Preliminary Exam 2014 Morning Exam (3 hours)

Part I

Solve four of five problems.

Problem 1 Determine whether the sequence $\{\sqrt{2}, \sqrt{2\sqrt{2}}, \sqrt{2\sqrt{2}}, \cdots\}$ converges, and if so, find the limit.

Problem 2. Consider the vector field

$$\mathbf{F}(x,y) = y\mathbf{i} + (x+2y)\mathbf{j}.$$

Compute the line integral $\int_C \mathbf{F} \bullet ds$, where C is the curve $C(t) = (t^4, 2t^6), 0 \le t \le 1$.

Problem 3 Show that the system of equations

$$2\sin(x) + 3\sin(y) = a$$
$$x + 5y^3 = b$$

has a solution for (a, b) sufficiently close to (0, 0), and that there is a neighborhood of (0, 0) in which this solution is unique.

Problem 4 Determine for which real numbers x the infinite series

$$\sum_{n=1}^{\infty} \frac{\sqrt{n+1} - \sqrt{n}}{n^x}$$

converges.

Problem 5 Consider the initial value problem

$$y' + \tan(x)y = \cos^2(x), \ y(0) = C$$

For what values of C does the solution remain bounded for all values of x?

Part 2

Solve three of the following six problems.

Problem 6. Suppose that $f : \mathbb{R} \to \mathbb{R}$ is a differentiable function with bounded derivative (i.e. there exists an $M \ge 0$ such that $|f(x)| \le M$ for all x). Prove that f is uniformly continuous.

Problem 7 Consider the system

$$\frac{dx}{dt} = 8x - 11y$$
$$\frac{dy}{dt} = 6x - 9y$$

- (a) Find the general solution of the system.
- (b) Sketch a phase portrait of the system.
- **Problem 8.** Let $a_1, a_2, \dots a_n$ be positive real numbers, and m a positive even integer. For a real number b, let S_b denote the set of solutions to the equation

$$a_1x_1^m + a_2x_2^m + \cdots + a_nx_n^m = b$$

Prove that S_b is a compact subset of \mathbb{R}^n . Is the conclusion true if the condition that m be even is relaxed ?

- **Prolem 9.** Let n be an integer greater than 1. Is there a differentiable function on $[0, \infty)$ which satisfies $y' = y^n$ and y(0) > 0?
- **Problem 10** Suppose that $f : \mathbb{R} \to \mathbb{R}$ is a twice continuously differentiable function such that $f''(x) \leq 0$. Prove that

$$tf(x) + (1-t)f(y) \le f(tx + (1-t)y)$$

for any two points $x, y \in \mathbb{R}$ and $0 \le t \le 1$.

Problem 11 Let $f: [0,1] \to \mathbb{R}$ be continuously differentiable with f(0) = 0. Prove that

$$\sup_{0 \le x \le 1} |f(x)| \le \left(\int_0^1 (f'(x))^2 dx\right)^{1/2}$$

2

Part 3

Solve one of the remaining three problems.

Problem 12 Let $\mathbf{F}(x, y, z) = xz\mathbf{i} + yz\mathbf{j} + xy\mathbf{k}$. Compute

$$\iint_S (\nabla \times F) \cdot dS$$

where S is the part of the sphere $x^2 + y^2 + z^2 = 4$ that lies inside the cylinder $x^2 + y^2 = 1$ and above the xy-plane, oriented by the outside normal.

Problem 13 Consider the series

$$\sum_{k=0}^{\infty} a_k x^k, \qquad a_0 = 1, \qquad a_k = \alpha a_{k-1} + \beta, \quad k \ge 1,$$

where $\alpha, \beta \geq 0$. Determine the interval of convergence of the series (which will depend on the values of α and β .)

Problem 14 Show that there is an $\epsilon > 0$ such that if A is a real 2×2 matrix satisfying $|a_{ij}| < \epsilon$, then there is a real 2×2 matrix X such that $X^2 + X^T = A$ (here X^T denotes the transpose of X). Is X unique ? explain.