Preliminary Exam 2006
 Morning Exam (3 hours)

PART I. Solve 4 of the following 5 problems.

1. a. Let C denote the straight line segment connecting the two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in \mathbf{R}^{2}. Show that

$$
\int_{C} x d y-y d x=x_{1} y_{2}-x_{2} y_{1}
$$

b. Let the points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ denote the vertices of a regular n-gon in the plane, taken in counterclockwise order. Show that the area of the n-gon is
$A=(1 / 2)\left[\left(x_{1} y_{2}-x_{2} y_{1}\right)+\left(x_{2} y_{3}-x_{3} y_{2}\right)+\cdots+\left(x_{n-1} y_{n}-x_{n} y_{n-1}\right)+\left(x_{n} y_{1}-x_{1} y_{n}\right)\right]$.
2. Given a C^{∞} function $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$ with $f\left(x_{0}, y_{0}\right)=0$. Suppose that

$$
\left.\frac{\partial f}{\partial y}\right|_{\left(x_{0}, y_{0}\right)} \neq 0
$$

The Implicit Function Theorem states that the level set $\{(x, y): f(x, y)=0\}$ is the graph of a smooth function $y=\phi(x)$ near $(x, y)=\left(x_{0}, y_{0}\right)$.
a. Compute

$$
\left.\frac{d \phi}{d x}\right|_{x_{0}}
$$

b. Compute

$$
\left.\frac{d^{2} \phi}{d x^{2}}\right|_{x_{0}}
$$

3. Let $I: \mathbf{R}^{2} \rightarrow \mathbf{R}$ and $U: \mathbf{R}^{2} \rightarrow \mathbf{R}$ both be smooth functions. Suppose that $I(x, y) \rightarrow \infty$ as $\|(x, y)\| \rightarrow \infty$. Also, suppose that $U(x, y)>0$ for all (x, y) and that $U(x, y) \rightarrow 0$ as $\|(x, y)\| \rightarrow \infty$. Show that for each value of c such that the set $\{(x, y): I(x, y)=c\} \neq \emptyset$ there exists a point $\left(x_{1}, y_{1}\right) \in\{(x, y): I(x, y)=c\}$ such that $\left.\nabla U\right|_{\left(x_{1}, y_{1}\right)}$ and $\left.\nabla I\right|_{\left(x_{1}, y_{1}\right)}$ are multiples of each other.
4. Find the solution $u(x)$ of the equation

$$
\frac{d^{2} u}{d x^{2}}+u=3 \sin (x)
$$

that passes through the initial condition $u(0)=1$ and $(d u / d x)(0)=1$. Here, x and u are real-valued.
5. Determine whether or not the series

$$
\frac{\sin (t)}{1}+\frac{\cos (2 t)}{4}+\frac{\sin (3 t)}{9}+\frac{\cos (4 t)}{16}+\frac{\sin (5 t)}{25}+\frac{\cos (6 t)}{36}+\cdots
$$

is uniformly convergent on $[-\pi, \pi]$. Also, determine whether or not this series defines a continuous function on $[-\pi, \pi]$.

PART II. Solve 3 of the following 7 problems.
6. Let ℓ denote the line in \mathbf{R}^{3} defined by the equations

$$
\begin{align*}
x+y-z & =1 \\
2 x-y+2 z & =2 . \tag{1}
\end{align*}
$$

Find the point P on the line ℓ that is closest to the point $Q=(0,0,1)$.
7. Let $f(x)$ be a real-valued, three times differentiable function on $[-1,1]$ such that

$$
f(-1)=0, \quad f(0)=0, \quad f(1)=1, \quad f^{\prime}(0)=0
$$

Prove that there exists at least one value of $x \in(-1,1)$ at which $\left(d^{3} f / d x^{3}\right)(x) \geq 3$. (Note that equality holds for $(1 / 2)\left(x^{3}+x^{2}\right)$.)
8. Every rational number x may be written in the form $x=p / q$, where $q>0$, and p and q are integers without any common divisors. When $x=0$, we take $q=1$. Consider the function defined on \mathbf{R} by

$$
f(x)=\left\{\begin{array}{lrr}
0 & x & \text { irrational } \\
\frac{1}{q} & & x=\frac{p}{q}
\end{array}\right.
$$

Prove that f is continuous at every irrational point and that it has a simple discontinuity at every rational point.
9. Find the Fourier series (in terms of sine and/or cosine functions) of the function

$$
f(x)=\left\{\begin{array}{cc}
-1 & x \in[-\pi, 0) \\
+1 & x \in[0, \pi]
\end{array}\right.
$$

10. A model of population growth claims that the population $y(t)$ grows according to the law

$$
\frac{d y}{d t}=\kappa y^{1+\epsilon},
$$

where $\kappa, \epsilon>0$ and ϵ is small.
a. How long does it take an initial population of y_{0} to become infinite?
b. Answer the same question for the case $\epsilon=0$, and compare this case to that in which ϵ is very small.
11. Let $U:\{(x, y) \neq(0,0)\} \rightarrow \mathbf{R}$ be a C^{2} function which satisfies

$$
U(\lambda x, \lambda y)=\frac{1}{\lambda^{2}} U(x, y)
$$

a. Prove or disprove

$$
\left.\frac{\partial U}{\partial x}\right|_{(\lambda x, \lambda y)}=\left.\frac{1}{\lambda^{3}} \frac{\partial U}{\partial x}\right|_{(x, y)}
$$

b. If (r, θ) represent polar coordinates, give a simple formula for

$$
\frac{\partial U}{\partial r}
$$

12. Prove or give a counter example: If f is a continuous function on a compact subset Y of a metric space X, then f is uniformly continuous on Y.

PART III. Solve 1 of the remaining 4 problems.
13. The Alternating Series Test (usually attributed to Leibniz) states: Given an alternating series

$$
\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}
$$

with $a_{n} \geq 0$ for all n, if (i) $a_{n+1} \leq a_{n}$, and (ii) $\lim _{n \rightarrow \infty} a_{n}=0$, then the alternating series $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}$ converges. In this problem, you are to consider the same general class of alternating series $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}$, with $a_{n} \geq 0$ for all n. Prove or find a counterexample to the statement: If $\lim _{n \rightarrow \infty} a_{n}=0$, then the alternating series $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}$ converges. In other words, you are to determine whether or not the first hypothesis, (i), of the Alternating Series Test is necessary.
14. Let $p(x)$ be a polynomial of degree n, and let α be any real number. Show that between any two successive roots of $p(x)$ the function

$$
\frac{d p}{d x}(x)+\alpha p(x)
$$

has a root.
15. a. Does there exist a continuous map $f:(0,1) \rightarrow \mathbf{R}$ which is onto (surjective)? (If so, give an example; but, if not, state why not.)
b. Does there exist a continuous map $f:[0,1) \rightarrow \mathbb{R}$ which is onto (surjective)? (If so, give an example; but, if not, state why not.)
c. Does there exist a continuous map $f:[0,1) \rightarrow \mathbf{R}$ which is $1-1$ (injective) and onto (surjective)? (If so, give an example; but, if not, state why not.)
16. Define the following two functions:

$$
f(x)=x^{3}-\sin ^{2}(x) \tan (x), \quad g(x)=2 x^{2}-\sin ^{2}(x)-x \tan (x)
$$

For each of them separately, determine if it is positive or negative for $x \in(0, \pi / 2)$, or whether it changes sign in this interval. Prove your answers.

