
Preliminary Exam 2004
Morning Exam (3 hours)

PART I. Solve 4 of the following 5 problems.

1. Give an ε− δ proof of the continuity of the function f(x) =
√

x at x = 0.

2. Define the function

f(x, y) =

{

x2y
x4+y2 for (x, y) 6= (0, 0)
0 for (x, y) = (0, 0).

Prove or disprove that f(x, y) is continuous at (0, 0).

3. Evaluate the path integral

I =

∫

C

−ydx+ xdy

x2 + y2
,

where C is any simple, closed curve that encircles the origin and that is traversed
in the counterclockwise direction. (Hint: think carefully about the hypotheses of
Green’s Theorem before you apply it.)

4. Let y ∈ IR, t ∈ IR, and y = y(t). Consider the differential equation

dy

dt
= y2.

(a) Let α be a nonzero constant. Consider a new dependent variable u defined by
the transformation u = yα. Find the differential equation satisfied by u(t).
(b) Show that, no matter how one chooses α, one cannot put the new equation into
the form

du

dt
= ku,

where k is another constant (which may depend on α).
(c) Give a qualitative explanation of why you cannot transform the original equation
into the type of equation in (b) for u.

5. Consider the sequence

√
3,

√

3
√
3,

√

3

√

3
√
3, . . . .

Prove that this sequence has a limit, and find the limit. (Hint: It may be useful to

first show that if 0 < a < 3, then a <
√
3a < 3.)

PART II. Solve 3 of the following 6 problems.

6. Let

Pn(x) = 1 + x+
x2

2!
+

x3

3!
+ · · ·+ xn

n!
.

Prove that, for n even, Pn(x) > 0 for all real numbers x; whereas, for n odd, Pn(x)
has exactly one real root. (Hint: differentiate.)

7. Maximize the function f(x, y, z) = cos(π
2
(x+ y + z)) subject to the constraints

x2 + y2 + z2 = 1, x ≥ 0, y ≥ 0, z ≥ 0.
8. Let x ∈ IR3 and let f, g : IR3 → IR be smooth functions. Define

F (x) = ∇f |x ×∇g|x
and let r(t) satisfy the differential equation

dr

dt
= F (r).
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(a) Show f(r(t)) and g(r(t)) are constant in time.
(b) Describe all the equilibrium points of the differential equation for r(t).
(c) Relate your answer in part (b) to a topic in vector calculus.

9. The following system of three nonlinear algebraic equations is to be solved for
x, y, z as functions of the variables u, v, w:

u = x+ y2 + z3

v = x3 + y + z2

w = x2 + y3 + z. (1)

Prove or find a counter example to the statement that there is a unique solution
near (x, y, z) = (0, 0, 0) if u, v, and w are small.

10. Consider the sequence

1

2
,
1

3
,
2

3
,
1

4
,
2

4
,
3

4
,
1

5
,
2

5
,
3

5
,
4

5
,
1

6
, . . .

For which numbers α is there a subsequence converging to α?

11. Let x, y ∈ IR. Define

d1(x, y) = (x− y)2

d2(x, y) =
√

|x− y|
d3(x, y) = |x2 − y2|
d4(x, y) = |x− 2y|
d5(x, y) =

|x− y|
1 + |x− y| .

For each of these, determine whether it is a metric or not, being careful to state
your reasons.

PART III. Solve 1 of the remaining 3 problems.

12. Let x ∈ IR. Suppose you are given a Fourier series

f(x) = a0 +Σ
∞

n=1(an cos(nx) + bn sin(nx)).

State a general condition on the real-valued coefficients (a0, a1, . . . , and b1, . . . )
that suffices to guarantee that f(x) is three times continuously differentiable and
outline the reason why the condition is sufficient.

13. Suppose f : IR→ IR and suppose f is three times continuously differentiable.
(a) Suppose that we know | df

dx
(x)| < 10 for all x ∈ [−1, 1]. What are the values

of n for which the above hypotheses suffice to guarantee that f(x) 6= 0 for all
x ∈ [−1, 1] if we also know that 1 ≤ f(x) ≤ 2 for the specific numbers x =
−1,−1 + 1

n
,−1 + 2

n
, . . . ,− 1

n
, 0, 1

n
, . . . , 1− 2

n
, 1− 1

n
, 1?

(b) Suppose instead that, while we do not know any bound on | df
dx
(x)|, we know

|d3f
dx3 (x)| < 10 for all x ∈ [−1, 1]. Also, suppose, as above, that we know 1 ≤ f(x) ≤ 2
for the specific numbers x = −1,−1 + 1

n
,−1 + 2

n
, . . . ,− 1

n
, 0, 1

n
, . . . , 1− 2

n
, 1− 1

n
, 1.

What is the set of values of n for which this information suffices to guarantee that
f(x) 6= 0 for all x ∈ [−1, 1]?
14. (a) Let aij ∈ IR for i = 1, 2, 3, . . . and j = 1, 2, 3, . . . . Prove or give a counter
example to the statement that

lim
i→∞





∞
∑

j=1

aij



 =

∞
∑

j=1

(

lim
i→∞

aij

)
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(b) Let fn : [0, 1] → IR, n = 1, 2, . . . , be continuous. Suppose that there exists a
function f0(x) : [0, 1] → IR such that fn(x) → f0(x) as n → ∞ for all x ∈ [0, 1].
Prove or give a counter example to the statement that

lim
n→∞

∫ 1

0

fn(x)dx =

∫ 1

0

f0(x)dx.

(c) Consider the same hypotheses as in (b) but now also require that fn(x)→ f0(x)
uniformly. Prove or give a counter example to the statement that

lim
n→∞

∫ 1

0

fn(x)dx =

∫ 1

0

f0(x)dx.
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