
Friday, December 7th, 2018
Modular Approach to Cloud Security (MACS) Project Meeting

Alin Tomescu, Vivek Bhupatiraju, Babis Papamanthou, Dimitris Papadopoulos,
Nikos Triandopoulos, Srinivas Devadas

Append-only Authenticated
Dictionaries (AADs)

PKI: Not just an academic problem...

2

PKI: Not just an academic problem...

3

PKI: Not just an academic problem...

4

PKI: Not just an academic problem...

5

PKI: Not just an academic problem...

6

PKI: Not just an academic problem...

7

Certificate Transparency (CT) to the rescue

8

Certificate Transparency (CT) to the rescue

Certificate Authority (CA)

PK

cert = Sig
CA

(visa.com, PK)

1

2

9

visa.com

Certificate Transparency (CT) to the rescue

Certificate Authority (CA)

PK

cert = Sig
CA

(visa.com, PK)

1

2

Transparency log 10

visa.com

 , PK

Certificate Transparency (CT) to the rescue

Certificate Authority (CA)

PK

cert = Sig
CA

(visa.com, PK)

1

2

Transparency log

cert

3

11

visa.com

 , PK

Certificate Transparency (CT) to the rescue

Certificate Authority (CA)

Transparency log

cert

3

Validity: A certificate is valid only if it's in the log.

12

visa.com

 , PK , PK'

Certificate Transparency (CT) to the rescue

Certificate Authority (CA)

Transparency log

cert'

3

Validity: A certificate is valid only if it's in the log.

Consequence: Fake certs must be published in the log.

13

visa.com

 , PK , PK'

Certificate Transparency (CT) to the rescue

Certificate Authority (CA)
Transparency: Once certificate is in the log...

Transparency log 14

visa.com

 , PK , PK'

Certificate Transparency (CT) to the rescue

Certificate Authority (CA)
Transparency: Once certificate is in the log, (1) it stays
there forever and...

Transparency log 15

visa.com

 , PK , PK'

Certificate Transparency (CT) to the rescue

Certificate Authority (CA)
Transparency: Once certificate is in the log, (1) it stays
there forever and (2) it can be efficiently discovered.

Transparency log 16

visa.com

 , PK' , PK

Certificate Transparency (CT) to the rescue

Certificate Authority (CA)
Transparency: Once certificate is in the log, (1) it stays
there forever and (2) it can be efficiently discovered.

Non-equivocation: Everybody "sees" the same log.

Transparency log 17

visa.com

Certificate Transparency (CT) to the rescue

Certificate Authority (CA)

Transparency log

 , PK , PK'

Non-equivocation: Everybody "sees" the same log.

Consequence: Fake cert for VISA is discovered by VISA in the log.

Transparency: Once certificate is in the log, (1) it stays
there forever and (2) it can be efficiently discovered.

18

visa.com

Certificate Transparency (CT) model

19

20

d
2

d
3

a, v
a

c, v
c

b, v
b

Certificate Transparency (CT) model

21

d
2Append v to key a!

1

d
3

a, v
a

c, v
c

b, v
b

Certificate Transparency (CT) model

22

d
2

1

2

d
3

d
4

a, v
a

c, v
c

b, v
b

a, v

Certificate Transparency (CT) model

Append v to key a!

a, v
a

c, v
c

b, v
b

Append v to key a!

23

d
3

d
2

1

2

d
4

a, v
a

c, v
c

b, v
b

a, v

Certificate Transparency (CT) model

d
3

a, v
a

c, v
c

b, v
b

24

d
3

d
2

What are key b's values?

2

3

d
4

Certificate Transparency (CT) model

a, v
a

c, v
c

b, v
b

a, v

Append v to key a!
1

d
3

a, v
a

c, v
c

b, v
b

25

d
3

d
2

What are key b's values?

V = {v
b
}, π

2

3
4

d
4

Certificate Transparency (CT) model

a, v
a

c, v
c

b, v
b

a, v

Append v to key a!
1

d
3

a, v
a

c, v
c

b, v
b

26

d
3

d
2

What are key b's values?

V = {v
b
}, π

2

3
4

d
4

VerLookup(d
3

, b, V, π)
5

Certificate Transparency (CT) model

a, v
a

c, v
c

b, v
b

a, v

Append v to key a!
1

d
3

a, v
a

c, v
c

b, v
b

27

d
3

d
2

What are key b's values?

V = {v
b
}, π

2

3
4

d
4

VerLookup(d
3

, b, V, π)
5

Certificate Transparency (CT) model

Completeness
guarantees!

a, v
a

c, v
c

b, v
b

a, v

Append v to key a!
1

d
3

a, v
a

c, v
c

b, v
b

28

d
3

d
2

d
1

What are key b's values?

V = {v
b
}, π

2

3
4

d
4

Certificate Transparency (CT) model

a, v
a

c, v
c

b, v
b

a, v

Append v to key a!
1

d
3

a, v
a

c, v
c

b, v
b

VerLookup(d
3

, b, V, π)
5

What are key b's values?

V = {v
b
}, π

3
4

29

d
3

d
2

d
1

Is there a new digest?

2

6

d
4

VerLookup(d
3

, b, V, π)
5

Certificate Transparency (CT) model

a, v
a

c, v
c

b, v
b

a, v

Append v to key a!
1

d
3

a, v
a

c, v
c

b, v
b

What are key b's values?

V = {v
b
}, π

3
4

30

d
3

d
2

d
1

Is there a new digest?

d
4

, π

2

6
7

d
4

VerLookup(d
3

, b, V, π)
5

Certificate Transparency (CT) model

a, v
a

c, v
c

b, v
b

a, v

Append v to key a!
1

d
3

a, v
a

c, v
c

b, v
b

What are key b's values?

V = {v
b
}, π

3
4

31

d
3

d
2

d
1

Is there a new digest?

d
4

, π

d
4

2

6
7 9

d
4 VerAppendOnly(d

1
, d

4
, π)

8

VerLookup(d
3

, b, V, π)
5

Certificate Transparency (CT) model

a, v
a

c, v
c

b, v
b

a, v

Append v to key a!
1

d
3

a, v
a

c, v
c

b, v
b

Previous work

32

Problem: In current logs, one of the proofs is large.

Transparency log Append time Lookup proof size Append-only
proofs size

CT log n n log n

Previous work

33

Problem: In current logs, one of the proofs is large.

n = # of certificates in log

Transparency log Append time Lookup proof size Append-only
proofs size

CT log n n log n

ECT, CONIKS, etc. log n log n n

Previous work

34

Problem: In current logs, one of the proofs is large.

n = # of certificates in log

Problem: In current logs, one of the proofs is large.

Solution: AADs with polylogarithmic proof sizes!

Transparency log Append time Lookup proof size Append-only
proofs size

CT log n n log n

ECT, CONIKS, etc. log n log n n

Our work λ log3 n
(amortized)

log2 n log n

Our work:
Append-only Authenticated Dictionaries (AADs)

n = # of certificates in log, λ = security parameter 35

reduce log bandwidth from

hundreds of GBps down to

a few GBps!

In this talk: Append-only Authenticated Set (AAS) from bilinear accumulators

1. Bilinear accumulators
2. Bilinear Trees (BTs)
3. Bilinear Prefix Trees (BPTs)
4. Bilinear Frontier Trees (BFTs)
5. Amortization
6. From AAS to AAD (not in this talk)

Overview

36

Bilinear accumulators

q-SDH public parameters , deg(α) < q. Commit to α(x) as
follows:

37

Set A = {e1, e2, …, en}, polynomial α(x) = (x - e1)(x - e2)...(x - en) with coefficients
(a0, a1, …, an)

The commitment acc(A) is a bilinear accumulator. Expensive: O(n log2 n) time

Let A with polynomial α(x), accumulator a,
and let B with polynomial β(x), accumulator b,

Accumulator subset proofs

38

Let A with polynomial α(x), accumulator a,
and let B with polynomial β(x), accumulator b,

Accumulator subset proofs

39

Let A with polynomial α(x), accumulator a,
and let B with polynomial β(x), accumulator b,

Accumulator subset proofs

40

Let A with polynomial α(x), accumulator a,
and let B with polynomial β(x), accumulator b,

Subset proof is gq(s) and is verified using bilinear map e():

Accumulator subset proofs

41

Let A with polynomial α(x), accumulator a,
and let B with polynomial β(x), accumulator b,

Subset proof is gq(s) and is verified using bilinear map e():

Accumulator subset proofs

42

Let A with polynomial α(x), accumulator a,
and let B with polynomial β(x), accumulator b,

Subset proof is gq(s) and is verified using bilinear map e():

Accumulator subset proofs

43

Let A with polynomial α(x), accumulator a,
and let B with polynomial β(x), accumulator b,

Subset proof is gq(s) and is verified using bilinear map e():

Accumulator subset proofs

44(* under q-SBDH)

Let A with polynomial α(x), accumulator a,
and let B with polynomial β(x), accumulator b,

Subset proof is gq(s) and is verified using bilinear map e():

Accumulator subset proofs

45(* under q-SBDH)Expensive: O(n log n) time to compute one proof

Accumulator disjointness proofs

1. Bilinear accumulators
2. Bilinear Trees (BTs)
3. Bilinear Prefix Trees (BPTs)
4. Bilinear Frontier Trees (BFTs)
5. Amortization
6. From AAS to AAD (not in this talk)

The road so far...

47

48

Bilinear Trees (BTs):
Precomputed membership proofs

49

Bilinear Trees (BTs):
Precomputed membership proofs

50

Bilinear Trees (BTs):
Precomputed membership proofs

51

Bilinear Trees (BTs):
Precomputed membership proofs

52

Bilinear Trees (BTs):
Precomputed membership proofs

53

O(n log2 n) time to precompute all membership proofs

Bilinear Trees (BTs):
Precomputed membership proofs

Bilinear Trees (BTs):
Precomputed membership proofs

54

O(n log2 n) time to precompute all membership proofs
...but what about precomputing non-membership?

1. Bilinear accumulators
2. Bilinear Trees (BTs)
3. Bilinear Prefix Trees (BPTs)
4. Bilinear Frontier Trees (BFTs)
5. Amortization
6. From AAS to AAD (not in this talk)

The road so far...

55

56

Bilinear Prefix Trees (BTs):
Towards precomputed non-membership proofs

Bilinear Prefix Trees (BTs):
Towards precomputed non-membership proofs

57

Bilinear Prefix Trees (BTs):
Towards precomputed non-membership proofs

58

Bilinear Prefix Trees (BTs):
Towards precomputed non-membership proofs

59

Bilinear Prefix Trees (BTs):
Towards precomputed non-membership proofs

60

Bilinear Prefix Trees (BTs):
Towards precomputed non-membership proofs

61

Bilinear Prefix Trees (BTs):
Towards precomputed non-membership proofs

62

+ accumulate!

Bilinear Prefix Trees (BTs):
Towards precomputed non-membership proofs

63

+ accumulate!set of all prefixes!

i.e., a prefix tre
e

Bilinear Prefix Trees (BTs):
Towards precomputed non-membership proofs

64

+ accumulate!set of all prefixes!

i.e., a prefix tre
e

O(λn log2 n) time to precompute all membership proofs
No seriously, how do we precompute non-membership?

1. Bilinear accumulators
2. Bilinear Trees (BTs)
3. Bilinear Prefix Trees (BPTs)
4. Bilinear Frontier Trees (BFTs)
5. Amortization
6. From AAS to AAD (not in this talk)

The road so far...

65

Bilinear Frontier Trees (BFTs)
Precompute non-membership proofs

66

P = prefixes of {e1, e2, e3, e4}
 = set in root of BPT

00

000

ε
0 1

01 11

010
e3 e1 e2

110
e4

111

001

00

000 011

10

ε
0 1

01 11

010

Bilinear Frontier Trees (BFTs)
Precompute non-membership proofs

67

e3 e1 e2

P = prefixes of {e1, e2, e3, e4}

110
e4

 = set in root of BPT

111

001

00

000 011

10

ε
0 1

01 11

111010

Bilinear Frontier Trees (BFTs)
Precompute non-membership proofs

68

e3 e1 e2
F = frontier(P)P = prefixes of {e1, e2, e3, e4}

O(λn log2 n) time to precompute all non-membership proofs

F ∩ P = ⦰
disjointness proof!

110
e4

 = set in root of BPT

1. Bilinear accumulators
2. Bilinear Trees (BTs)
3. Bilinear Prefix Trees (BPTs)
4. Bilinear Frontier Trees (BFTs)
5. Amortization
6. From AAS to AAD (not in this talk)

The road so far...

69

Static AAS data structure so far. How can we append efficiently? And what
about append-only proofs?

Dynamic AAS via amortization

70Ei = pfx(ei)

Static AAS data structure so far. How can we append efficiently? And what
about append-only proofs?

Dynamic AAS via amortization

71

acc(E1)

Ei = pfx(ei)

Static AAS data structure so far. How can we append efficiently? And what
about append-only proofs?

Dynamic AAS via amortization

72

acc(E1) acc(E2)

Ei = pfx(ei)

Static AAS data structure so far. How can we append efficiently? And what
about append-only proofs?

Dynamic AAS via amortization

73

acc(E1) acc(E2)

acc(E1 ∪ E2)

Ei = pfx(ei)

Static AAS data structure so far. How can we append efficiently? And what
about append-only proofs?

Dynamic AAS via amortization

74

acc(E1) acc(E2) acc(E3)

acc(E1 ∪ E2)

Ei = pfx(ei)

Static AAS data structure so far. How can we append efficiently? And what
about append-only proofs?

Dynamic AAS via amortization

75

acc(E1) acc(E2) acc(E3) acc(E4)

acc(E1 ∪ E2)

Ei = pfx(ei)

Static AAS data structure so far. How can we append efficiently? And what
about append-only proofs?

Dynamic AAS via amortization

76

acc(E1) acc(E2) acc(E3) acc(E4)

acc(E1 ∪ E2)

Ei = pfx(ei)

acc(E3 ∪ E4)

Static AAS data structure so far. How can we append efficiently? And what
about append-only proofs?

Dynamic AAS via amortization

77

acc(E1) acc(E2) acc(E3) acc(E4)

acc(E1 ∪ E2)

acc(E1 ∪ E2 ∪ E3 ∪ E4)

Ei = pfx(ei)

acc(E3 ∪ E4)

Static AAS data structure so far. How can we append efficiently? And what
about append-only proofs?

Dynamic AAS via amortization

78

acc(E5)acc(E1) acc(E2) acc(E3) acc(E4)

acc(E1 ∪ E2)

acc(E1 ∪ E2 ∪ E3 ∪ E4)

Ei = pfx(ei)

acc(E3 ∪ E4)

Static AAS data structure so far. How can we append efficiently? And what
about append-only proofs?

Dynamic AAS via amortization

79

acc(E5)acc(E1) acc(E2) acc(E3) acc(E4)

acc(E1 ∪ E2)

acc(E1 ∪ E2 ∪ E3 ∪ E4)

Ei = pfx(ei)

acc(E3 ∪ E4)

Static AAS data structure so far. How can we append efficiently? And what
about append-only proofs?

Dynamic AAS via amortization

80

acc(E5)acc(E1) acc(E2) acc(E3) acc(E4)

acc(E3 ∪ E4)acc(E1 ∪ E2)

acc(E1 ∪ E2 ∪ E3 ∪ E4)
compute BFTs

for each root!

Ei = pfx(ei)

Dynamic AAS via amortization

81

acc(E5) acc(E6) acc(E7) acc(E8)

acc(E7 ∪ E8)acc(E5 ∪ E6)

acc(E5 ∪ E6 ∪ E7 ∪ E8)

acc(E1 ∪ E2 ∪ ... ∪ E8)

acc(E1) acc(E2) acc(E3) acc(E4)

acc(E3 ∪ E4)acc(E1 ∪ E2)

acc(E1 ∪ E2 ∪ E3 ∪ E4)

T(λ, n) = 2T(λ, n/2) + O(λn log2 n) = O(λn log3 n)
⇒ O(λ log3 n) amortized append time

1. Bilinear accumulators
2. Bilinear Trees (BTs)
3. Bilinear Prefix Trees (BPTs)
4. Bilinear Frontier Trees (BFTs)
5. Amortization
6. From AAS to AAD (not in this talk)

The road so far...

82

AAD from AAS

Quick idea: Build AAS over H(k) | H(v).

Plus, leverage frontier nodes for lookup proofs.

83

Experiments: Lookup proof size

84

Experiments: Append time

85

Conclusion

● HTTPs is vulnerable to CA compromises
● Certificate Transparency (CT) helps detect CA compromises

○ ...but CT logs are inefficient to audit

● We introduced Append-only Authenticated Dictionaries (AADs)
○ Foundation for building efficient-to-audit transparency logs
○ 200x bandwidth savings
○ Further secure HTTPs and messaging apps (e.g., WhatsApp)

● Future work
○ Faster appends (de-amortization?)
○ Smaller lookups (SNARKs?)
○ Simpler assumptions?

86

Appendix

87

Abstracting Certificate Transparency (CT)

88

An authenticated dictionary. Maps key to list of values. (i.e., a domain name to
its history of certificates). Once value is added to key, it cannot be removed.

Abstracting Certificate Transparency (CT)

89

Server API (i.e., log server):

An authenticated dictionary. Maps key to list of values. (i.e., a domain name to
its history of certificates). Once value is added to key, it cannot be removed.

Server API (i.e., log server):

Abstracting Certificate Transparency (CT)

90

An authenticated dictionary. Maps key to list of values. (i.e., a domain name to
its history of certificates). Once value is added to key, it cannot be removed.

Server API (i.e., log server):

Abstracting Certificate Transparency (CT)

91

An authenticated dictionary. Maps key to list of values. (i.e., a domain name to
its history of certificates). Once value is added to key, it cannot be removed.

Server API (i.e., log server):

Abstracting Certificate Transparency (CT)

92

An authenticated dictionary. Maps key to list of values. (i.e., a domain name to
its history of certificates). Once value is added to key, it cannot be removed.

Server API (i.e., log server):

Client API (e.g., VISA, Alice):

Abstracting Certificate Transparency (CT)

93

An authenticated dictionary. Maps key to list of values. (i.e., a domain name to
its history of certificates). Once value is added to key, it cannot be removed.

Server API (i.e., log server):

Client API (e.g., VISA, Alice):

Abstracting Certificate Transparency (CT)

94

An authenticated dictionary. Maps key to list of values. (i.e., a domain name to
its history of certificates). Once value is added to key, it cannot be removed.

Server API (i.e., log server):

Client API (e.g., VISA, Alice):

Abstracting Certificate Transparency (CT)

95

Completeness
guarantees!

An authenticated dictionary. Maps key to list of values. (i.e., a domain name to
its history of certificates). Once value is added to key, it cannot be removed.

Server API (i.e., log server):

Client API (e.g., VISA, Alice):

Abstracting Certificate Transparency (CT)

96

Completeness
guarantees!

An authenticated dictionary. Maps key to list of values. (i.e., a domain name to
its history of certificates). Once value is added to key, it cannot be removed.

Server API (i.e., log server):

Client API (e.g., VISA, Alice):

Abstracting Certificate Transparency (CT)

97

Completeness
guarantees!

Gap between i and j is typically large.

An authenticated dictionary. Maps key to list of values. (i.e., a domain name to
its history of certificates). Once value is added to key, it cannot be removed.

