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Google Security Blog

The latest news and insights from Google on security and safety on the Internet

Gmail account security in Iran
September 8, 2011

Posted by Eric Grosse, VP Security Engineering

We learned last week that the compromise of a Dutch company involved with verifying

the authenticity of websites could have put the Internet communications of many

Iranians at risk, including their Gmail. While Google’s internal systems were not
compromised, we are directly contacting possibly affected users and providing similar
information below because our top priority is to protect the privacy and security of our

users.



PKI: Not just an academic problem...

T

Startups
Apps
Gadgets

Google Security Blog

The latest news and insights from Google on security and safety on the Internet

Google Bans China's Website
Certificate Authority After
Security Breach

Catherine Shu @catherineshu / Apr1,2015 C] comment

e auuierntcity O wepsiles Could ridve put e iernec Commimurieduorns ol inariy
Iranians at risk, including their Gmail. While Google’s internal systems were not
compromised, we are directly contacting possibly affected users and providing similar
information below because our top priority is to protect the privacy and security of our

users.




PKI: Not just an academic problem...

Google Security Bl~-

The latest news and insights fro~

Apps
Gadgets, we™"" G

EI Comment

—or€Lcormnmnuriedauorns ol inariy
.«uille Google’s internal systems were not
_uy contacting possibly affected users and providing similar

- &)
o 3 ~<IOW because our top priority is to protect the privacy and security of our



. :
Startd - 11, e th ryg
» "¥55.4p tmillions of
2™ be

Apps
Gadgets| we™" Noﬁ“@“ oy

“o s
P S 8lta] ¢q
e 20\ ™ dbe@om «uile Gou 'rtl.ﬁ
R pen\ ¢ q \ oot . Y- Ca te S

05 ‘ ; ;

¥ i \ "’\\NN\,\M\\ € _uy contacting possibly affected usc.
5(3 U

s sd(ooo“ 3 ~<1low because our top priority is to protect the privacy and secu..,

o

ers.



1
ffected ﬁca tes
_.y affected use. .
ome o} S .
chr A2V 8 _. wur top priority is to protect the privacy and secuu..,
p\N
DAN 600 7



Certificate Transparency (CT) to the rescue




Certificate Transparency (CT) to the rescue

PK

VISA © ]

visa.com - @
cert = Sig_ Alvisa.com, PK)

Certificate Authority (CA)



Certificate Transparency (CT) to the rescue

PK

VISA © ]

visa.com - @
cert = Sig_ Alvisa.com, PK)

Certificate Authority (CA)

-]

Transparency log

10



Certificate Transparency (CT) to the rescue

PK

VISA © ]

visa.com - @
cert = Sig_ Alvisa.com, PK)

Certificate Authority (CA)

certj3>

L VPR

Transparency log

11



Certificate Transparency (CT) to the rescue

VISA

visa.com

Validity: A certificate is valid only if it's in the log. Certificate Authority (CA)

certT)
g e
Transparency log .’




Certificate Transparency (CT) to the rescue

VISA

visa.com
Validity: A certificate is valid only if it's in the log. Certificate Authority (CA)
Consequence: Fake certs must be published in the log. T)
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Certificate Transparency (CT) to the rescue

VISA

visa.com

Transparency: Once certificate is in the log, (1) it stays
there forever and (2) it can be efficiently discovered. Certificate Authority (CA)

Non-equivocation: Everybody "sees" the same log.

Consequence: Fake cert for VISA is discovered by VISA in the log.

e

Transparency log

18



Certificate Transparency (CT) model




Certificate Transparency (CT) model

20



Certificate Transparency (CT) model

Append v to key a!
Q@ O
a, v,
C,V
d3 b,vc
a ' b

21



Certificate Transparency (CT) model

Append v to key a!

a | 22




Certificate Transparency (CT) model




Certificate Transparency (CT) model




Certificate Transparency (CT) model

What are key b's values? d3
()
ey 9 o
V=iv o VY 4
@
) )

a, Vv

a

C,V,

d4 b, A
a, Vv

G 25




Certificate Transparency (CT) model

What are key b's values? d3
()
ey 9 o
V={v}m
° @/erLookup(d:g, b, V, m) \{'
@
) )

a, Vv

a

GV,

d4 b, A
a, Vv

G 26




Certificate Transparency (CT) model
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Problem: In current logs, one of the proofs is large.
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Our work:
Append-only Authenticated Dictionaries (AADs)

Problem: In current logs, one of the proofs is large. g b dW‘\dtg f\rhclarr\“
. . : . . duce S
Solution: AADs with polylogarithmic proof sizes! r\,?undreds of GBP
a few GBp
Transparency log Append time | Lookup proof size | Append-only
proofs size

CT log n n log n

ECT, CONIKS, etc. log n logn n

Our work Alog®n log? n log n

(amortized)

n = # of certificates in log, A = security parameter -



Overview

In this talk: Append-only Authenticated Set (AAS) from bilinear accumulators

Bilinear accumulators

Bilinear Trees (BTs)

Bilinear Prefix Trees (BPTs)
Bilinear Frontier Trees (BFTSs)
Amortization

From AAS to AAD (not in this talk)

SV O1E OO DR
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Bilinear accumulators

SetA={e,e, .. e} polynomial a(x) = (x-e,)(x - e))...(x - € ) with coefficients
(a, a, .. a)

q-SDH public parameters (g, ¢°, gs2, ...,9%"), deg(a) < g. Commit to a(x) as
follows:

ace(4) = ()" (¢ )" 90" (9

_ ans”™ a,_ 18" 1 ais .a
=g gt S
_ gan3n+an—13n_1+“'+a13+a0
_ ols
=g (s)

The commitment acc(A) is a bilinear accumulator. Expensive: O(n log”n) time
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and let B with polynomial B(x), accumulator b,
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Accumulator subset proofs

Let A with polynomial a(x), accumulator a,
and let B with polynomial B(x), accumulator b,

AC B az)|B(r) = b(z) = q(z)a(z)

Subset proof is g9¢) and is verified using bilinear map e():
e(a,g?)) = e(b,g) &

e(g, g)a(s)q(s) — e(g,g)ﬂ(s) &
B(z) = q(z)a(z)

Expensive: O(n log n) time to compute one proof (* under g-SBDH) 15



Accumulator disjointness proofs




The road so far...

1.
2.
3.
4.
d.
6.

Bilinear accumulators

Bilinear Trees (BTs)

Bilinear Prefix Trees (BPTs)
Bilinear Frontier Trees (BFTSs)
Amortization

From AAS to AAD (not in this talk)
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Bilinear Trees (BTs):
Precomputed membership proofs

{617 €2, €3, 64}
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{617 €2, €3, 64}

/\
{e1,e0} {es,eq}

N N
{er}  {e2}  {es} {es}
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Bilinear Trees (BTs):
Precomputed membership proofs

{617 €2, €3, 64}

/\

g(s—el)(s—ez) g(s—eg)(s—e4)

PN N

g(s—el) g(s—ez) g(s—e3) g(s—e4)
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Bilinear Trees (BTs):
Precomputed membership proofs

g(s—el)(s—eg)(s—e3)(s—e4)

/\

g(s—el)(s—ez) g(s—eg)(s—e4)

PN N

g(s—el) 9(8—62) 9(8—63) g(8—64)
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Bilinear Trees (BTs):
Precomputed membership proofs

g(s—el)(s—eg)(s—e3)(s—e4)

/\

g(s—el)(s—ez) g(s—eg)(s—e4)

PN N

g(s—el) g(s—ez)

O(n log? n) time to precompute all membership proofs
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Bilinear Trees (BTs):
Precomputed membership proofs

g(s—el)(s—eg)(s—e3)(s—e4)

/\

g(s—el)(s—ez) g(s—eg)(s—e4)

PN N

g(s—el) g(s—ez)

O(n log? n) time to precompute all membership proofs

...but what about precomputing non-membership?
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P1UP2 P3UP4

PN N

pfx(e1)  pfx(ez) pfx(e3)  pfx(es)
Py Py Ps Py

e.g., e; = 011 = pfx(e;) = {¢,0,01,011}

60



Bilinear Prefix Trees (BTs):
Towards precomputed non-membership proofs

P=PUP,UP3UPy

/\

P1UP2 P3UP4

PN N

pfx(e1)  pfx(ez) pfx(e3)  pfx(es)
Py Py Ps Py

e.g., e; = 011 = pfx(e;) = {¢,0,01,011}

61



Bilinear Prefix Trees (BTs):
Towards precomputed non-membership proofs

P=PUP,UP3UPy

P1UP2 P3UP4

PN N

pfx(e1)  pfx(ez) pfx(e3)  pfx(es)
Py Py Ps Py

e.g., e; = 011 = pfx(e;) = {¢,0,01,011}

62



Bilinear Prefix Trees (BTs):
Towards precomputed non-membership proofs

pfx(e1)  pfx(ez) pfx(e3)  pfx(es)
Py Py Ps Py

e.g., e; = 011 = pfx(e;) = {¢,0,01,011}

63



Bilinear Prefix Trees (BTs):
Towards precomputed non-membership proofs

pfx(e1)  pfx(es) pfx(e3)  pfx(es)
Pl P2 P3 P4

O(An log? n) time to precompute all membership proofs
No seriously, how do we precompute non-membership?
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Bilinear Frontier Trees (BFTs)
Precompute non-membership proofs

e, e e, e,

P = prefixes of {e_, e , e, e}

= set in root of BPT
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Bilinear Frontier Trees (BFTs)
Precompute non-membership proofs

g('s_ “001”)(8— 44011”)(3_ “10”)

/\

(S—“OO].”)(S—“O].].”) g(S—“lO”)

/\ /

(s—“001”) gls=“011") g(s—+10")

P = prefixes of {e_, e,, e, €} F = frontier(P)

= set in root of BPT FOP=Q oo

¢\$\°\“

00“‘

O(An log? n) time to precompute all non-membership proofs
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Dynamic AAS via amortization

Static AAS data structure so far. How can we append efficiently? And what
about append-only proofs?
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Dynamic AAS via amortization

Static AAS data structure so far. How can we append efficiently? And what
about append-only proofs?

'/\p\;\e aF T :

com \u
acc(E, UE, UE, UE,) for each 10°
acc(E, U E,) acc(E; U E,)
acc(E,) acc(E,) acc(E,) acc(E,) acc(E;)

E, = pfx(e) 80



Dynamic AAS via amortization

T(A, n) = 2T(A, n/2) + O(An log?n) = O(An log® n)
= O(\ log® n) amortized append time

acc(E, UE, U .. UE)

/\

acc(E, UE, UE, UE)) acc(E; U E, UE, UE,)
acc(E, U E,) acc(E; U E,) acc(E; U E)) acc(E, U Ey)

PN PN PN PN

acc(E,) acc(E,) acc(E,) acc(E,) acc(E;) acc(E,) acc(E,) acc(E,)
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AAD from AAS

Quick idea: Build AAS over H(k) | H(v).

Plus, leverage frontier nodes for lookup proofs.

83



Experiments: Lookup proof size
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—e— 0 values
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60
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Experiments: Append time
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Conclusion

e HTTPsis vulnerable to CA compromises

e Certificate Transparency (CT) helps detect CA compromises
o ...but CT logs are inefficient to audit
e We introduced Append-only Authenticated Dictionaries (AADs)
o Foundation for building efficient-to-audit transparency logs
o 200x bandwidth savings
o Further secure HTTPs and messaging apps (e.g., WhatsApp)
e Future work
o Faster appends (de-amortization?)

o  Smaller lookups (SNARKs?)
o Simpler assumptions?
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Abstracting Certificate Transparency (CT)

An authenticated dictionary. Maps key to list of values. (i.e., a domain name to
its history of certificates). Once value is added to key, it cannot be removed.
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Abstracting Certificate Transparency (CT)

An authenticated dictionary. Maps key to list of values. (i.e., a domain name to
its history of certificates). Once value is added to key, it cannot be removed.

Server API (i.e., log server):
Append(D;, k,v) — dir1,Div1 = D; U{(k,v)}
ProveLookup(D;, k) — my, V = {v1,v2,...,Um}
ProveAppendOnly(D;,D;) — m;

Client API (e.g., VISA, Alice): Agggrlgﬁeegfss }
VerLookup(d;, k,V,my) — 0/1
VerAppendOnly(d;, dj, m;,;) — 0/1

96



Abstracting Certificate Transparency (CT)

An authenticated dictionary. Maps key to list of values. (i.e., a domain name to
its history of certificates). Once value is added to key, it cannot be removed.

Server API (i.e., log server):
Append(D;, k,v) — dir1,Div1 = D; U{(k,v)}
ProveLookup(D;, k) — my, V = {v1,v2,...,Um}
ProveAppendOnly(D;,D;) — m;

Completeness
guarantees!

Client API (e.g., VISA, Alice):

VerLooku p(dz, k V 7TV — 0/1 %[ Gap between i and j is typically large. }

VerAppendOnly(d;,d;, m; ;) — 0/1
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