Preliminary Exam 2008
 Afternoon Session (3 hours)

Part I. Solve four of the following five problems.

1. Let P_{3} denote the subspace of $\mathbb{R}[x]$ of polynomials of degree at most 3 . Find a basis for the subspace of P_{3} of polynomials $f(x)$ such that

$$
f(0)=f(1) \text { and } f^{\prime}(1)=f^{\prime \prime}(2) .
$$

2. Let A be a 2×2 matrix over \mathbb{R} such that $\binom{1}{1}$ is an eigenvector for A with eigenvalue 1 , and $\binom{2}{3}$ is an eigenvector with eigenvalue $1 / 2$.
(a) Compute $A^{3}\binom{3}{4}$.
(b) Compute $\lim _{n \rightarrow \infty} A^{n}\binom{3}{4}$.
3. Let P be the subspace of \mathbb{R}^{3} spanned by $\left(\begin{array}{l}2 \\ 1 \\ 7\end{array}\right)$ and $\left(\begin{array}{c}-1 \\ -5 \\ 4\end{array}\right)$, and let Q be the span of the vectors $\left(\begin{array}{c}2 \\ 0 \\ 13\end{array}\right)$ and $\left(\begin{array}{c}1 \\ -1 \\ 5\end{array}\right)$. Find a basis for $P \cap Q$.
4. Let A be a 3×5 matrix over \mathbb{R} and let T_{A} be the associated linear transformation. If the dimension of $\operatorname{ker}\left(T_{A}\right)$ is two, does the equation

$$
A \mathbf{x}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
$$

have infinitely many solutions \mathbf{x} in \mathbb{R}^{5} ? Justify your answer.
5. Consider the space $M_{2 \times 2}(\mathbb{C})$ of 2×2 matrices with complex entries. If $A=\left(\begin{array}{cc}\alpha & \beta \\ \gamma & \delta\end{array}\right)$ in $M_{2 \times 2}(\mathbb{C})$, let \bar{A} denote $\binom{\bar{\alpha} \bar{\beta}}{\bar{\gamma}}$, where \bar{z} is the complex conjugate of $z \in \mathbb{C}$, and let

$$
V=\left\{A \in M_{2 \times 2}(\mathbb{C}) \mid \operatorname{tr}(A)=0 \text { and } A^{T}=-\bar{A}\right\}
$$

Note that V is a vector space over \mathbb{R}, the real numbers, with an inner product given by

$$
\langle A, B\rangle=-\operatorname{tr}(A B)
$$

Find an orthonormal basis for V over \mathbb{R} with respect to this inner product.

Part II. Solve three of the following six problems.
6. Let $G=S_{8}$ be the group of permutations of the set $\{1,2,3,4,5,6,7,8\}$. In each part, indicate whether the statement is true or false and justify your answer:
(a) G has a cyclic subgroup of order 15 .
(b) G has a cyclic subgroup of order 14 .
(c) If H is any abelian group of order 8 , then H is isomorphic to a subgroup of G.
7. Let R and S be commutative rings with identity, and let $\varphi: R \rightarrow S$ be a ring homomorphism such that $\varphi\left(1_{R}\right)=1_{S}$. In each part, indicate whether the statement is true or false and justify your answer:
(a) If P is a prime ideal of S, then $\varphi^{-1}(P)$ is a prime ideal of R.
(b) If P is a maximal ideal of S, then $\varphi^{-1}(P)$ is a maximal ideal of R.
(c) If P is a principal ideal of S, then $\varphi^{-1}(P)$ is a principal ideal of R.
8. Suppose that G is a finite group with exactly two conjugacy classes. Show that $|G|=2$.
9. Let $\left(2, x^{4}+x+1\right)$ denote the ideal in $\mathbb{Z}[x]$ generated by the elements 2 and $x^{4}+x+1$. Is the quotient ring $\mathbb{Z}[x] /\left(2, x^{4}+x+1\right)$ a field? Why or why not?
10. Prove that the trace of a 2×2 matrix over \mathbb{R} is 0 if and only if it is a linear combination of matrices of the form $X Y-Y X$, where X and Y denote arbitrary 2×2 matrices over \mathbb{R}.
11. Let $\mathrm{GL}(2, \mathbb{C})$ act on itself by conjugation. Classify the orbits of this action.

Part III. Solve one of the remaining three problems.
12. (a) Let $F=\mathbb{Q}(\sqrt[7]{2})$, and let β be an element of F that is not in \mathbb{Q}. Show that $\mathbb{Q}(\beta)=F$.
(b) Is the question in part (a) true if F is replaced with $\mathbb{Q}\left(e^{\frac{2 \pi i}{5}}\right)$?
(c) Is the question in part (a) true if F is replaced with $\mathbb{Q}\left(\sin \left(\frac{2 \pi}{11}\right)\right)$?
13. Let $\mathbb{Z}[x]$ be the ring of polynomials in one variable over the integers, and let M be a maximal ideal of $\mathbb{Z}[x]$.
(a) Show that M is not a principal ideal.
(b) Show that M can be generated by two elements of $\mathbb{Z}[x]$.
14. Let V be a finite-dimensional vector space over \mathbb{C}, and let $T: V \rightarrow V$ be a linear transformation. If $W=\operatorname{ker}(T)$, let

$$
\bar{T}: V / W \rightarrow V / W
$$

denote the natural map given by

$$
\bar{T}(v+W)=T(v)+W
$$

Prove that \bar{T} is injective if x^{2} does not divide $f(x)$, where $f(x)$ denotes the minimal polynomial of T.

