ELLIPTIC CURVES AND ALTERNATING GROUP EXTENSIONS OF THE RATIONAL NUMBERS

(Order No.

MARK FRASER EVANS

Boston University Graduate School of Arts and Sciences, 2001

Major Professor: David E. Rohrlich, Professor of Mathematics

ABSTRACT

The inverse Galois problem asks if each finite group G is the Galois group of some extension of the rational numbers \mathbb{Q} . The modern approach to this problem involves exhibiting a regular G-Galois cover of curves $C \longrightarrow \mathbb{P}_1$ defined over \mathbb{Q} . The corresponding extension of function fields $\mathbb{Q}(C)/\mathbb{Q}(\mathbb{P}_1)$ is then Galois with group G. One uses Hilbert's irreducibility theorem to conclude that there exist infinitely many rational points in $\mathbb{P}_1(\mathbb{Q})$ which "specialize" to give a Galois extension of \mathbb{Q} with group G.

In this thesis, we consider the case where \mathbb{P}_1 is replaced by an elliptic curve E/\mathbb{Q} with positive Mordell-Weil rank. A theorem of Néron and Serre says that if a group G is perfect then a regular G-Galois cover $C \longrightarrow E$ defined over \mathbb{Q} can be specialized to almost any point in $E(\mathbb{Q})$ to obtain a Galois extension of \mathbb{Q} with group G. We use this theorem to realize the alternating groups A_n ($n \not\equiv 3 \mod 6$) as Galois groups over \mathbb{Q} . This is the first time an infinite family of groups has

been realized using this variant of the classical Hilbert irreducibility theorem.