Preliminary Exam 2013 Afternoon Exam (3 hours)

Part I

Solve four of five problems.

Problem 1. Let P_3 denote the real subspace of $\mathbb{R}[x]$ of polynomials of degree at most 3. Let

 $T: P_3 \to P_3$

denote the linear transformation

$$T(p(x)) = x(\frac{d}{dx}p(x)) - p(x).$$

- (a) Find a basis for Ker(T) and Im(T). What is the rank of T?
- (b) What are the eigenvalues of T?
- **Problem 2.** Let v_1, v_2, \dots, v_n be vectors in a finite-dimensional real vector space V, and suppose that for every choice of scalars $c_1, c_2, \dots, c_n \in \mathbb{R}$, there exists a linear map $\phi : V \to \mathbb{R}$ such that $\phi(v_j) = c_j$ for $1 \leq j \leq n$. Are v_1, v_2, \dots, v_n linearly independent? Give a proof or counterexample.

Problem 3. Let A_1, A_2 and A_3 denote the columns of a 3×3 matrix. If $det(A_1, A_2, A_3) = 5$, find

$$det(A_3 - 2A_2, 4A_1 + A_3, 7A_1).$$

- **Problem 4.** Let p be a prime number. Suppose that G is a finite group which contains exactly m subgroups of order p. Find the number of elements of G which have order p.
- **Problem 5.** Let P_2 denote the real vector space of polynomials of degree at most 2. Let $\langle, \rangle : P_2 \times P_2 \to \mathbb{R}$ be the inner product defined by

$$\langle f,g\rangle = 2\int_0^1 xf(x)g(x)dx.$$

Find an orthonormal basis for P_2 .

Part II

Solve three out of six problems.

Problem 6. In each case give a justification or a counterexample:

- (a) Two 4×4 matrices over \mathbb{R} with minimal polynomial $x^2(x-1)(x-2)$ are similar.
- (b) Two 6×6 matrices over \mathbb{R} with minimal polynomial $x^2(x-1)(x-2)$ are similar.

Problem 7. In each case, give an example of the stated type or say why none exists:

- (a) Fields F and K with $F \subset K$ and a polynomial $p(x) \in F[x]$ which generates a maximal ideal of F[x] but not of K[x].
- (b) Fields F and K with $F \subset K$ and a polynomial $p(x) \in F[x]$ which generates a maximal ideal of K[x] but not of F[x].
- **Problem 8.** Give an example of two *non-isomorphic* abelian groups of order 32 which both have exactly 16 elements of order 8.
- Problem 9 Give an example of each of the following or prove that no such example exists.
 - (a) A group of order 81 with trivial center.
 - (b) A group of order 40 which is not isomorphic to a subgroup of S_{40} , where the latter denotes the symmetric group on 40 elements.
- **Problem 10** Let $f : R \to S$ be a ring homomorphism. For each of following statements either prove them or give an explicit counter-example.
 - (a) If f is one-to-one and R is an integral domain, then S is an integral domain.
 - (b) If f is onto and R is an integral domain, then S is an integral domain.
 - (c) If f is one-to-one and R is a field, then S is a field.
 - (d) If f is onto and R is a field, then S is a field.

Problem 11 Let A and B be $n \times n$ complex matrices such that AB - BA = A.

- (a) Show that if B has an eigenvector with eigenvalue λ , then Av is either zero, or an eigenvector of B. Find the eigenvalue.
- (b) Prove that A is nilpotent, i.e. that $A^n = 0$ for some n > 0.

Part III

Solve one of three problems.

Problem 12 Show that there are no simple groups of order 12.

Problem 13 Find all subfields of $\mathbb{Q}(\sqrt[3]{5}, \exp 2\pi i/3)$ which are Galois over \mathbb{Q} .

Problem 14 Let R be a commutative ring with 1. Show that if there exists a monic polynomial $p(x) \in R[x]$ of degree at least one such that the ideal $(p(x)) \subset R[x]$ is maximal, then R is a field.