Preliminary Exam 2014
 Morning Exam (3 hours)

Part I

Solve four of five problems.

Problem 1 Determine whether the sequence $\{\sqrt{2}, \sqrt{2 \sqrt{2}}, \sqrt{2 \sqrt{2 \sqrt{2}}}, \cdots\}$ converges, and if so, find the limit.

Problem 2. Consider the vector field

$$
\mathbf{F}(x, y)=y \mathbf{i}+(x+2 y) \mathbf{j} .
$$

Compute the line integral $\int_{C} \mathbf{F} \bullet d s$, where C is the curve $C(t)=\left(t^{4}, 2 t^{6}\right), 0 \leq t \leq 1$.

Problem 3 Show that the system of equations

$$
\begin{aligned}
2 \sin (x)+3 \sin (y) & =a \\
x+5 y^{3} & =b
\end{aligned}
$$

has a solution for (a, b) sufficiently close to $(0,0)$, and that there is a neighborhood of $(0,0)$ in which this solution is unique.

Problem 4 Determine for which real numbers x the infinite series

$$
\sum_{n=1}^{\infty} \frac{\sqrt{n+1}-\sqrt{n}}{n^{x}}
$$

converges.

Problem 5 Consider the initial value problem

$$
y^{\prime}+\tan (x) y=\cos ^{2}(x), \quad y(0)=C
$$

For what values of C does the solution remain bounded for all values of x ?

Part 2

Solve three of the following six problems.

Problem 6. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a differentiable function with bounded derivative (i.e. there exists an $M \geq 0$ such that $|f(x)| \leq M$ for all $x)$. Prove that f is uniformly continuous.

Problem 7 Consider the system

$$
\begin{aligned}
& \frac{d x}{d t}=8 x-11 y \\
& \frac{d y}{d t}=6 x-9 y
\end{aligned}
$$

(a) Find the general solution of the system.
(b) Sketch a phase portrait of the system.

Problem 8. Let $a_{1}, a_{2}, \cdots a_{n}$ be positive real numbers, and m a positive even integer. For a real number b, let S_{b} denote the set of solutions to the equation

$$
a_{1} x_{1}^{m}+a_{2} x_{2}^{m}+\cdots a_{n} x_{n}^{m}=b
$$

Prove that S_{b} is a compact subset of \mathbb{R}^{n}. Is the conclusion true if the condition that m be even is relaxed?

Prolem 9. Let n be an integer greater than 1. Is there a differentiable function on $[0, \infty)$ which satisfies $y^{\prime}=y^{n}$ and $y(0)>0$?

Problem 10 Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a twice continuously differentiable function such that $f^{\prime \prime}(x) \leq 0$. Prove that

$$
t f(x)+(1-t) f(y) \leq f(t x+(1-t) y)
$$

for any two points $x, y \in \mathbb{R}$ and $0 \leq t \leq 1$.

Problem 11 Let $f:[0,1] \rightarrow \mathbb{R}$ be continuously differentiable with $f(0)=0$. Prove that

$$
\sup _{0 \leq x \leq 1}|f(x)| \leq\left(\int_{0}^{1}\left(f^{\prime}(x)\right)^{2} d x\right)^{1 / 2}
$$

Part 3

Solve one of the remaining three problems.
Problem 12 Let $\mathbf{F}(x, y, z)=x z \mathbf{i}+y z \mathbf{j}+x y \mathbf{k}$. Compute

$$
\iint_{S}(\nabla \times F) \cdot d S
$$

where S is the part of the sphere $x^{2}+y^{2}+z^{2}=4$ that lies inside the cylinder $x^{2}+y^{2}=1$ and above the $x y$-plane, oriented by the outside normal.

Problem 13 Consider the series

$$
\sum_{k=0}^{\infty} a_{k} x^{k}, \quad a_{0}=1, \quad a_{k}=\alpha a_{k-1}+\beta, \quad k \geq 1
$$

where $\alpha, \beta \geq 0$. Determine the interval of convergence of the series (which will depend on the values of α and β.)

Problem 14 Show that there is an $\epsilon>0$ such that if A is a real 2×2 matrix satisfying $\left|a_{i j}\right|<\epsilon$, then there is a real 2×2 matrix X such that $X^{2}+X^{T}=A$ (here X^{T} denotes the transpose of $X)$. Is X unique ? explain.

