Preliminary Exam 2006 Morning Exam (3 hours)

PART I. Solve 4 of the following 5 problems.

1. **a.** Let C denote the straight line segment connecting the two points (x_1, y_1) and (x_2, y_2) in \mathbb{R}^2 . Show that

$$\int_C xdy - ydx = x_1y_2 - x_2y_1$$

b. Let the points $(x_1, y_1), \ldots, (x_n, y_n)$ denote the vertices of a regular *n*-gon in the plane, taken in counterclockwise order. Show that the area of the *n*-gon is

$$A = (1/2)[(x_1y_2 - x_2y_1) + (x_2y_3 - x_3y_2) + \dots + (x_{n-1}y_n - x_ny_{n-1}) + (x_ny_1 - x_1y_n)]$$

2. Given a C^{∞} function $f: \mathbb{R}^2 \to \mathbb{R}$ with $f(x_0, y_0) = 0$. Suppose that

$$\frac{\partial f}{\partial y}|_{(x_0,y_0)} \neq 0.$$

The Implicit Function Theorem states that the level set $\{(x, y) : f(x, y) = 0\}$ is the graph of a smooth function $y = \phi(x)$ near $(x, y) = (x_0, y_0)$. **a.** Compute

$$\frac{d\phi}{dx}|_{x_0}$$

b. Compute

$$\frac{d^2\phi}{dx^2}|_{x_0}.$$

3. Let $I : \mathbf{R}^2 \to \mathbf{R}$ and $U : \mathbf{R}^2 \to \mathbf{R}$ both be smooth functions. Suppose that $I(x, y) \to \infty$ as $||(x, y)|| \to \infty$. Also, suppose that U(x, y) > 0 for all (x, y) and that $U(x, y) \to 0$ as $||(x, y)|| \to \infty$. Show that for each value of c such that the set $\{(x, y) : I(x, y) = c\} \neq \emptyset$ there exists a point $(x_1, y_1) \in \{(x, y) : I(x, y) = c\}$ such that $\nabla U|_{(x_1, y_1)}$ and $\nabla I|_{(x_1, y_1)}$ are multiples of each other.

4. Find the solution u(x) of the equation

$$\frac{d^2u}{dx^2} + u = 3\sin(x)$$

that passes through the initial condition u(0) = 1 and (du/dx)(0) = 1. Here, x and u are real-valued.

5. Determine whether or not the series

$$\frac{\sin(t)}{1} + \frac{\cos(2t)}{4} + \frac{\sin(3t)}{9} + \frac{\cos(4t)}{16} + \frac{\sin(5t)}{25} + \frac{\cos(6t)}{36} + \cdots$$

is uniformly convergent on $[-\pi, \pi]$. Also, determine whether or not this series defines a continuous function on $[-\pi, \pi]$.

PART II. Solve 3 of the following 7 problems.

6. Let ℓ denote the line in \mathbf{IR}^3 defined by the equations

$$\begin{array}{rcl} x + y - z &=& 1\\ 2x - y + 2z &=& 2. \end{array}$$
(1)

Find the point P on the line ℓ that is closest to the point Q = (0, 0, 1).

7. Let f(x) be a real-valued, three times differentiable function on [-1, 1] such that

$$f(-1) = 0,$$
 $f(0) = 0,$ $f(1) = 1,$ $f'(0) = 0$

Prove that there exists at least one value of $x \in (-1, 1)$ at which $(d^3f/dx^3)(x) \ge 3$. (Note that equality holds for $(1/2)(x^3 + x^2)$.)

8. Every rational number x may be written in the form x = p/q, where q > 0, and p and q are integers without any common divisors. When x = 0, we take q = 1. Consider the function defined on **IR** by

$$f(x) = \begin{cases} 0 & x \text{ irrational} \\ \frac{1}{q} & x = \frac{p}{q}. \end{cases}$$

Prove that f is continuous at every irrational point and that it has a simple discontinuity at every rational point.

9. Find the Fourier series (in terms of sine and/or cosine functions) of the function

$$f(x) = \begin{cases} -1 & x \in [-\pi, 0] \\ +1 & x \in [0, \pi] \end{cases}$$

10. A model of population growth claims that the population y(t) grows according to the law

$$\frac{dy}{dt} = \kappa y^{1+\epsilon},$$

where $\kappa, \epsilon > 0$ and ϵ is small.

a. How long does it take an initial population of y_0 to become infinite?

b. Answer the same question for the case $\epsilon = 0$, and compare this case to that in which ϵ is very small.

11. Let $U: \{(x,y) \neq (0,0)\} \to \mathbf{I\!R}$ be a C^2 function which satisfies

$$U(\lambda x, \lambda y) = \frac{1}{\lambda^2} U(x, y)$$

a. Prove or disprove

$$\left. \frac{\partial U}{\partial x} \right|_{(\lambda x, \lambda y)} = \frac{1}{\lambda^3} \left. \frac{\partial U}{\partial x} \right|_{(x, y)}$$

b. If (r, θ) represent polar coordinates, give a simple formula for

$$\frac{\partial U}{\partial r}.$$

12. Prove or give a counter example: If f is a continuous function on a compact subset Y of a metric space X, then f is uniformly continuous on Y.

PART III. Solve 1 of the remaining 4 problems.

13. The Alternating Series Test (usually attributed to Leibniz) states: Given an alternating series

$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n$$

with $a_n \ge 0$ for all n, if (i) $a_{n+1} \le a_n$, and (ii) $\lim_{n\to\infty} a_n = 0$, then the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ converges. In this problem, you are to consider the same general class of alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$, with $a_n \ge 0$ for all n. Prove or find a counterexample to the statement: If $\lim_{n\to\infty} a_n = 0$, then the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ converges. In other words, you are to determine whether or not the first hypothesis, (i), of the Alternating Series Test is necessary.

14. Let p(x) be a polynomial of degree n, and let α be any real number. Show that between any two successive roots of p(x) the function

$$\frac{dp}{dx}(x) + \alpha p(x)$$

has a root.

15. **a.** Does there exist a continuous map $f: (0,1) \to \mathbb{R}$ which is onto (surjective)? (If so, give an example; but, if not, state why not.)

b. Does there exist a continuous map $f : [0,1) \to \mathbb{R}$ which is onto (surjective)? (If so, give an example; but, if not, state why not.)

c. Does there exist a continuous map $f : [0,1) \to \mathbb{R}$ which is 1-1 (injective) and onto (surjective)? (If so, give an example; but, if not, state why not.)

16. Define the following two functions:

$$f(x) = x^3 - \sin^2(x)\tan(x),$$
 $g(x) = 2x^2 - \sin^2(x) - x\tan(x).$

For each of them separately, determine if it is positive or negative for $x \in (0, \pi/2)$, or whether it changes sign in this interval. Prove your answers.