Preliminary Exam 2010 Afternoon Session (3 hours)

Part I. Solve four of the following five problems.

1. Find a basis for the span of the columns of the matrix

$$\begin{pmatrix} 1 & 2 & 0 & 2 & 0 \\ 4 & 12 & 2 & 10 & 1 \\ 3 & 8 & 1 & 7 & 1 \\ 4 & 10 & 1 & 9 & 0 \end{pmatrix}$$

2. Are the polynomials

$$x^{2} + 3x + 1$$
, $2x^{2} - 2x - 1$, and $18x^{2} - 2x - 3$

linearly independent over \mathbb{R} ?

- 3. Let P_n denote the vector space of polynomials in $\mathbb{R}[x]$ with degree less than or equal to n. Compute the trace of the linear operator $\frac{d}{dx}$ on P_n .
- 4. Let A be a 2×2 matrix with characteristic polynomial $x^2 + x + \frac{1}{2}$. Compute

$$\lim_{n \to \infty} \left(A^n \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right).$$

- 5. Let V be a vector space and let T_1 and T_2 be linear transformations that map V to itself.
 - (a) Assume T_1 and T_2 commute, that is, $T_1(T_2(v)) = T_2(T_1(v))$ for all $v \in V$. If v is an eigenvector for T_1 with eigenvalue λ and $T_2(v) \neq 0$, prove that $T_2(v)$ is also an eigenvector for T_1 .
 - (b) Give an example where part (a) fails if T_1 and T_2 do not commute.

Part II. Solve three of the following six problems.

- 6. Let $\mathbb{F}_2 \cong \mathbb{Z}/2\mathbb{Z}$ denote the field of 2 elements.
 - (a) Is $x^4 + x^2 + 1$ irreducible in $\mathbb{F}_2[x]$? Find a complete factorization.
 - (b) How many irreducible polynomials of degree 4 are there in $\mathbb{F}_2[x]$?
- 7. Let A be the ring of continuous functions from \mathbb{R} to \mathbb{R} , and let I_c denote the set of functions that vanish at some fixed $c \in \mathbb{R}$.
 - (a) Prove that I_c is a prime ideal.
 - (b) Is I_c a maximal ideal? Justify your answer.
 - (c) Give an example of a proper non-zero ideal of A that is not of the form I_c for some $c \in \mathbb{R}$.
- 8. Let p be a prime number, and let \mathbb{F}_p denote the finite field with p elements. Find the order of the group $\mathrm{SL}_3(\mathbb{F}_p)$ of invertible 3×3 matrices over \mathbb{F}_p with determinant 1.
- 9. Let A be the $n \times n$ matrix which has 0's on the main diagonal and 1's everywhere else. Find the eigenvalues of A, determine the eigenspaces of A, and compute the determinant of A.
- 10. Prove that the group \mathbb{Q}/\mathbb{Z} does not contain any finite index subgroups.
- 11. Let K be the smallest subfield of \mathbb{C} that contains the roots of $x^3 2$.
 - (a) Prove that K contains some quadratic extension of \mathbb{Q} .
 - (b) Prove that K does not contain $\sqrt{2}$.

Part III. Solve one of the remaining three problems.

- 12. For each of the following statements, either provide the requested example or prove that no such example exists.
 - (a) A group G whose list of sizes of conjugacy classes is 1, 1, 2, 3, 5.
 - (b) A non-abelian group G such that every subgroup of G is normal.
 - (c) A group G with a chain of subgroups $H \subseteq N \subseteq G$ such that H is normal in N and N is normal in G, but H is not normal in G.
- 13. The following three rings all have 125 elements:
 - (a) $\mathbb{Z}_5[x]/\langle x^3 x^2 + x 1 \rangle$
 - (b) $\mathbb{Z}_5[x]/\langle x^3 + 4 \rangle$
 - (c) $\mathbb{Z}_5[x]/\langle x^3 + 4x^2 + 1 \rangle$

Determine which of the these rings are isomorphic and which are not. Justify your assertions by either providing the appropriate isomorphism or by proving that no such isomorphism exists.

- 14. (a) Give an example of a polynomial in $\mathbb{Q}[x]$ whose splitting field has degree 8 over \mathbb{Q} . Justify your answer.
 - (b) Can the answer to part (a) be a cubic polynomial? Justify your assertion.