Preliminary Exam 2012
 Afternoon Exam (3 hours)
 Part I

Do four out of five problems.

Problem 1. Find all solutions $(w, x, y, z) \in \mathbb{R}^{4}$ to the system of equations

$$
\left\{\begin{array}{l}
w-2 x+0 y-4 z=2 \\
3 w-6 x+2 y-8 z=12
\end{array}\right.
$$

Problem 2. Let $c_{1}, c_{2}, \ldots, c_{n}$ be $n \geqslant 1$ distinct real numbers, and define polynomials $f_{i} \in \mathbb{R}[x](1 \leqslant i \leqslant n)$ by

$$
f_{i}(x)=\prod_{\substack{j=1 \\ j \neq i}}^{n}\left(x-c_{j}\right)
$$

Prove that $f_{1}, f_{2}, \ldots, f_{n}$ are linearly independent.
Problem 3. The cyclic group G is generated by x. Show that together, x^{11553} and x^{11513} also generate G.

Problem 4. For which values of the parameter $a \in \mathbb{R}$ does the system

$$
\left\{\begin{array}{l}
a x+2 y+3 a z=0 \\
3 x+a y+2 z=0 \\
3 a x+3 y+2 a z=0
\end{array}\right.
$$

have a nontrivial solution?
Problem 5. Let V be the real vector space of polynomials of degree at most two. Let $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{R}$ be the inner product defined by

$$
\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) d x
$$

Find an orthonormal basis of V.

Part II

Do three out of six problems.

Problem 6. Let L be a subgroup of \mathbb{Z}^{3} of index 16. What are the possibilities for \mathbb{Z}^{3} / L ?

Problem 7. Suppose A is a 5×5 matrix with nullspace of dimension 3. If $A^{2}=0$ then what is the Jordan normal form of A ?

Problem 8. Let $U(n)$ denote the group of units of the ring $\mathbb{Z} / n \mathbb{Z}$. In each case, determine whether the two groups are isomorphic or not, giving a reason for your answer:
(a) $U(15), U(20)$.
(b) $U(5), U(12)$.

Problem 9. Let G be a finite group and let $H \subset G$ be a maximal proper subgroup. Assume that H is normal in G. Show that $[G: H$] is a prime number.

Problem 10. Let A be a 2×2 matrix with real coefficients. If $\operatorname{tr}(A)=1$ and $\operatorname{tr}\left(A^{2}\right)=5$ find $\operatorname{tr}\left(A^{5}\right)$.

Problem 11. Let V be a vector space over \mathbb{R}, and let S and T be invertible linear transformations from V to itself. Suppose that there is a real number $c>0$ such that cST=TS.
(a) Show that if $v \in V$ is a nonzero eigenvector of T with eigenvalue λ then $S(v)$ is a nonzero eigenvector of T with eigenvalue $c \lambda$.
(b) Show that if V is finite-dimensional then $c=1$.

Part III

Do one out of four problems.

Problem 12. An automorphism of a finite group G is an isomorphism of G onto itself. A subgroup H of G is a characteristic subgroup if $\varphi(H)=H$ for every automorphism φ of G.
a) Prove that a characteristic subgroup is a normal subgroup.
b) Give a counterexample to show that a normal subgroup need not be a characteristic subgroup.

Problem 13. Let p be a prime number, let $f(x)=x^{3}+p x+p$, and let K be the splitting field of $f(x)$ over \mathbb{C}, so that if the factorization of $f(x)$ over \mathbb{C} is

$$
f(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)\left(x-\alpha_{3}\right)
$$

then $K=\mathbb{Q}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$. Show that $[K: \mathbb{Q}]=6$.
Problem 14. Let R be a commutative ring, and let $x \in R$ be a nilpotent element, i. e. an element such that $x^{n}=0$ for some integer $n \geqslant 1$. Show that for all $y \in R, 1+x y$ is a unit of R.

Problem 15. Let R be a commutative ring, let I be an ideal of R, and let \sqrt{I} be the set of all $x \in R$ such that $x^{m} \in I$ for some positive integer m.
a) Show that \sqrt{I} is an ideal of R.
b) If I and J are two ideals of R, prove that $\sqrt{I}+\sqrt{J} \subset \sqrt{I+J}$.
c) If $R=\mathbb{Z}$ and I is the ideal generated by a positive integer b, then what is a generator of \sqrt{I} ?

