Preliminary Exam 2008
 Morning Session (3 hours)

Part I. Solve four of the following five problems.

1. Suppose that $f:[a, b] \rightarrow \mathbb{R}$ is continuous. Prove that

$$
\left|\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}|f(x)| d x
$$

(You may assume that continuous functions are Riemann integrable.)
2. (a) Solve the initial-value problem

$$
\frac{d^{2} y}{d t^{2}}+16 y=\cos 6 t, \quad y(0)=0, \quad y^{\prime}(0)=0
$$

(b) Give a rough sketch of the graph of the solution $y(t)$. Make sure that your sketch includes a scale on both axes. Hint:

$$
\cos \theta_{2}-\cos \theta_{1}=2\left(\sin \left(\frac{\theta_{1}+\theta_{2}}{2}\right)\right)\left(\sin \left(\frac{\theta_{1}-\theta_{2}}{2}\right)\right)
$$

3. Consider the space of all $n \times n$ matrices with real entries with the standard metric, i.e., view the matrix as an element of $\mathbb{R}^{n^{2}}$ and use the usual Euclidean metric on $\mathbb{R}^{n^{2}}$. Prove that the subset of all invertible matrices is open.
4. Rewrite the integral

$$
\int_{0}^{1} \int_{\sqrt{x}}^{1} \int_{0}^{1-y} f(x, y, z) d z d y d x
$$

as an equivalent iterated integral in the order $d y d x d z$.
5. Which is bigger, e^{π} or π^{e} ? Hint: Compare $\left(\frac{1}{e}\right)^{1 / e}$ to $\left(\frac{1}{\pi}\right)^{1 / \pi}$ by considering the function $f(x)=x^{x}$.

Part II. Solve three of the following six problems.
6. Consider two real-valued functions f and g defined on a punctured neigborhood of the number a in \mathbb{R}. Give a precise statement and a rigorous proof of the fact that the limit of the product $f g$ at a is the product of the limits of f and g at a.
7. Show that

$$
\int_{0}^{1}(\ln x)^{n} d x=(-1)^{n} n!
$$

for all positive integers n. Make sure that your calculation includes a rigorous justification of the convergence of these integrals.
8. Given data points of the form $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$, the line $y=m x+b$ is the best least squares fit to the data if it minimizes the sum of the squares of the vertical deviations $d_{i}=y_{i}-\left(m x_{i}+b\right)$ of the points to the line. In other words, it must minimize

$$
\sum_{i=1}^{n} d_{i}^{2}=\sum_{i=1}^{n}\left(y_{i}-\left(m x_{i}+b\right)\right)^{2}
$$

Find m and b in terms of the sums

$$
S_{x}=\sum_{i=1}^{n} x_{i}, \quad S_{y}=\sum_{i=1}^{n} y_{i}, \quad S_{x^{2}}=\sum_{i=1}^{n} x_{i}^{2}, \quad \text { and } \quad S_{x y}=\sum_{i=1}^{n} x_{i} y_{i} .
$$

(Other term(s) may also appear in your answer.) Make sure that you provide a complete justification for your answer.
9. For what values of r is the function

$$
f(x, y, z)= \begin{cases}\frac{(x+y+z)^{r}}{x^{2}+y^{2}+z^{2}} & \text { if }(x, y, z) \neq(0,0,0) \\ 0 & \text { if }(x, y, z)=(0,0,0)\end{cases}
$$

continuous on \mathbb{R}^{3} ?
10. Let $b: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function such that $-1<b(t)<2$ for all $t \in \mathbb{R}$. Describe the long-term behavior of the solutions to the differential equation

$$
\frac{d y}{d t}+2 y=b(t)
$$

as precisely as possible and justify your answer.
11. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a smooth function with compact support and let \mathbf{X} be a smooth vector field on \mathbb{R}^{3}. Show that

$$
\iiint_{\mathbb{R}^{3}}(\nabla f) \cdot(\operatorname{curl} \mathbf{X}) d V=0 .
$$

Part III. Solve one of the remaining three problems.
12. Consider a power series

$$
\sum_{k=0}^{\infty} a_{k} x^{k}
$$

whose interval of convergence is $[-1,1]$. Abel's Theorem says that this series converges uniformly on $[-1,1]$.
(a) Prove Abel's Theorem. Hint: Let $R_{n}=a_{n}+a_{n+1}+a_{n+2}+\ldots$ and

$$
R_{n}(x)=a_{n} x^{n}+a_{n+1} x^{n+1}+a_{n+2} x^{n+2}+\ldots .
$$

Then $R_{n}(x)=\left(R_{n}-R_{n+1}\right) x^{n}+\left(R_{n+1}-R_{n+2}\right) x^{n+1}+\left(R_{n+2}-R_{n+3}\right) x^{n+2}+\ldots$.
(b) State the power series expansion of the inverse tangent function centered around 0 , and explain the significance of Abel's Theorem for this series.
13. (a) Let $\left\{\mathbf{v}_{i}\right\}$ be an infinite sequence in \mathbb{R}^{n} that tends to the origin $\mathbf{0}$ as $i \rightarrow \infty$ in terms of the usual Euclidean metric d, i.e., $d\left(\mathbf{v}_{i}, \mathbf{0}\right) \rightarrow 0$ as $i \rightarrow \infty$. Show that $\left\|\mathbf{v}_{i}\right\| \rightarrow 0$ as $i \rightarrow \infty$ for any norm $\|\cdot\|$ on \mathbb{R}^{n}.
(b) Let $V=C^{\infty}[0,1]$ be the vector space of smooth real-valued functions defined on the interval $[0,1]$ with the inner product $\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x$ and the associated metric

$$
d(f, g)=\sqrt{\int_{0}^{1}(f(x)-g(x))^{2} d x}
$$

Let $\|\cdot\|$ be the norm on V given by

$$
\|f\|=\sqrt{\langle f, f\rangle^{2}+\left\langle f^{\prime}, f^{\prime}\right\rangle^{2}}
$$

Find an infinite sequence $\left\{f_{i}\right\}$ in V that tends to the zero function $\mathbf{0}$ as $i \rightarrow \infty$ in terms of the metric d, i.e., $d\left(f_{i}, \mathbf{0}\right) \rightarrow 0$ as $i \rightarrow \infty$, for which $\left\|f_{i}\right\| \nrightarrow 0$ as $i \rightarrow \infty$.
14. For a smooth function $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$, write $f(t) \sim \sum_{k=r}^{\infty} a_{k} t^{k}$ for some $r \in \mathbb{R}$ if

$$
\lim _{t \rightarrow 0^{+}} \frac{f(t)-\sum_{k=r}^{r+n} a_{k} t^{k}}{t^{r+n}}=0
$$

for all $n=0,1,2, \ldots$. Note that r can be negative and need not be an integer. The sum

$$
\sum_{k=r}^{r+n} a_{k} t^{k}=a_{r} t^{r}+a_{r+1} t^{r+1}+\ldots+a_{r+n} t^{r+n}
$$

as usual.
(a) Prove that $e^{-1 / t}+t^{-3} \cos t \sim \sum_{k=-3}^{\infty} \frac{(-1)^{k+3}}{(2 k+6)!} t^{2 k+3}$.
(b) Suppose $f(t) \sim \sum_{k=-1 / 2}^{\infty} a_{k} t^{k}$. Prove that

$$
\int_{0}^{t} f(s) d s \sim \sum_{k=-1 / 2}^{\infty} \frac{a_{k}}{k+1} t^{k+1}
$$

or give a counterexample.
(c) Under the same assumptions as in part (b), prove that

$$
f^{\prime}(t) \sim \sum_{k=-1 / 2}^{\infty} k a_{k} t^{k-1}
$$

or give a counterexample.

