Preliminary Exam 2009 Afternoon session (3 hours)

Part I - answer 4 out of 5

1. Let U denote the subspace of \mathbb{R}^{4} spanned by the vectors $(0,1,0,1)$ and $(1,0,1,0)$. Find an orthonormal basis for the orthogonal complement of U with respect to the standard Euclidean inner product on \mathbb{R}^{4}.
2. Let $M_{2 \times 2}$ denote the vector space of 2×2 real matrices. Given

$$
A=\left(\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right)
$$

let $T: M_{2 \times 2} \rightarrow M_{2 \times 2}$ denote the linear transformation

$$
T(X)=A X
$$

Find a basis for $\operatorname{ker}(T)$ and a basis for image (T).
3. Let \mathbf{P}_{10} denote the vector space of polynomials over \mathbb{R} of degree less than or equal to 10 . Let $T: \mathbf{P}_{10} \rightarrow \mathbf{P}_{10}$ denote the linear map given by differentiation, i.e.,

$$
T(f(x))=f^{\prime}(x)
$$

for $f(x) \in \mathbf{P}_{10}$. Compute the characteristic polynomial of T.
4. Suppose that A is a square complex matrix whose characteristic polynomial is $(x-2)^{2}(x+3)^{2}$.
a) What are the trace and determinant of A ?
b) Describe the possible Jordan canonical forms of A.
5. Find the greatest common divisor of 2111 and 4327.

Part II - answer 3 out of 6
6. Let G be a finite group, and let H be the subgroup generated by elements of the form $x y x^{-1} y^{-1}$ with $x, y \in G$.
a) Prove that H is normal in G.
b) Prove that G / H is abelian.
c) For $G=S_{3}$, compute H and G / H.
7. Give examples of each the following or explain why no such example is possible.
a) A non-abelian group with 8 elements.
b) A non-cyclic abelian group with 15 elements.
c) A group with exactly 5 conjugacy classes.
8. Suppose that R is a commutative ring and that x is an element of R such that $x^{n}=0$ for some $n \geq 1$. Prove that x is contained in every prime ideal of R.
9. Let R be a commutative ring, and let $M_{n}(R)$ denote the ring of $n \times n$ matrices over R.
a) Prove that if $A \in M_{n}(R)$ such that all of its entries lie in some proper ideal of R, then A is not invertible in $M_{n}(R)$.
b) Is the converse to the above part true? Prove it or find a counterexample.
10. Let $\alpha \in \mathbb{C}$ be an algebraic number whose minimum polynomial over \mathbb{Q} is $x^{3}+a x^{2}+b x+c$.
a) Find a basis of $\mathbb{Q}(\alpha)$ over \mathbb{Q}.
b) Compute the matrix for multiplication by α in this basis.
c) Determine the characteristic polynomial of this matrix.
11. Let A be an $n \times n$ matrix with entries in \mathbb{R} such that $A^{2}=-\mathrm{Id}$.
a) Prove that A is diagonalizable over \mathbb{C} and describe the corresponding diagonal matrices.
b) What can you say about the parity of n ?

Part III - answer 1 out of 3
12. Let S, T be linear transformations acting on a complex vector space V such that $S T=T S$. Prove that if S has more than one eigenvalue, then there exist subspaces W and U of V such that
(a) $V=W+U$
(b) $W \cap U=0$
(c) W and U are invariant under both S and T.
13. Let $K=\mathbb{Q}\left(\sqrt[4]{2}, e^{2 \pi i / 3}\right)$. Prove that there is no subfield $L \subseteq K$ such that the degree of L over \mathbb{Q} equals 3 .
14. Suppose that I is a non-zero ideal of $\mathbb{R}[x]$ such that $\mathbb{R}[x] / I$ is an integral domain. What are the possible dimensions of the (real) vector space $\mathbb{R}[x] / I ?$

