
Preliminary Exam 2007
Morning Session (3 hours)

Part I. Solve four of the following five problems.

1. Consider the initial-value problem

dy

dt
= −2ty2, y(−1) = y0.

Find all values of y0 such that the solution is defined for all real t.

2. Suppose an and bn are two sequences that tend to infinity as n→∞. We say that bn
tends to infinity faster than an if

lim
n→∞

an
bn

= 0,

and we write an << bn. (We could use little-o notation, but we do not.) Arrange the
six sequences

(a)
√
n (b) en (c) n! (d) n2 (e) lnn (f) nn

in terms of the ordering <<. Justify each limit involved.

3. A C2 function u : R2 → R satisfies Laplace’s equation if

∂2u

∂x2
+
∂2u

∂y2
= 0.

Derive Laplace’s equation in terms of polar coordinates. Hint: Consider the expression

∂2u

∂r2
+

1

r2

∂2u

∂θ2
+

1

r

∂u

∂r
.

4. Suppose that f : [a, b] → R is continuous. Let ε > 0. Show that there exists a
continuous, piecewise linear function g : [a, b]→ R such that

|f(x)− g(x)| < ε

for all x ∈ [a, b].

5. Let f(x) = sin(x3). Calculate f (15)(0). Hint: You do not have to calculate f (15)(x) to
do this problem.
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Part II. Solve three of the following six problems.

6. Find the positively oriented, piecewise-smooth, simple, closed curve C for which the
value of the line integral ∫

C
(y3 − y) dx− 2x3 dy

is a maximum. Provide a brief justification for your answer.

7. (a) Determine the radius of convergence of the power series
∞∑
n=1

n3xn.

(b) Consider the sequence of functions fn : [0, 1]→ R defined by

fn(x) = n3xn(1− x).

Show that this sequence fn converges pointwise on [0, 1].

(c) Calculate
∫ 1

0 fn(x) dx.

(d) Does the sequence fn converge uniformly? Provide a brief justification for your
answer.

8. The second-order differential equation

m
d2y

dt2
+ b

dy

dt
+ ky = 0

can be used to model a harmonic oscillator, and an undamped or underdamped har-
monic oscillator can be used to make a clock. If we arrange for the clock to tick
whenever the mass passes the rest position, then the time between ticks is equal to
one-half of the natural period of the oscillator.

(a) Suppose dirt increases the damping coefficient slightly, will the clock run fast or
slow?

(b) Suppose the spring provides slightly less force for a given compression or extension
as it ages. Will the clock run fast or slow?

(c) If grime collects on the harmonic oscillator and slightly increases the mass, will
the clock run fast or slow?

9. Given a solid sphere of radius R, remove a “cylinder” whose central axis goes through
the center of the sphere. Let h denote the height of the remaining solid. Calculate the
volume of the remaining solid. (Hint: Your answer should be independent of R.)
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10. Let f : [a, b] → R be a continuous function. Divide [a, b] into n subintervals of equal
length, and let Mn, Tn, and Sn denote the result of the Midpoint Rule, the Trapezoid
Rule, and Simpson’s Rule applied to f respectively.

(a) Let x0 < x1 < x2 be three real numbers such that x1 = (x0 + x2)/2. Given three
positive numbers y0, y1, and y2 such that the points (x0, y0), (x1, y1), and (x2, y2)
lie on a parabolic arc of the form y = Ax2 + Bx + C, show that the area above
the x-axis and below the arc between x0 and x2 is

x1 − x0

3
(y0 + 4y1 + y2).

(b) Derive Simpson’s Rule Sn. (Recall that Simpson’s Rule is only valid for even n.)

(c) Show that S2n = 2
3
Mn + 1

3
Tn.

11. Suppose that f is a real-valued function defined on the closed interval [a, b].

(a) Suppose f is zero except on a finite subset of [a, b]. Show that f is Riemann
integrable and that the value of the integral is 0.

(b) Is it possible for the result in part (a) to hold for some f that is zero except on a
countable set? Provide a proof or a counterexample.
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Part III. Solve one of the remaining three problems.

12. Suppose that f is twice differentiable on the interval [a, b] and that f(a) < 0 and
f(b) > 0. Moreover, suppose that there exist a δ > 0 and an M > 0 such that

f ′(x) ≥ δ and 0 ≤ f ′′(x) ≤M

for all x ∈ [a, b]. Finally, let x∗ be the unique root of f in the interval [a, b].

Choose x1 ∈ (x∗, b) and define the sequence {xn} using Newton’s method

xn+1 = xn −
f(xn)

f ′(xn)
.

(a) Prove that xn+1 < xn and that xn → x∗ as n→∞.

(b) Show that

xn+1 − x∗ =
f ′′(tn)

2f ′(xn)
(xn − x∗)2

for some tn ∈ (x∗, xn).

(c) If A = M/(2δ), conclude that

0 ≤ xn+1 − x∗ ≤
1

A
(A(x1 − x∗))2n .

(d) What does this result say about the convergence of Newton’s method under these
assumptions?

13. Let f : R2 → R be a C1 function and let (t0, y0) ∈ R2. Suppose y(t) is a solution to
the initial-value problem

dy

dt
= f(t, y), y(t0) = y0

in a neighborhood of the point t0. Give a careful proof of the following statement:

If y(t) cannot be extended to a solution to dy/dt = f(t, y) on the interval [t0,∞), then
there exists a t1 > t0 such that |y(t)| → ∞ as t→ t1 from below.
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14. Recall that an infinite series ∞∑
k=1

ak

of real numbers is absolutely convergent if the series

∞∑
k=1

|ak|

converges.

(a) Prove that an absolutely convergent series converges.

(b) Show that the alternating harmonic series

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
± . . .

converges to a number between
5

6
and

7

12
. (It actually converges to ln 2, but

that’s another story.)

(c) Show that the alternating harmonic series is not absolutely convergent.

(d) Let s be a real number. Show how the terms of the alternating harmonic series
can be rearranged so that the “new” series converges to s.
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