Preliminary Exam 2013 Morning Exam (3 hours)

Part I

Solve four of five problems.

Problem 1. Consider the sequence

$$a_n = \frac{n!}{(2n+1)!!},$$

where $(2n+1)!! = (2n+1) \times (2n-1) \times (2n-3) \times ... \times 3 \times 1$. Show that $\{a_n\}$ converges, and find its limit.

Problem 2. Consider the vector field

$$\mathbf{F}(x,y) = \frac{1}{x+y}\mathbf{i} + \frac{1}{x+y}\mathbf{j}.$$

Compute the line integral $\int_C \mathbf{F} \bullet ds$, where C is the segment of the unit circle going from (1,0) to (0,1).

Problem 3. Let $\phi(u,v) : \mathbb{R}^2 \to \mathbb{R}$ be a smooth function such that $\phi(0,0) = 0$ and $\partial_u \phi(0,0) = \partial_v \phi(0,0) = 0$. Show that for $(a,b,c) \in \mathbb{R}^3$, the system of equations

$$\sin(x) + \phi(y, z) = a$$

$$\sin(y) + \phi(x, z) = b$$

$$\sin(z) + \phi(x, y) = c$$

has a unique solution for (a, b, c) sufficiently close to (0, 0, 0).

Problem 4. Give examples of subsets of \mathbb{R} that are:

- (a) Neither open nor closed.
- (b) Infinite, but not connected.
- (c) Bounded and countable.
- (d) Bounded and uncountable.
- (e) Closed but not compact.
- (f) Dense but not complete.

Problem 5. (a) Find the Taylor series around x = 0 of

$$f(x) = \int_0^x \frac{dy}{1+y^4}$$

(b) What is the radius of convergence of the series in (a)? Prove your claim.

Part II

Solve three out of six problems.

Problem 6. Let $f : \mathbb{R}^3 \to \mathbb{R}$ be a continuous function. Prove that

$$f(x) = \lim_{\epsilon \to 0} \frac{1}{Vol(B_{\epsilon}(x))} \int_{B_{\epsilon}(x)} f(y) dV,$$

where $B_{\epsilon}(x)$ denotes the ball of radius ϵ centered at x, and $Vol(B_{\epsilon}(x))$ denotes its volume.

Problem 7. Let C_a denote the circle of radius a > 0 centered at the origin, oriented counterclockwise. Consider the vector field

$$\mathbf{F}(x,y) = (-y + \frac{1}{3}y^3 + x^2y)\mathbf{i}$$

on \mathbb{R}^2 . For what values of a is the line integral $\int_{C_a} \mathbf{F} \bullet ds$ equal to 0 ?

Problem 8. (a) Show that f(x) = x^{1/2} is uniformly continuous on [1,∞].
(b) Show that f(x) = x^{3/2} is not uniformly continuous on [1,∞].

Problem 9 Consider the system

$$\frac{dx}{dt} = -x + 6y$$
$$\frac{dy}{dt} = x - 2y$$

- (a) Find the general solution of the system.
- (b) Sketch a phase portrait of the system.

Problem 10 Let f(x) be a real-valued differentiable function on $[1, \infty]$ satisfying f(1) = 2 and

$$f'(x) = \frac{1}{x^2 + (f(x))^2}.$$

Show that $\lim_{x\to\infty} f(x)$ exists, and that it is less than $2 + \frac{\pi}{4}$.

Problem 11 Find a curve C in the first quadrant in \mathbb{R}^2 , passing through (3,2), with the property that if $P = (x_0, y_0)$ lies on C, then P is the midpoint of the tangent line to C at P contained in the first quadrant.

Part III

Solve one of three problems.

Problem 12 Consider the subset of real numbers given by

$$S = \left\{ \frac{(m+n)^2}{2^{mn}} | m, n \in \mathbb{N} \right\}$$

- (a) Find inf(S), i.e. find the greatest real number $A \in \mathbb{R}$ such that $x \ge A$ for all $x \in S$.
- (b) Find sup(S), i.e. find the least real number $B \in \mathbb{R}$ such that $x \leq B$ for all $x \in S$.
- **Problem 13** Let [a, b] denote a finite interval. Consider a sequence $\{f_n(x)\}_{n=0}^{\infty} \subset C^1([a, b])$. If $\{f_n(x)\}$ converges uniformly on [a, b] to a function $f(x) \in C^1([a, b])$, does $\{f'_n(x)\}$ converge uniformly to f'(x)? If yes, give a proof, if not, give a counter-example, and strengthen the assumptions so that $f'_n(x) \to f'(x)$ uniformly on [a, b].
- **Problem 14** (a) Explicitly construct a function which is twice continuously differentiable on [-1, 1], but not (everywhere) three times differentiable there. Justify your claims.
 - (b) Assume that f(x) is a function in $C^3([-1,1])$ such that f(0) = 1, f'(0) = f''(0) = 0, and $f'''(0) = A \neq 0$. Fix $t \in [-1,1]$, and find the limit of the sequence

$$\left\{ \left(f\left(\frac{t}{n^{1/3}}\right) \right)^n \right\}_{n=1}^{\infty}.$$