Preliminary Exam 2007 Morning Session (3 hours)

Part I. Solve four of the following five problems.

1. Consider the initial-value problem

$$\frac{dy}{dt} = -2ty^2, \quad y(-1) = y_0.$$

Find all values of y_0 such that the solution is defined for all real t.

2. Suppose a_n and b_n are two sequences that tend to infinity as $n \to \infty$. We say that b_n tends to infinity faster than a_n if

$$\lim_{n \to \infty} \frac{a_n}{b_n} = 0,$$

and we write $a_n \ll b_n$. (We could use little-o notation, but we do not.) Arrange the six sequences

(a)
$$\sqrt{n}$$
 (b) e^n (c) $n!$ (d) n^2 (e) $\ln n$ (f) n^n

in terms of the ordering <<. Justify each limit involved.

3. A C^2 function $u: \mathbb{R}^2 \to \mathbb{R}$ satisfies Laplace's equation if

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0.$$

Derive Laplace's equation in terms of polar coordinates. Hint: Consider the expression

$$\frac{\partial^2 u}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} + \frac{1}{r} \frac{\partial u}{\partial r}.$$

4. Suppose that $f : [a, b] \to \mathbb{R}$ is continuous. Let $\epsilon > 0$. Show that there exists a continuous, piecewise linear function $g : [a, b] \to \mathbb{R}$ such that

$$|f(x) - g(x)| < \epsilon$$

for all $x \in [a, b]$.

5. Let $f(x) = \sin(x^3)$. Calculate $f^{(15)}(0)$. Hint: You do not have to calculate $f^{(15)}(x)$ to do this problem.

Part II. Solve three of the following six problems.

6. Find the positively oriented, piecewise-smooth, simple, closed curve C for which the value of the line integral

$$\int_C (y^3 - y) \, dx - 2x^3 \, dy$$

is a maximum. Provide a brief justification for your answer.

- 7. (a) Determine the radius of convergence of the power series $\sum_{n=1}^{\infty} n^3 x^n$.
 - (b) Consider the sequence of functions $f_n: [0,1] \to \mathbb{R}$ defined by

$$f_n(x) = n^3 x^n (1-x).$$

Show that this sequence f_n converges pointwise on [0, 1].

- (c) Calculate $\int_0^1 f_n(x) dx$.
- (d) Does the sequence f_n converge uniformly? Provide a brief justification for your answer.
- 8. The second-order differential equation

$$m\frac{d^2y}{dt^2} + b\frac{dy}{dt} + ky = 0$$

can be used to model a harmonic oscillator, and an undamped or underdamped harmonic oscillator can be used to make a clock. If we arrange for the clock to tick whenever the mass passes the rest position, then the time between ticks is equal to one-half of the natural period of the oscillator.

- (a) Suppose dirt increases the damping coefficient slightly, will the clock run fast or slow?
- (b) Suppose the spring provides slightly less force for a given compression or extension as it ages. Will the clock run fast or slow?
- (c) If grime collects on the harmonic oscillator and slightly increases the mass, will the clock run fast or slow?
- 9. Given a solid sphere of radius R, remove a "cylinder" whose central axis goes through the center of the sphere. Let h denote the height of the remaining solid. Calculate the volume of the remaining solid. (Hint: Your answer should be independent of R.)

- 10. Let $f : [a, b] \to \mathbb{R}$ be a continuous function. Divide [a, b] into n subintervals of equal length, and let M_n , T_n , and S_n denote the result of the Midpoint Rule, the Trapezoid Rule, and Simpson's Rule applied to f respectively.
 - (a) Let $x_0 < x_1 < x_2$ be three real numbers such that $x_1 = (x_0 + x_2)/2$. Given three positive numbers y_0 , y_1 , and y_2 such that the points (x_0, y_0) , (x_1, y_1) , and (x_2, y_2) lie on a parabolic arc of the form $y = Ax^2 + Bx + C$, show that the area above the x-axis and below the arc between x_0 and x_2 is

$$\frac{x_1 - x_0}{3}(y_0 + 4y_1 + y_2).$$

- (b) Derive Simpson's Rule S_n . (Recall that Simpson's Rule is only valid for even n.)
- (c) Show that $S_{2n} = \frac{2}{3}M_n + \frac{1}{3}T_n$.
- 11. Suppose that f is a real-valued function defined on the closed interval [a, b].
 - (a) Suppose f is zero except on a finite subset of [a, b]. Show that f is Riemann integrable and that the value of the integral is 0.
 - (b) Is it possible for the result in part (a) to hold for some f that is zero except on a countable set? Provide a proof or a counterexample.

Part III. Solve one of the remaining three problems.

12. Suppose that f is twice differentiable on the interval [a, b] and that f(a) < 0 and f(b) > 0. Moreover, suppose that there exist a $\delta > 0$ and an M > 0 such that

$$f'(x) \ge \delta$$
 and $0 \le f''(x) \le M$

for all $x \in [a, b]$. Finally, let x_* be the unique root of f in the interval [a, b]. Choose $x_1 \in (x_*, b)$ and define the sequence $\{x_n\}$ using Newton's method

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$

- (a) Prove that $x_{n+1} < x_n$ and that $x_n \to x_*$ as $n \to \infty$.
- (b) Show that

$$x_{n+1} - x_* = \frac{f''(t_n)}{2f'(x_n)}(x_n - x_*)^2$$

for some $t_n \in (x_*, x_n)$.

(c) If $A = M/(2\delta)$, conclude that

$$0 \le x_{n+1} - x_* \le \frac{1}{A} \left(A(x_1 - x_*) \right)^{2^n}$$

- (d) What does this result say about the convergence of Newton's method under these assumptions?
- 13. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a C^1 function and let $(t_0, y_0) \in \mathbb{R}^2$. Suppose y(t) is a solution to the initial-value problem

$$\frac{dy}{dt} = f(t, y), \qquad y(t_0) = y_0$$

in a neighborhood of the point t_0 . Give a careful proof of the following statement: If y(t) cannot be extended to a solution to dy/dt = f(t, y) on the interval $[t_0, \infty)$, then there exists a $t_1 > t_0$ such that $|y(t)| \to \infty$ as $t \to t_1$ from below. 14. Recall that an infinite series

$$\sum_{k=1}^{\infty} a_k$$

of real numbers is absolutely convergent if the series

$$\sum_{k=1}^{\infty} |a_k|$$

converges.

- (a) Prove that an absolutely convergent series converges.
- (b) Show that the alternating harmonic series

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} \pm \dots$$

converges to a number between $\frac{5}{6}$ and $\frac{7}{12}$. (It actually converges to $\ln 2$, but that's another story.)

- (c) Show that the alternating harmonic series is not absolutely convergent.
- (d) Let s be a real number. Show how the terms of the alternating harmonic series can be rearranged so that the "new" series converges to s.