Preliminary Exam 2006 Afternoon exam (3 hours)

Part I. Solve 4 of the following 5 problems.

1. Let $t \in \mathbf{I} \mathbf{R}$ and let

$$A = \left[\begin{array}{cc} 1 & 1 \\ 0 & 2 \end{array} \right]$$

Express e^{tA} as a 2 × 2 matrix whose entries are functions from **IR** into **IR**.

2. Find a polynomial of degree three whose graph goes through the points (-2, -5), (-1, 1), (1, 1), and (3, 25).

3. Let $T: \mathbb{R}^4 \to \mathbb{R}^3$ be given by T(x, y, z, w) = (a, b, c) where

$$\begin{bmatrix} 1 & -1 & 1 & -3 \\ -1 & 2 & 1 & 2 \\ 1 & 0 & 4 & -6 \end{bmatrix} \begin{vmatrix} x \\ y \\ z \\ w \end{vmatrix} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}.$$

Find the dimension of the kernel (null space) of T and of the image (range) of T.

4. Let V be the real, inner product space of continuous functions on the closed interval $[0, \pi]$ with inner product

$$(f,g) = f \cdot g = \int_0^{\pi} f(x)g(x)dx.$$

Let $W \subset V$ be the subspace of V spanned by the functions 1, $\sin(x)$, and $\cos(x)$. Find an orthonormal basis of W.

5. How many elements are there in the group of invertible 2×2 matrices over the field of seven elements?

Part II. Solve 3 of the following 6 problems.

6. Let U and V be two subspaces of a finite-dimensional vector space. Show that

$$\dim(U+V) + \dim(U \cap V) = \dim(U) + \dim(V).$$

7. Consider the 3×3 matrix

$$A = \begin{bmatrix} 0 & 1 & 1 \\ -1 & 0 & 1 \\ -1 & -1 & 0 \end{bmatrix} .$$

a. Show $X \cdot AX = 0$ for all $X \in \mathbf{IR}^3$, where $X \cdot Y$ is the usual dot product.

b. Find a non-zero vector Y so that AY = 0.

c. For Y as in part (b), show that $AX \cdot Y = 0$ for all $X \in \mathbb{R}^3$.

d. For Y as in part (b), show that there is a real number λ so that if X is any vector orthogonal to Y (i.e., $X \cdot Y = 0$) then $A^2 X = \lambda X$. Determine λ .

8. a. Let $G = \operatorname{GL}(n, \mathbb{R})$ and $H = \{A \in \operatorname{GL}(n, \mathbb{R}) : \det A > 0\}$ where n > 1. Is H a subgroup of G? If so, is it a normal subgroup?

b. Answer the same questions with H replaced by $\{A \in \operatorname{GL}(n, \mathbb{R}) : AA^t = I\}$, where A^t denotes the transpose of A.

9. a. Let G be any group. Show that a normal subgroup of order 2 must be contained in the center of G.

b. Consider the permutation group S_n of *n* objects. Find the center of S_n .

10. Is there a non-abelian group of order n = 49? Either find one or explain why none exists. Do the same for n = 50 and n = 51.

11. Suppose A is a real, symmetric, $n \times n$ matrix with eigenvalues $1, 2, \dots, n-1, n$. Compute ||A||, the norm of A, where

 $||A|| = \sup\{||A\vec{x}|| \text{ for all vectors } x \in \mathbf{R}^n \text{ with norm} ||\vec{x}|| = 1\}$, where $||\vec{x}||^2 = x_1^2 + x_2^2 + \dots + x_n^2$ for $\vec{x} = (x_1, \dots, x_n)$. Justify your conclusion.

Part III. Solve 1 of the remaining 4 problems.

12. Which of the following rings is an integral domain? Which is a field? Justify your assertions.

a. $\mathbf{Z}[x]/(x^2+7)$ **b.** $\mathbf{IR}[x]/(x^4+3x^2+2)$ **c.** $\mathbf{Q}[x]/(x^3-2)$

13. What are all of the possible degrees for irreducible polynomials over the following fields, F?

a. F = C, the field of complex numbers.
b. F = Z_p(= Z/pZ), where p is any prime.
c. F = IR.

14. The three matrices A, B, and C satisfy

 $A^2 = B^2 = C^2 = Id$, and BC - CB = iA.

a. What are AB + BA and AC + CA?

b. Derive a set of explicit forms of A, B, and C in the case of 2×2 matrices.

15. **a.** Suppose $p, n \in \mathbb{Z}$, where p is prime and p does not divide n. Must there exist integers a and b such that ap + bn = 1?

b. Suppose that $f, g \in \mathbf{Q}[x]$, where f is irreducible and f does not divide g. Must there exist $h, k \in \mathbf{Q}[x]$ such that hf + kg = 1?

c. Repeat part (b) with $\mathbf{Q}[x]$ replaced by $\mathbf{Q}[x, y]$. Justify your assertions.