Preliminary Exam 2004 Afternoon exam (3 hours)

Part I. Solve 4 of the following 5 problems.

1. Let V be the subspace of \mathbb{R}^{4} spanned by the vectors $(1,0,0,-1),(2,1,1,0)$, $(1,1,1,1),(1,2,3,4)$, and $(0,1,2,3)$. Find a subset of these vectors which is a basis for V.
2. Find an orthonormal basis for the subspace $V=\left\{(x, y, z) \in \mathbb{R}^{3}: 3 x+y+2 z=0\right\}$ of \mathbb{R}^{3}. Here "orthonormal" means "orthonormal relative to the usual dot product on \mathbb{R}^{3}."
3. A certain group G contains elements g and h satisfying $g h g^{-1}=h^{2}$ and $g^{3}=$ $h^{7}=e$, where e denotes the identity element of G. Show that $(h g)^{3}=e$.
4. Find the sum of the squares of the roots of the polynomial

$$
x^{3}+5 x^{2}-x-1
$$

5. Find the greatest common divisor of 1122211 and 1234321.

Part II. Solve 3 of the following 6 problems.
6. Find $\lim _{n \rightarrow \infty} \frac{1}{2^{n}} A^{n}$, where

$$
A=\left(\begin{array}{cc}
11 & 18 \\
-6 & -10
\end{array}\right)
$$

7. Let n be a positive integer and f a polynomial of degree n with coefficients in \mathbb{C}. Write $f(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \cdots\left(x-\alpha_{n}\right)$ with complex numbers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$, not necessarily distinct, and put $f_{j}(x)=f(x) /\left(x-\alpha_{j}\right)(1 \leqslant j \leqslant n)$. State and prove a necessary and sufficient condition for the polynomials $f_{1}, f_{2}, \ldots, f_{n}$ to constitute a basis for the vector space V of polynomials of degree $\leqslant n-1$ over \mathbb{C}.
8. Prove Fermat's Little Theorem: if x is any integer x and p is any prime, then $x^{p} \equiv x \bmod p$.
9. Let A be a 2×2 matrix with even integer entries and determinant 84 , and let M be the subgroup of \mathbb{Z}^{2} generated by the columns of A. Express the quotient group \mathbb{Z}^{2} / M up to isomorphism as a direct sum of cyclic groups of prime power order.
10. Let $G=G L(2, \mathbb{R})$ be the group of 2×2 matrices with real entries and nonzero determinant. Let H be the subgroup of G generated by r and s, where

$$
r=\left(\begin{array}{cc}
\cos (\sqrt{2} \pi) & -\sin (\sqrt{2} \pi) \\
\sin (\sqrt{2} \pi) & \cos (\sqrt{2} \pi)
\end{array}\right)
$$

and

$$
s=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

(a) Is H a finite group?
(b) Is H a commutative group?
11. Let G be a group, H a normal subgroup of G, and K an arbitrary subgroup of G. Let $H K$ be the subset of G consisting of all products of the form $h k$ with $h \in H$ and $k \in K$. Prove that $H K$ is a subgroup of G.

Part III. Solve 1 of the remaining 4 problems.
12. Let $\mathbb{R}(t)$ denote the field of rational functions over \mathbb{R}, i. e., the field consisting of quotients $f(t) / g(t)$ where f and g are polynomials with real coefficients and g is not the zero polynomial. Prove that the exponential function e^{t} is not algebraic over $\mathbb{R}(t)$.
13. Let S_{10} denote the group of permutations of the set $\{1,2, \ldots, 10\}$. For each integer n in the range $11 \leqslant n \leqslant 20$ determine whether S_{10} contains an element of order n.
14. View the polynomial $P(x)=x^{6}+1$ as a polynomial over \mathbb{F}_{2}, the field with 2 elements. Factor P into irreducibles over \mathbb{F}_{2}.
15. Let $K=\mathbb{R}(\tan t)$ be the field generated over \mathbb{R} by the tangent function, and let $L=\mathbb{R}(\cos t, \sin t)$ be the extension field of K generated over \mathbb{R} by the cosine and sine functions.
(a) Determine the degree $[L: K]$.
(b) Verify that L is Galois over K and determine the structure of $\operatorname{Gal}(L / K)$.
(c) Show that if $\sigma \in \operatorname{Gal}(L / K)$ then there is a constant $c \in \mathbb{R}$ such that $\sigma(f)(t)=$ $f(t+c)$ for $r \in \mathbb{R}(\cos t, \sin t)$ and $t \in \mathbb{R}$.

