Preliminary Exam 2009 Afternoon session (3 hours)

Part I – answer 4 out of 5

- 1. Let U denote the subspace of \mathbb{R}^4 spanned by the vectors (0, 1, 0, 1) and (1, 0, 1, 0). Find an orthonormal basis for the orthogonal complement of U with respect to the standard Euclidean inner product on \mathbb{R}^4 .
- 2. Let $M_{2\times 2}$ denote the vector space of 2×2 real matrices. Given

$$A = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix},$$

let $T: M_{2\times 2} \to M_{2\times 2}$ denote the linear transformation

$$T(X) = AX$$

Find a basis for ker(T) and a basis for image(T).

3. Let \mathbf{P}_{10} denote the vector space of polynomials over \mathbb{R} of degree less than or equal to 10. Let $T : \mathbf{P}_{10} \to \mathbf{P}_{10}$ denote the linear map given by differentiation, *i.e.*,

$$T(f(x)) = f'(x)$$

for $f(x) \in \mathbf{P}_{10}$. Compute the characteristic polynomial of T.

- 4. Suppose that A is a square complex matrix whose characteristic polynomial is $(x-2)^2(x+3)^2$.
 - a) What are the trace and determinant of A?
 - b) Describe the possible Jordan canonical forms of A.
- 5. Find the greatest common divisor of 2111 and 4327.

Part II – answer 3 out of 6

- 6. Let G be a finite group, and let H be the subgroup generated by elements of the form $xyx^{-1}y^{-1}$ with $x, y \in G$.
 - a) Prove that H is normal in G.
 - b) Prove that G/H is abelian.
 - c) For $G = S_3$, compute H and G/H.
- 7. Give examples of each the following or explain why no such example is possible.
 - a) A non-abelian group with 8 elements.
 - b) A non-cyclic abelian group with 15 elements.
 - c) A group with exactly 5 conjugacy classes.
- 8. Suppose that R is a commutative ring and that x is an element of R such that $x^n = 0$ for some $n \ge 1$. Prove that x is contained in every prime ideal of R.
- 9. Let R be a commutative ring, and let $M_n(R)$ denote the ring of $n \times n$ matrices over R.
 - a) Prove that if $A \in M_n(R)$ such that all of its entries lie in some proper ideal of R, then A is not invertible in $M_n(R)$.
 - b) Is the converse to the above part true? Prove it or find a counterexample.
- 10. Let $\alpha \in \mathbb{C}$ be an algebraic number whose minimum polynomial over \mathbb{Q} is $x^3 + ax^2 + bx + c$.
 - a) Find a basis of $\mathbb{Q}(\alpha)$ over \mathbb{Q} .
 - b) Compute the matrix for multiplication by α in this basis.
 - c) Determine the characteristic polynomial of this matrix.
- 11. Let A be an $n \times n$ matrix with entries in \mathbb{R} such that $A^2 = -$ Id.
 - a) Prove that A is diagonalizable over $\mathbb C$ and describe the corresponding diagonal matrices.
 - b) What can you say about the parity of n?

Part III – answer 1 out of 3

- 12. Let S, T be linear transformations acting on a complex vector space V such that ST = TS. Prove that if S has more than one eigenvalue, then there exist subspaces W and U of V such that
 - (a) V = W + U
 - (b) $W \cap U = 0$
 - (c) W and U are invariant under both S and T.
- 13. Let $K = \mathbb{Q}(\sqrt[4]{2}, e^{2\pi i/3})$. Prove that there is no subfield $L \subseteq K$ such that the degree of L over \mathbb{Q} equals 3.
- 14. Suppose that I is a non-zero ideal of $\mathbb{R}[x]$ such that $\mathbb{R}[x]/I$ is an integral domain. What are the possible dimensions of the (real) vector space $\mathbb{R}[x]/I$?