Preliminary Exam 2005 Afternoon exam (3 hours)

Part I. Solve 4 of the following 5 problems.

1. Find all solutions over \mathbb{R} to the system of equations

$$
\left\{\begin{array}{l}
3 x-y+8 z=0 \\
2 x+2 y+5 z=0
\end{array}\right.
$$

2. Find the inverse of the matrix $\left(\begin{array}{lll}0 & 2 & 0 \\ 5 & 1 & 7 \\ 0 & 9 & 1\end{array}\right)$.
3. Give an explicit example of a prime number $p>100$ such that the integers $2^{100}-1,3^{100}-1$, and $5^{100}-1$ are divisible by p. Justify your answer.
4. Determine whether or not the vectors

$$
\left(\begin{array}{l}
3 \\
2 \\
0 \\
1
\end{array}\right), \quad\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right), \quad\left(\begin{array}{c}
1 \\
1 \\
-1 \\
-1
\end{array}\right), \quad\left(\begin{array}{l}
0 \\
2 \\
0 \\
2
\end{array}\right)
$$

span \mathbb{R}^{4}.
5. Let A be a 4×4 matrix with complex coefficients such that $(A-3 I)^{2}=0$, where I denotes the 4×4 identity matrix. List the possibilities for the Jordan normal form of A.

Part II. Solve 3 of the following 6 problems.
6. Prove that a continuous group homomorphism $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is actually \mathbb{R}-linear, i. e. satisfies $\varphi(r v)=r \varphi(v)$ for $r \in \mathbb{R}$ and $v \in \mathbb{R}^{n}$. (Hint: first consider integer values of r.)
7. Show that an abelian group of order <1024 has a set of generators of cardinality <10.
8. Let A, B, and M be $n \times n$ matrices with real-valued entries such that

$$
B=M^{-1} A M
$$

i.e., such that A and B are similar matrices. Show that A and B have the same eigenvalues with the same multiplicities.
9. Let A be an $n \times n$ matrix and U an invertible $n \times n$ matrix, both with coefficients in \mathbb{R}, and suppose that $U A U^{-1}=c A$ for some $c \in \mathbb{R}, c \neq 0, \pm 1$. Prove that $A^{n}=0$.
10. Let V be the real vector space of polynomials of degree equal to or less than three,

$$
V=\left\{a x^{3}+b x^{2}+c x+d \mid a, b, c, d \in \mathbb{R}\right\} .
$$

Define an inner product on V by the formula

$$
<P, Q>=\int_{-\infty}^{\infty} e^{-x^{2}} P(x) Q(x) d x
$$

Find an orthonormal basis for V.
11. Show that the ring $\mathbb{F}_{2}[x] /\left(x^{3}+x+1\right)$ is a field but that the ring $\mathbb{F}_{3}[x] /\left(x^{3}+x+1\right)$ is not a field.

Part III. Solve 1 of the remaining 4 problems.
12. Prove that a subgroup of index 2 in a group is normal.
13. Compute the Galois group of the polynomial $f(x)=x^{3}-5 x+5$ over \mathbb{Q}. (Hint: the discriminant of the cubic polynomial $x^{3}+b x+c$ is $-4 b^{3}-27 c^{2}$.)
14. Let V and W be vector spaces over a field \mathbb{F}. Consider the set of all vector space homomorphisms of V into W, denoted $\operatorname{Hom}(V, W)$. Assume that $S, T \in$ $\operatorname{Hom}(V, W)$ and $v_{i} S=v_{i} T$ for all elements v_{i} of a basis of V. Prove that $S=T$.
15. Let R and S be commutative rings and let I and J be ideals of R and S respectively. Viewing the cartesian product $I \times J$ as an ideal of the product ring $R \times S$, prove that $I \times J$ is a prime ideal of $R \times S$ if and only either $I=R$ and J is a prime ideal of S or $J=S$ and I is a prime ideal of R. You may quote general facts about prime ideals without proof.

