Preliminary Exam 2012 Morning Exam (3 hours)

PART I: Solve 4 of the following 5 problems.
(1) For the vector field on $\mathbb{R}^{2}, \mathbf{v}(x, y):=\langle-y, x\rangle$, show that for any piecewise smooth simple closed curve C with the counterclockwise orientation, the line integral $\int_{C} \mathbf{v} \cdot d \mathbf{r}$, has value equal to twice the area enclosed by C.
(2) Let $S=\left\{(x, y) \in \mathbb{R}^{2}| | x|+|y| \leq 1\}\right.$. Evaluate

$$
\iint_{S}(x+y)^{\frac{2}{3}} d x d y
$$

(3) Consider the function $\Phi: \mathbb{R}^{3} \rightarrow \mathbb{R}$ given by $\Phi(x, y, z)=\left(e^{x} \cos y, e^{x} \sin y, z^{2} e^{x y}\right)$. Show that Φ is one to one in a neighborhood of any point $\left(x_{0}, y_{0}, z_{0}\right)$ in \mathbb{R}^{3} where $z_{0} \neq 0$.
(4) Prove or find a counterexample to the claim that a smooth function that grows faster than any linear function grows faster than $x^{1+\epsilon}$ for some $\epsilon>0$: i.e. if $g: \mathbb{R}^{+} \rightarrow \mathbb{R}$ has $\lim _{x \rightarrow \infty} \frac{g(x)}{k x}=\infty$ for all constant $k>0$ then there exists an $\epsilon>0$ and constant $\ell>0$ such that $\lim _{x \rightarrow \infty} \frac{g(x)}{\ell x^{1+\epsilon}}=\infty$.
(5) Let $b_{0}=0$ and choose a positive number b_{1} then let $b_{n+1}=b_{n}+b_{n-1}$ for all $n \geq 1$.
(a) Show carefully that $b_{n} \leq 2^{n} b_{1}$ for all $n \geq 1$.
(b) Find the smallest $r>0$ such that the sequence $\left\{\frac{b_{n}}{r^{n}}\right\}$ is bounded.

PART II: Solve 3 of the following 6 problems.
(1) Consider the function $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ given by $d(x, x)=0$ for all x in \mathbb{R} and $d(x, y)=1$ if $x \neq y$.
(a) Prove that d is a metric.
(b) With respect to this metric, which subsets of \mathbb{R} are closed? Which subsets are compact?
(2) The equation $F(x, y)=0$ defines a curve C in \mathbb{R}^{2} consisting of points (x, y) which satisfy this equation. Assume F is continuously differentiable. Also assume that ∇F is nonzero at every point of C. Let $\left(x_{0}, y_{0}\right)$ belong to C.
(a) Find a formula for the tangent line T at $\left(x_{0}, y_{0}\right)$ in terms of the above quantities.
(b) In general, under what conditions do we expect that there will be some neighborhood N of $\left(x_{0}, y_{0}\right)$ in which the equation $F(x, y)=0$ is equivalent to a formula of the form $y=f(x)$ for some function f ? Justify your answer.
(c) Assume the condition(s) in (b) hold. Consider the line L given by $y=$ $c x-c x_{0}+y_{0}$. Show that there is a neighborhood N of $\left(x_{0}, y_{0}\right)$ such that $F(x, y)$ is increasing as x increases along L, for some choice of c. What must c satisfy for this to be true?
(3) Consider the differential equation

$$
\frac{d y}{d t}=-3 y+b(t)+7
$$

where the function $b(t)$ decreases to zero as $t \rightarrow \infty$. Describe carefully the long-term behavior (as $t \rightarrow \infty$) of solutions and prove your result.
(4) For all $n \geq 1$, let $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f_{n}(x)=\frac{x}{1+n x^{2}}$.
(a) Show that the sequence of functions $\left\{f_{n}\right\}$ converges uniformly to some function $f: \mathbb{R} \rightarrow \mathbb{R}$.
(b) Identify the points x in \mathbb{R} where $\lim _{n \rightarrow \infty} f_{n}^{\prime}(x)=f^{\prime}(x)$.
(5) Suppose $U: \mathbb{R}^{n}-\{0\} \rightarrow \mathbb{R}$ is a smooth function which satisfies for all nonzero $\lambda \in \mathbb{R}$

$$
U(\lambda x)=\frac{1}{\lambda} U(x) .
$$

(a) Compute an expression for

$$
\left.\nabla U\right|_{\lambda x}
$$

(b) Suppose $q(t)$ satisfies

$$
\ddot{q}=\left.\nabla U\right|_{q(t)}
$$

and suppose $q(t)$ has the form

$$
q(t)=\phi(t) q(0)
$$

where $\phi(t)$ is a scalar valued function. Derive two equations, one involving only $\phi(t)$ and the other involving only $q(0)$, which must be satisfied.
(6) Prove the Riemann-Lebesgue lemma for the special case of a function $f(x) \in$ $C^{1}([0,1])$. That is, show that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f(x) \cos (n x) d x=0
$$

PART III: Solve 1 of the following 3 problems.
(1) Consider the function

$$
f(x)= \begin{cases}1+2 x, & \text { if } x \geq 0 \\ 1-2 x, & \text { if } x<0\end{cases}
$$

(a) Find the Fourier series of this function on the interval $[-\pi, \pi]$.
(b) Does the series converges uniformly? Justify your result.
(2) Find all possible values of the line integral $\int_{C} L d x+M d y+N d z$ over a smooth, closed contour C which does not pass through any points of the form $(x, 0,0)$ if

$$
L=x^{2}, \quad M=-\frac{z}{y^{2}+z^{2}}+y^{2}, \quad N=\frac{y}{y^{2}+z^{2}}+z^{2} .
$$

(3) Let $M(n)$ be the space of $n \times n \mathbb{R}$-matrices.
(a) Let $\operatorname{Tr}: M(n) \rightarrow \mathbb{R}$ taking $A \mapsto \operatorname{Tr}(A)$ be the trace of A. Find the derivative of Tr at a matrix A in the direction of matrix B.
(b) Let Det: $M(n) \rightarrow \mathbb{R}$ taking $A \mapsto \operatorname{Det}(A)$ be the determinant of A. Find the derivative of Det at an invertible matrix A in the direction of matrix B.

