

Solve one of three problems.

Problem 12 Let $\mathbb{R}[x, y]$ denote the polynomial ring in two variables x, y over \mathbb{R}, and let $I=\left(y^{2}-x, y-x\right)$ be the ideal generated by $y^{2}-x$ and $y-x$. Show that

$$
\mathbb{R}[x, y] / I
$$

is not an integral domain.

Problem 13 Which of the following rings are integral domains? Which ones are fields ?
(a) $\mathbb{Z}[x] /\left(x^{2}+2 x+3\right)$
(b) $\mathbb{F}_{5}[x] /\left(x^{2}+x+1\right)$
(c) $\mathbb{R}[x] /\left(x^{4}+2 x^{3}+x^{2}+5 x+2\right)$

Problem 14 Give examples of each of the following, or show that no such can exist. Explain and justify your answer:
(a) A Galois extension K / \mathbb{Q} of degree 4.
(b) A Galois extension K / \mathbb{Q} of degree 6 .
(c) A Galois extension K / \mathbb{Q} of degree 7 .

