Afternoon Exam 2003

PART I. Solve 4 out of the next 5 problems.

1. Find a polynomial of degree 4 whose graph goes through the points $(1,1),(2,-1)$, $(3,-59),(-1,5),(-2,-29)$.
2. What are the eigenvalues of the matrix A which represents the rotation of \mathbb{R}^{3} by θ around an axis v ?
3. Compute the inverse of the following matrix

$$
\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
2 & 0 & 1
\end{array}\right)
$$

4. Find an orthonormal basis for the vector space V of the polynomials over \mathbb{R} of degree less than or equal to 2 , with the inner product

$$
\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x
$$

5. Find the greatest common divisor of $2003^{4}+1$ and $2003^{3}+1$.

PART II. Solve 3 out of the next 6 problems.
6. Let A be a 3×3 orthogonal matrix whose determinant is -1 . Prove that -1 is an eigenvalue of A.
7. Classify up to similarity all 3×3 complex matrices A such that $A^{3}=I$.
8. Let $f(x)$ be a polynomial of degree n that takes integer values at all integer points. Prove that f can be written as a linear combination with integer coefficients of the polynomials $P_{k}=\frac{x(x-1) \cdots(x-k+1)}{k!}, 0 \leq k \leq n$ (where $P_{0}=1$).
9. Assume that every nontrivial element g of a group G has order 2. Prove that G is commutative.
10. Let $f(x)=x^{n}-n x+1$ and let A be an $n \times n$ matrix with characteristic polynomial f.
(a) Prove that if $n>2$ then A is diagonalizable over the complex numbers. (Hint: Prove that f has no common zeros with f^{\prime}.)
(b) Is the assertion in (a) true if $n=2$? Either prove it or give a counterexamble.
11. Let $A=\left(\begin{array}{cc}1 / 2 & 1 / 2 \\ 1 & 0\end{array}\right)$. Find $\lim _{n \rightarrow \infty} A^{n}$.

PART III. Solve 1 out of the next 3 problems.
12. Let G be the dihedral group defined as the set of all formal symbols $x^{i} y^{j}$, with $i=0,1$ and $j=0,1, \ldots, n-1$, and where $x^{2}=e, y^{n}=e$ for $n>2$, and $x y=y^{-1} x$.
(a) Prove that the subgroup $N=\left\{e, y, y^{2}, \ldots, y^{n-1}\right\}$ is normal in G.
(b) Prove that $G / N \approx W$, where $W=\{1,-1\}$ is the group under the multiplication of the real numbers.
13. For which values of n does the number of conjugacy classes in S_{n} (the group of permutations of n letters) equal n ?
14. Let $f(x)$ and $g(x)$ be a pair of polynomials in one variable. Prove that there exists a nonzero polynomial $F(x, y)$ such that $F(f(x), g(x)) \equiv 0$. [Hint: consider the linear transformation $F \mapsto F(f, g)$ from the space of polynomials in two variables of degree $\leq n$ to the space of polynomials in one variable.]

