Preliminary Exam 2006
 Afternoon exam (3 hours)

Part I. Solve 4 of the following 5 problems.

1. Let $t \in \mathbf{R}$ and let

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right]
$$

Express $e^{t A}$ as a 2×2 matrix whose entries are functions from \mathbf{R} into \mathbf{R}.
2. Find a polynomial of degree three whose graph goes through the points $(-2,-5)$, $(-1,1),(1,1)$, and $(3,25)$.
3. Let $T: \mathbf{R R}^{4} \rightarrow \mathbf{R}^{3}$ be given by $T(x, y, z, w)=(a, b, c)$ where

$$
\left[\begin{array}{rrrr}
1 & -1 & 1 & -3 \\
-1 & 2 & 1 & 2 \\
1 & 0 & 4 & -6
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right]=\left[\begin{array}{c}
a \\
b \\
c
\end{array}\right]
$$

Find the dimension of the kernel (null space) of T and of the image (range) of T.
4. Let V be the real, inner product space of continuous functions on the closed interval $[0, \pi]$ with inner product

$$
(f, g)=f \cdot g=\int_{0}^{\pi} f(x) g(x) d x
$$

Let $W \subset V$ be the subspace of V spanned by the functions $1, \sin (x)$, and $\cos (x)$. Find an orthonormal basis of W.
5. How many elements are there in the group of invertible 2×2 matrices over the field of seven elements?

Part II. Solve 3 of the following 6 problems.
6. Let U and V be two subspaces of a finite-dimensional vector space. Show that

$$
\operatorname{dim}(U+V)+\operatorname{dim}(U \cap V)=\operatorname{dim}(U)+\operatorname{dim}(V)
$$

7. Consider the 3×3 matrix

$$
A=\left[\begin{array}{rrr}
0 & 1 & 1 \\
-1 & 0 & 1 \\
-1 & -1 & 0
\end{array}\right]
$$

a. Show $X \cdot A X=0$ for all $X \in \mathbf{R}^{3}$, where $X \cdot Y$ is the usual dot product.
b. Find a non-zero vector Y so that $A Y=0$.
c. For Y as in part (b), show that $A X \cdot Y=0$ for all $X \in \mathbf{R}^{3}$.
d. For Y as in part (b), show that there is a real number λ so that if X is any vector orthogonal to Y (i.e., $X \cdot Y=0$) then $A^{2} X=\lambda X$. Determine λ.
8. a. Let $G=\mathrm{GL}(n, \mathbf{R})$ and $H=\{A \in \mathrm{GL}(n, \mathbf{R}): \operatorname{det} A>0\}$ where $n>1$. Is H a subgroup of G ? If so, is it a normal subgroup?
b. Answer the same questions with H replaced by $\left\{A \in \mathrm{GL}(n, \mathbf{R}): A A^{t}=I\right\}$, where A^{t} denotes the transpose of A.
9. a. Let G be any group. Show that a normal subgroup of order 2 must be contained in the center of G.
b. Consider the permutation group S_{n} of n objects. Find the center of S_{n}.
10. Is there a non-abelian group of order $n=49$? Either find one or explain why none exists. Do the same for $n=50$ and $n=51$.
11. Suppose A is a real, symmetric, $n \times n$ matrix with eigenvalues $1,2, \cdots, n-1, n$. Compute $\|A\|$, the norm of A, where

$$
\|A\|=\sup \left\{\|A \vec{x}\| \text { for all vectors } x \in \mathbf{R}^{n} \text { with norm }\|\vec{x}\|=1\right\},
$$

where $\|\vec{x}\|^{2}=x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}$ for $\vec{x}=\left(x_{1}, \cdots, x_{n}\right)$. Justify your conclusion.

Part III. Solve 1 of the remaining 4 problems.
12. Which of the following rings is an integral domain? Which is a field? Justify your assertions.
a. $\mathbf{Z}[x] /\left(x^{2}+7\right)$
b. $\mathbf{R}[x] /\left(x^{4}+3 x^{2}+2\right)$
c. $\mathbf{Q}[x] /\left(x^{3}-2\right)$
13. What are all of the possible degrees for irreducible polynomials over the following fields, F ?
a. $F=\mathbf{C}$, the field of complex numbers.
b. $F=\mathbf{Z}_{p}(=\mathbf{Z} / p \mathbf{Z})$, where p is any prime.
c. $F=\mathbf{\mathbb { R }}$.
14. The three matrices A, B, and C satisfy

$$
A^{2}=B^{2}=C^{2}=I d, \quad \text { and } \quad B C-C B=i A
$$

a. What are $A B+B A$ and $A C+C A$?
b. Derive a set of explicit forms of A, B, and C in the case of 2×2 matrices.
15. a. Suppose $p, n \in \mathbf{Z}$, where p is prime and p does not divide n. Must there exist integers a and b such that $a p+b n=1$?
b. Suppose that $f, g \in \mathbf{Q}[x]$, where f is irreducible and f does not divide g. Must there exist $h, k \in \mathbf{Q}[x]$ such that $h f+k g=1$?
c. Repeat part (b) with $\mathbf{Q}[x]$ replaced by $\mathbf{Q}[x, y]$. Justify your assertions.

