Preliminary Exam 2004
 Morning Exam (3 hours)

PART I. Solve 4 of the following 5 problems.

1. Give an $\epsilon-\delta$ proof of the continuity of the function $f(x)=\sqrt{x}$ at $x=0$.
2. Define the function

$$
f(x, y)=\left\{\begin{array}{c}
\frac{x^{2} y}{x^{4}+y^{2}} \quad \text { for } \quad(x, y) \neq(0,0) \\
0 \quad \text { for } \quad(x, y)=(0,0)
\end{array}\right.
$$

Prove or disprove that $f(x, y)$ is continuous at $(0,0)$.
3. Evaluate the path integral

$$
I=\int_{C} \frac{-y d x+x d y}{x^{2}+y^{2}}
$$

where C is any simple, closed curve that encircles the origin and that is traversed in the counterclockwise direction. (Hint: think carefully about the hypotheses of Green's Theorem before you apply it.)
4. Let $y \in \mathbf{R}, t \in \mathbf{R}$, and $y=y(t)$. Consider the differential equation

$$
\frac{d y}{d t}=y^{2} .
$$

(a) Let α be a nonzero constant. Consider a new dependent variable u defined by the transformation $u=y^{\alpha}$. Find the differential equation satisfied by $u(t)$.
(b) Show that, no matter how one chooses α, one cannot put the new equation into the form

$$
\frac{d u}{d t}=k u
$$

where k is another constant (which may depend on α).
(c) Give a qualitative explanation of why you cannot transform the original equation into the type of equation in (b) for u.
5. Consider the sequence

$$
\sqrt{3}, \sqrt{3 \sqrt{3}}, \sqrt{3 \sqrt{3 \sqrt{3}}}, \ldots
$$

Prove that this sequence has a limit, and find the limit. (Hint: It may be useful to first show that if $0<a<3$, then $a<\sqrt{3 a}<3$.)

PART II. Solve 3 of the following 6 problems.
6. Let

$$
P_{n}(x)=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots+\frac{x^{n}}{n!}
$$

Prove that, for n even, $P_{n}(x)>0$ for all real numbers x; whereas, for n odd, $P_{n}(x)$ has exactly one real root. (Hint: differentiate.)
7. Maximize the function $f(x, y, z)=\cos \left(\frac{\pi}{2}(x+y+z)\right)$ subject to the constraints $x^{2}+y^{2}+z^{2}=1, x \geq 0, y \geq 0, z \geq 0$.
8. Let $\mathbf{x} \in \mathbf{R}^{3}$ and let $f, g: \mathbf{R}^{3} \rightarrow \mathbf{R}$ be smooth functions. Define

$$
F(\mathbf{x})=\left.\nabla f\right|_{\mathbf{x}} \times\left.\nabla g\right|_{\mathbf{x}}
$$

and let $\mathbf{r}(t)$ satisfy the differential equation

$$
\frac{d \mathbf{r}}{d t}=F(\mathbf{r})
$$

(a) Show $f(\mathbf{r}(t))$ and $g(\mathbf{r}(t))$ are constant in time.
(b) Describe all the equilibrium points of the differential equation for $\mathbf{r}(t)$.
(c) Relate your answer in part (b) to a topic in vector calculus.
9. The following system of three nonlinear algebraic equations is to be solved for x, y, z as functions of the variables u, v, w :

$$
\begin{align*}
u & =x+y^{2}+z^{3} \\
v & =x^{3}+y+z^{2} \\
w & =x^{2}+y^{3}+z \tag{1}
\end{align*}
$$

Prove or find a counter example to the statement that there is a unique solution near $(x, y, z)=(0,0,0)$ if u, v, and w are small.
10. Consider the sequence

$$
\frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, \frac{1}{6}, \ldots
$$

For which numbers α is there a subsequence converging to α ?
11. Let $x, y \in \mathbf{R}$. Define

$$
\begin{aligned}
d_{1}(x, y) & =(x-y)^{2} \\
d_{2}(x, y) & =\sqrt{|x-y|} \\
d_{3}(x, y) & =\left|x^{2}-y^{2}\right| \\
d_{4}(x, y) & =|x-2 y| \\
d_{5}(x, y) & =\frac{|x-y|}{1+|x-y|} .
\end{aligned}
$$

For each of these, determine whether it is a metric or not, being careful to state your reasons.

PART III. Solve 1 of the remaining 3 problems.
12. Let $x \in \mathbb{R}$. Suppose you are given a Fourier series

$$
f(x)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos (n x)+b_{n} \sin (n x)\right)
$$

State a general condition on the real-valued coefficients $\left(a_{0}, a_{1}, \ldots\right.$, and $\left.b_{1}, \ldots\right)$ that suffices to guarantee that $f(x)$ is three times continuously differentiable and outline the reason why the condition is sufficient.
13. Suppose $f: \mathbf{R} \rightarrow \mathbf{R}$ and suppose f is three times continuously differentiable.
(a) Suppose that we know $\left|\frac{d f}{d x}(x)\right|<10$ for all $x \in[-1,1]$. What are the values of n for which the above hypotheses suffice to guarantee that $f(x) \neq 0$ for all $x \in[-1,1]$ if we also know that $1 \leq f(x) \leq 2$ for the specific numbers $x=$ $-1,-1+\frac{1}{n},-1+\frac{2}{n}, \ldots,-\frac{1}{n}, 0, \frac{1}{n}, \ldots, 1-\frac{2}{n}, 1-\frac{1}{n}, 1$?
(b) Suppose instead that, while we do not know any bound on $\left|\frac{d f}{d x}(x)\right|$, we know $\left|\frac{d^{3} f}{d x^{3}}(x)\right|<10$ for all $x \in[-1,1]$. Also, suppose, as above, that we know $1 \leq f(x) \leq 2$ for the specific numbers $x=-1,-1+\frac{1}{n},-1+\frac{2}{n}, \ldots,-\frac{1}{n}, 0, \frac{1}{n}, \ldots, 1-\frac{2}{n}, 1-\frac{1}{n}, 1$. What is the set of values of n for which this information suffices to guarantee that $f(x) \neq 0$ for all $x \in[-1,1]$?
14. (a) Let $a_{i j} \in \mathbf{R}$ for $i=1,2,3, \ldots$ and $j=1,2,3, \ldots$ Prove or give a counter example to the statement that

$$
\lim _{i \rightarrow \infty}\left(\sum_{j=1}^{\infty} a_{i j}\right)=\sum_{j=1}^{\infty}\left(\lim _{i \rightarrow \infty} a_{i j}\right)
$$

(b) Let $f_{n}:[0,1] \rightarrow \mathbf{R}, n=1,2, \ldots$, be continuous. Suppose that there exists a function $f_{0}(x):[0,1] \rightarrow \mathbb{R}$ such that $f_{n}(x) \rightarrow f_{0}(x)$ as $n \rightarrow \infty$ for all $x \in[0,1]$. Prove or give a counter example to the statement that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x=\int_{0}^{1} f_{0}(x) d x
$$

(c) Consider the same hypotheses as in (b) but now also require that $f_{n}(x) \rightarrow f_{0}(x)$ uniformly. Prove or give a counter example to the statement that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x=\int_{0}^{1} f_{0}(x) d x
$$

