Preliminary Exam 2007
 Afternoon Session (3 hours)

Part I. Solve four of the following five problems.

1. Let

$$
\mathbf{A}=\left[\begin{array}{rrr}
3 & 0 & 4 \\
2 & 3 & -1 \\
1 & 0 & 0
\end{array}\right]
$$

(a) Calculate the characteristic polynomial and eigenvalues of \mathbf{A}.
(b) Diagonalize A. In other words, find an invertible matrix \mathbf{P} and a diagonal matrix \mathbf{D} such that $\mathbf{D}=\mathbf{P}^{-1} \mathbf{A P}$. (Do not calculate \mathbf{P}^{-1}.)
2. Let

$$
\mathbf{A}=\left[\begin{array}{rrrrr}
1 & 1 & 1 & 0 & 2 \\
0 & 0 & 1 & 1 & -2 \\
1 & 1 & 3 & 2 & -1
\end{array}\right]
$$

Calculate bases for the row space of \mathbf{A}, the column space of \mathbf{A}, and the null space of \mathbf{A} (as subspaces of \mathbb{R}^{m} and \mathbb{R}^{n} for the appropriate m and n).
3. Give an example of a 6×6 matrix whose characteristic polynomial is

$$
(x-1)(x+2)^{3}(x-3)^{2}
$$

and whose minimal polynomial is $(x-1)(x+2)(x-3)^{2}$. Give a brief explanation to justify your answer.
4. The matrix

$$
\mathbf{A}=\left[\begin{array}{ccc}
\frac{1}{2} & \frac{1}{2} & -\frac{1}{\sqrt{2}} \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0
\end{array}\right]
$$

determines a rotation of \mathbb{R}^{3} (relative to the standard basis). Find a vector that spans the axis of rotation.
5. Does the polynomial $p(x)=2 x^{2}+x$ lie in the ideal generated by the polynomials $q_{1}(x)=x^{3}+x^{2}+x+2$ and $q_{2}(x)=x^{2}+1$ in $\mathbb{Q}[x]$? Justify your answer.

Part II. Solve three of the following six problems.
6. (a) Let \mathbf{A} be a 2×2 matrix with real entries such that \mathbf{A}^{3} is the identity matrix. Assume that \mathbf{A} is not the identity matrix and prove that the trace of \mathbf{A} is -1 and the determinant of \mathbf{A} is +1 .
(b) Is result in part (a) true if \mathbf{A} has complex entries?
7. Let R be a commutative ring. Recall that an element x is said to be nilpotent if $x^{n}=0$ for some n. Let N denote the set of all nilpotent elements of R.
(a) Prove that N is an ideal.
(b) Prove that N is contained in every prime ideal of R.
(c) Prove that R / N has no nonzero nilpotent elements.
8. Let V be $\mathbb{C}[x] /\left(x^{3}+5 x^{2}+6 x+2\right)$ and let $T: V \rightarrow V$ be defined by

$$
T(p(x))=(x+1) p(x)
$$

Find bases for the kernel (null space) and image (range) of T.
9. Let A be the additive group $\mathbb{Z} \oplus \mathbb{Z}$ and B be the subgroup

$$
\{(5 m+7 n, 2 m+4 n) \mid m, n \in \mathbb{Z}\} .
$$

Show that A / B is cyclic and determine its order.

10 . Let n be a positive integer and let \mathbb{Z}_{n} denote the cyclic group of order n, i.e., $\mathbb{Z} / n \mathbb{Z}$.
(a) Suppose that a, b, c, and d are positive integers such that b is an integer multiple of a and d is an integer multiple of c. Prove that, if the direct sums

$$
\mathbb{Z}_{a} \oplus \mathbb{Z}_{b} \quad \text { and } \quad \mathbb{Z}_{c} \oplus \mathbb{Z}_{d}
$$

are isomorphic, then $a=c$ and $b=d$.
(b) Prove that the groups $\mathbb{Z}_{6} \oplus \mathbb{Z}_{4}$ and $\mathbb{Z}_{2} \oplus \mathbb{Z}_{12}$ are isomorphic.
11. Let m and n be odd integers. Show that the polynomial $x^{3}+m x+n$ is irreducible over \mathbb{Q}.

Part III. Solve one of the remaining three problems.
12. Let \mathbf{A} be an $n \times n$ matrix with entries in \mathbb{R}. Suppose that \mathbf{A}^{n} is the zero matrix and the dimension of the null space of \mathbf{A} is one. Show that the set of matrices

$$
\left\{\mathbf{A}^{j} \mid j=0,1, \ldots n-1\right\}
$$

is linearly independent over \mathbb{R}.
13. Find Galois extensions K of \mathbb{Q} such that the Galois group of K / \mathbb{Q} is
(a) $\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$.
(b) S_{3}, the symmetric group of degree 3 .

Provide brief justifications for your answers.
14. Suppose that \mathbf{A} is an $n \times n$ matrix with real entries. Let s denote the trace of the matrix \mathbf{A}^{2}.
(a) If $\mathbf{A}^{t}=\mathbf{A}$, show that $s \geq 0$.
(b) If $\mathbf{A}^{t}=-\mathbf{A}$, show that $s \leq 0$.

