Append-only Authenticated
Dictionaries (AADS)

Friday, December 7th, 2018
Modular Approach to Cloud Security (MACS) Project Meeting

Alin Tomescu, Vivek Bhupatiraju, Babis Papamanthou, Dimitris Papadopoulos,
Nikos Triandopoulos, Srinivas Devadas

PKI: Not just an academic problem...

PKI: Not just an academic problem...

Google Security Blog

The latest news and insights from Google on security and safety on the Internet

Gmail account security in Iran
September 8, 2011

Posted by Eric Grosse, VP Security Engineering

We learned last week that the compromise of a Dutch company involved with verifying

the authenticity of websites could have put the Internet communications of many

Iranians at risk, including their Gmail. While Google’s internal systems were not
compromised, we are directly contacting possibly affected users and providing similar
information below because our top priority is to protect the privacy and security of our

users.

PKI: Not just an academic problem...

T

Startups
Apps
Gadgets

Google Security Blog

The latest news and insights from Google on security and safety on the Internet

Google Bans China's Website
Certificate Authority After
Security Breach

Catherine Shu @catherineshu / Apr1,2015 C] comment

e auuierntcity O wepsiles Could ridve put e iernec Commimurieduorns ol inariy
Iranians at risk, including their Gmail. While Google’s internal systems were not
compromised, we are directly contacting possibly affected users and providing similar
information below because our top priority is to protect the privacy and security of our

users.

PKI: Not just an academic problem...

Google Security Bl~-

The latest news and insights fro~

Apps
Gadgets, we™"" G

EI Comment

—or€Lcormnmnuriedauorns ol inariy
.«uille Google’s internal systems were not
_uy contacting possibly affected users and providing similar

- &)
o 3 ~<IOW because our top priority is to protect the privacy and security of our

. :
Startd - 11, e th ryg
» "¥55.4p tmillions of
2™ be

Apps
Gadgets| we™" Noﬁ“@“ oy

“o s
P S 8lta] ¢q
e 20\ ™ dbe@om «uile Gou 'rtl.ﬁ
R pen\ ¢ q \ oot . Y- Ca te S

05 ‘ ; ;

¥ i \ "’\\NN\,\M\\ € _uy contacting possibly affected usc.
5(3 U

s sd(ooo“ 3 ~<1low because our top priority is to protect the privacy and secu..,

o

ers.

1
ffected ﬁca tes
_.y affected use. .
ome o} S .
chr A2V 8 _. wur top priority is to protect the privacy and secuu..,
p\N
DAN 600 7

Certificate Transparency (CT) to the rescue

Certificate Transparency (CT) to the rescue

PK

VISA ©]

visa.com - @
cert = Sig_ Alvisa.com, PK)

Certificate Authority (CA)

Certificate Transparency (CT) to the rescue

PK

VISA ©]

visa.com - @
cert = Sig_ Alvisa.com, PK)

Certificate Authority (CA)

-]

Transparency log

10

Certificate Transparency (CT) to the rescue

PK

VISA ©]

visa.com - @
cert = Sig_ Alvisa.com, PK)

Certificate Authority (CA)

certj3>

L VPR

Transparency log

11

Certificate Transparency (CT) to the rescue

VISA

visa.com

Validity: A certificate is valid only if it's in the log. Certificate Authority (CA)

certT)
g e
Transparency log .’

Certificate Transparency (CT) to the rescue

VISA

visa.com
Validity: A certificate is valid only if it's in the log. Certificate Authority (CA)
Consequence: Fake certs must be published in the log. T)
cert'

g S HVe Ve
Transparency log .

Certificate Transparency (CT) to the rescue

VISA

visa.com

Transparency: Once certificate is in the log...
Certificate Authority (CA)

g Ve
Transparency log »

Certificate Transparency (CT) to the rescue

VISA

visa.com

Transparency: Once certificate is in the log, (1) it stays
there forever and... Certificate Authority (CA)

g S HVe Ve
Transparency log i,

Certificate Transparency (CT) to the rescue

VISA

visa.com

Transparency: Once certificate is in the log, (1) it stays
there forever and (2) it can be efficiently discovered. Certificate Authority (CA)

g S HVe Ve
Transparency log i

Certificate Transparency (CT) to the rescue

VISA

visa.com

Transparency: Once certificate is in the log, (1) it stays
there forever and (2) it can be efficiently discovered. Certificate Authority (CA)

Non-equivocation: Everybody "sees" the same log.

. L v
Transparency log .

Certificate Transparency (CT) to the rescue

VISA

visa.com

Transparency: Once certificate is in the log, (1) it stays
there forever and (2) it can be efficiently discovered. Certificate Authority (CA)

Non-equivocation: Everybody "sees" the same log.

Consequence: Fake cert for VISA is discovered by VISA in the log.

e

Transparency log

18

Certificate Transparency (CT) model

Certificate Transparency (CT) model

20

Certificate Transparency (CT) model

Append v to key a!
Q@ O
a, v,
C,V
d3 b,vc
a ' b

21

Certificate Transparency (CT) model

Append v to key a!

a | 22

Certificate Transparency (CT) model

Certificate Transparency (CT) model

Certificate Transparency (CT) model

What are key b's values? d3
()
ey 9 o
V=iv o VY 4
@
))

a, Vv

a

C,V,

d4 b, A
a, Vv

G 25

Certificate Transparency (CT) model

What are key b's values? d3
()
ey 9 o
V={v}m
° @/erLookup(d:g, b, V, m) \{'
@
))

a, Vv

a

GV,

d4 b, A
a, Vv

G 26

Certificate Transparency (CT) model

What are key b's values? d
> 4 © =
SAVes, IT
b)
VerLookup(d., b, V,) \{'
. 5 TCompleteness J
uarantees!
@ ‘
=))]
a,Vv
a
C,V
C
d4 b, A
a, v
a 27

Certificate Transparency (CT) model

d3
G
é/erLookup(ds, b, V,) \{'
1 5 -
@ "
®)) = d
a,Vv '
a
c,V
C
d4 b, Vi ‘
a, v
e J e

Certificate Transparency (CT) model

<

™

oip
¥ 2

VerLookup(d3, b, V, 1)
5
[|

Is there a new digest? o d

29

Certificate Transparency (CT) model

@
)

a,Vv

a

C,V

C
d4 b, A
a, v

G

™

oip
¥ 2

VerLookup(d3, b, V, 1)
5
[|

Is there a new digest? o d

~@ ©: 1
o/

30

Certificate Transparency (CT) model

o %
e
@/erLookup(d:g, b, V,) \{'
@ -
S) = d

1
a,Vv
a
41 b,v
b éVerAppendOnly(d »d,,m) d
G a, v) 8 4 31

Previous work

Problem: In current logs, one of the proofs is large.

32

Previous work

Problem: In current logs, one of the proofs is large.

Transparency log Append time | Lookup proof size | Append-only
proofs size
CT log n n log n

n = # of certificates in log .

Previous work

Problem: In current logs, one of the proofs is large.

Transparency log Append time | Lookup proof size | Append-only
proofs size

CT log n n log n

ECT, CONIKS, etc. log n logn n

n = # of certificates in log 34

Our work:
Append-only Authenticated Dictionaries (AADs)

Problem: In current logs, one of the proofs is large. g b dW‘\dtg f\rhclarr\“
. . : . . duce S
Solution: AADs with polylogarithmic proof sizes! r\,?undreds of GBP
a few GBp
Transparency log Append time | Lookup proof size | Append-only
proofs size

CT log n n log n

ECT, CONIKS, etc. log n logn n

Our work Alog®n log? n log n

(amortized)

n = # of certificates in log, A = security parameter -

Overview

In this talk: Append-only Authenticated Set (AAS) from bilinear accumulators

Bilinear accumulators

Bilinear Trees (BTs)

Bilinear Prefix Trees (BPTs)
Bilinear Frontier Trees (BFTSs)
Amortization

From AAS to AAD (not in this talk)

SV O1E OO DR

36

Bilinear accumulators

SetA={e,e, .. e} polynomial a(x) = (x-e,)(x - e))...(x - €) with coefficients
(a, a, .. a)

q-SDH public parameters (g, ¢°, gs2, ...,9%"), deg(a) < g. Commit to a(x) as
follows:

ace(4) = ()" (¢)" 90" (9

_ ans”™ a,_ 18" 1 ais .a
=g gt S
_ gan3n+an—13n_1+“'+a13+a0
_ ols
=g (s)

The commitment acc(A) is a bilinear accumulator. Expensive: O(n log”n) time

Accumulator subset proofs

Let A with polynomial a(x), accumulator a,
and let B with polynomial B(x), accumulator b,

38

Accumulator subset proofs

Let A with polynomial a(x), accumulator a,
and let B with polynomial B(x), accumulator b,

ACB

39

Accumulator subset proofs

Let A with polynomial a(x), accumulator a,
and let B with polynomial B(x), accumulator b,

AC B az)|B(r) = b(z) = q(z)a(z)

40

Accumulator subset proofs

Let A with polynomial a(x), accumulator a,
and let B with polynomial B(x), accumulator b,

AC B az)|B(r) = b(z) = q(z)a(z)

Subset proof is g9¢) and is verified using bilinear map e():

41

Accumulator subset proofs

Let A with polynomial a(x), accumulator a,
and let B with polynomial B(x), accumulator b,

AC B az)|B(r) = b(z) = q(z)a(z)

Subset proof is g9¢) and is verified using bilinear map e():

e(a, %) = e(b, g)

42

Accumulator subset proofs

Let A with polynomial a(x), accumulator a,
and let B with polynomial B(x), accumulator b,

AC B az)|B(r) = b(z) = q(z)a(z)

Subset proof is g9¢) and is verified using bilinear map e():
e(a,g?)) = e(b,g) &
e(g, g)a(s)q(s) — e(g,g)ﬂ(s) &

43

Accumulator subset proofs

Let A with polynomial a(x), accumulator a,
and let B with polynomial B(x), accumulator b,

AC B az)|B(r) = b(z) = q(z)a(z)

Subset proof is g9¢) and is verified using bilinear map e():
e(a,g?)) = e(b,g) &

e(g, g)a(s)q(s) — e(g,g)ﬂ(s) &
B(z) = q(z)a(z)

(* under g-SBDH) 44

Accumulator subset proofs

Let A with polynomial a(x), accumulator a,
and let B with polynomial B(x), accumulator b,

AC B az)|B(r) = b(z) = q(z)a(z)

Subset proof is g9¢) and is verified using bilinear map e():
e(a,g?)) = e(b,g) &

e(g, g)a(s)q(s) — e(g,g)ﬂ(s) &
B(z) = q(z)a(z)

Expensive: O(n log n) time to compute one proof (* under g-SBDH) 15

Accumulator disjointness proofs

The road so far...

1.
2.
3.
4.
d.
6.

Bilinear accumulators

Bilinear Trees (BTs)

Bilinear Prefix Trees (BPTs)
Bilinear Frontier Trees (BFTSs)
Amortization

From AAS to AAD (not in this talk)

47

Bilinear Trees (BTs):
Precomputed membership proofs

{617 €2, €3, 64}

48

Bilinear Trees (BTs):
Precomputed membership proofs

{617 €2, €3, 64}

/\
{e1,e0} {es,eq}

N N
{er} {e2} {es} {es}

49

Bilinear Trees (BTs):
Precomputed membership proofs

50

Bilinear Trees (BTs):
Precomputed membership proofs

{617 €2, €3, 64}

/\

g(s—el)(s—ez) g(s—eg)(s—e4)

PN N

g(s—el) g(s—ez) g(s—e3) g(s—e4)

51

Bilinear Trees (BTs):
Precomputed membership proofs

g(s—el)(s—eg)(s—e3)(s—e4)

/\

g(s—el)(s—ez) g(s—eg)(s—e4)

PN N

g(s—el) 9(8—62) 9(8—63) g(8—64)

52

Bilinear Trees (BTs):
Precomputed membership proofs

g(s—el)(s—eg)(s—e3)(s—e4)

/\

g(s—el)(s—ez) g(s—eg)(s—e4)

PN N

g(s—el) g(s—ez)

O(n log? n) time to precompute all membership proofs

53

Bilinear Trees (BTs):
Precomputed membership proofs

g(s—el)(s—eg)(s—e3)(s—e4)

/\

g(s—el)(s—ez) g(s—eg)(s—e4)

PN N

g(s—el) g(s—ez)

O(n log? n) time to precompute all membership proofs

...but what about precomputing non-membership?
54

The road so far...

1.
2.
3.
4.
d.
6.

Bilinear accumulators

Bilinear Trees (BTs)

Bilinear Prefix Trees (BPTs)
Bilinear Frontier Trees (BFTSs)
Amortization

From AAS to AAD (not in this talk)

55

Bilinear Prefix Trees (BTs):
Towards precomputed non-membership proofs

56

Bilinear Prefix Trees (BTs):
Towards precomputed non-membership proofs

e.g., e; = 011 = pfx(e;) = {¢,0,01,011}

57

Bilinear Prefix Trees (BTs):
Towards precomputed non-membership proofs

pfx(e1) pfx(ez) pfx(e3) pfx(es)

e.g., e; = 011 = pfx(e;) = {¢,0,01,011}

58

Bilinear Prefix Trees (BTs):
Towards precomputed non-membership proofs

pfx(e1) pfx(ez) pfx(e3) pfx(es)
Py Py Ps Py

e.g., e; = 011 = pfx(e;) = {¢,0,01,011}

59

Bilinear Prefix Trees (BTs):
Towards precomputed non-membership proofs

P1UP2 P3UP4

PN N

pfx(e1) pfx(ez) pfx(e3) pfx(es)
Py Py Ps Py

e.g., e; = 011 = pfx(e;) = {¢,0,01,011}

60

Bilinear Prefix Trees (BTs):
Towards precomputed non-membership proofs

P=PUP,UP3UPy

/\

P1UP2 P3UP4

PN N

pfx(e1) pfx(ez) pfx(e3) pfx(es)
Py Py Ps Py

e.g., e; = 011 = pfx(e;) = {¢,0,01,011}

61

Bilinear Prefix Trees (BTs):
Towards precomputed non-membership proofs

P=PUP,UP3UPy

P1UP2 P3UP4

PN N

pfx(e1) pfx(ez) pfx(e3) pfx(es)
Py Py Ps Py

e.g., e; = 011 = pfx(e;) = {¢,0,01,011}

62

Bilinear Prefix Trees (BTs):
Towards precomputed non-membership proofs

pfx(e1) pfx(ez) pfx(e3) pfx(es)
Py Py Ps Py

e.g., e; = 011 = pfx(e;) = {¢,0,01,011}

63

Bilinear Prefix Trees (BTs):
Towards precomputed non-membership proofs

pfx(e1) pfx(es) pfx(e3) pfx(es)
Pl P2 P3 P4

O(An log? n) time to precompute all membership proofs
No seriously, how do we precompute non-membership?

64

The road so far...

1.
2.
3.
4,
d.
6.

Bilinear accumulators

Bilinear Trees (BTs)

Bilinear Prefix Trees (BPTs)
Bilinear Frontier Trees (BFTSs)
Amortization

From AAS to AAD (not in this talk)

65

Bilinear Frontier Trees (BFTs)
Precompute non-membership proofs

e, e e, e,

P = prefixes of {e_, e , e, e}

= set in root of BPT

66

Bilinear Frontier Trees (BFTs)
Precompute non-membership proofs

P = prefixes of {e_, e , e, e}

= set in root of BPT

67

Bilinear Frontier Trees (BFTs)
Precompute non-membership proofs

g('s_ “001”)(8— 44011”)(3_ “10”)

/\

(S—“OO].”)(S—“O].].”) g(S—“lO”)

/\ /

(s—“001”) gls=“011") g(s—+10")

P = prefixes of {e_, e,, e, €} F = frontier(P)

= set in root of BPT FOP=Q oo

¢\$\°\“

00“‘

O(An log? n) time to precompute all non-membership proofs
68

The road so far...

1.
2.
3.
4.
S.
6.

Bilinear accumulators

Bilinear Trees (BTs)

Bilinear Prefix Trees (BPTs)
Bilinear Frontier Trees (BFTSs)
Amortization

From AAS to AAD (not in this talk)

69

Dynamic AAS via amortization

Static AAS data structure so far. How can we append efficiently? And what
about append-only proofs?

E, = pfx(e) 70

Dynamic AAS via amortization

Static AAS data structure so far. How can we append efficiently? And what
about append-only proofs?

acc(E,)

E, = pfx(e) 71

Dynamic AAS via amortization

Static AAS data structure so far. How can we append efficiently? And what
about append-only proofs?

acc(E,) acc(E,)

E, = pfx(e) 72

Dynamic AAS via amortization

Static AAS data structure so far. How can we append efficiently? And what
about append-only proofs?

acc(E, U E,)

PN

acc(E,) acc(E,)

E, = pfx(e) 73

Dynamic AAS via amortization

Static AAS data structure so far. How can we append efficiently? And what
about append-only proofs?

acc(E, U E,)

PN

acc(E,) acc(E,) acc(E,)

E, = pfx(e) 74

Dynamic AAS via amortization

Static AAS data structure so far. How can we append efficiently? And what
about append-only proofs?

acc(E, U E,)

PN

acc(E,) acc(E,) acc(E,) acc(E,)

E, = pfx(e) 75

Dynamic AAS via amortization

Static AAS data structure so far. How can we append efficiently? And what
about append-only proofs?

acc(E, U E,) acc(E; U E,)
acc(E,) acc(E,) acc(E,) acc(E,)

E, = pfx(e) 76

Dynamic AAS via amortization

Static AAS data structure so far. How can we append efficiently? And what
about append-only proofs?

acc(E, UE, UE, UE))

/\

acc(E, U E,) acc(E; U E,)
acc(E,) acc(E,) acc(E,) acc(E,)

E, = pfx(e) 77

Dynamic AAS via amortization

Static AAS data structure so far. How can we append efficiently? And what
about append-only proofs?

acc(E, UE, UE, UE))

/\

acc(E, U E,) acc(E; U E,)
acc(E,) acc(E,) acc(E,) acc(E,) acc(E;)

E, = pfx(e) 78

Dynamic AAS via amortization

Static AAS data structure so far. How can we append efficiently? And what
about append-only proofs?

acc(E, UE, UE, UE))

/\

acc(E, U E,) acc(E; U E,)
acc(E,) acc(E,) acc(E,) acc(E,) acc(E;)

E, = pfx(e) 79

Dynamic AAS via amortization

Static AAS data structure so far. How can we append efficiently? And what
about append-only proofs?

'/\p\;\e aF T :

com \u
acc(E, UE, UE, UE,) for each 10°
acc(E, U E,) acc(E; U E,)
acc(E,) acc(E,) acc(E,) acc(E,) acc(E;)

E, = pfx(e) 80

Dynamic AAS via amortization

T(A, n) = 2T(A, n/2) + O(An log?n) = O(An log® n)
= O(\ log® n) amortized append time

acc(E, UE, U .. UE)

/\

acc(E, UE, UE, UE)) acc(E; U E, UE, UE,)
acc(E, U E,) acc(E; U E,) acc(E; U E)) acc(E, U Ey)

PN PN PN PN

acc(E,) acc(E,) acc(E,) acc(E,) acc(E;) acc(E,) acc(E,) acc(E,)

81

The road so far...

1.
2.
3.
4.
d.
6.

Bilinear accumulators

Bilinear Trees (BTs)

Bilinear Prefix Trees (BPTs)
Bilinear Frontier Trees (BFTSs)
Amortization

From AAS to AAD (not in this talk)

82

AAD from AAS

Quick idea: Build AAS over H(k) | H(v).

Plus, leverage frontier nodes for lookup proofs.

83

Experiments: Lookup proof size

1204

—e— 0 values
—o— 1 values
1001 —— 2 values
—e— 4 values
8041 8 values
—e— 16 values
32 values

60

Proof size (in KB)

40+

20+

B) 0P oY oD @) D ad D ol A
'\0'7' 29 Q2 %'\9 ,\6"5?’ ,57:\6 66‘)3 ’\3‘\0"161\ ‘)’7’0@%\95‘%61

84

Experiments: Append time

6_
—— batch size 1
5] batch size 32
—— batch size 64
s —— batch size 128
O 4-
()
\".n/ \'\\I\\,\J\,\,\'\l
g \'\\I\\,\[\'\'\\]\\
£ 31
: mwm
L W
% 2 \'\N\I\:\,\
<
1_
0_

2000 4000 6000 8000

o_

85

Conclusion

e HTTPsis vulnerable to CA compromises

e Certificate Transparency (CT) helps detect CA compromises
o ...but CT logs are inefficient to audit
e We introduced Append-only Authenticated Dictionaries (AADs)
o Foundation for building efficient-to-audit transparency logs
o 200x bandwidth savings
o Further secure HTTPs and messaging apps (e.g., WhatsApp)
e Future work
o Faster appends (de-amortization?)

o Smaller lookups (SNARKs?)
o Simpler assumptions?

86

Appendix

Abstracting Certificate Transparency (CT)

An authenticated dictionary. Maps key to list of values. (i.e., a domain name to
its history of certificates). Once value is added to key, it cannot be removed.

88

Abstracting Certificate Transparency (CT)

An authenticated dictionary. Maps key to list of values. (i.e., a domain name to
its history of certificates). Once value is added to key, it cannot be removed.

Server API (i.e., log server):

89

Abstracting Certificate Transparency (CT)

An authenticated dictionary. Maps key to list of values. (i.e., a domain name to
its history of certificates). Once value is added to key, it cannot be removed.

Server API (i.e., log server):

Append(D;, k, v) —>Dz-+1 =D; U{(k,v)}

90

Abstracting Certificate Transparency (CT)

An authenticated dictionary. Maps key to list of values. (i.e., a domain name to
its history of certificates). Once value is added to key, it cannot be removed.

Server API (i.e., log server):
Append(D;, k,v) — dir1,Din1 = D; U{(k,v)}
ProveLookup(D;, k) — 7y, V = {v1,v2,...,Um}

91

Abstracting Certificate Transparency (CT)

An authenticated dictionary. Maps key to list of values. (i.e., a domain name to
its history of certificates). Once value is added to key, it cannot be removed.

Server API (i.e., log server):
Append(D;, k,v) — dir1,Div1 = D; U{(k,v)}
ProveLookup(D;, k) — my, V = {v1,v2,...,Um}
ProveAppendOnly(D;,D;) — m;

92

Abstracting Certificate Transparency (CT)

An authenticated dictionary. Maps key to list of values. (i.e., a domain name to
its history of certificates). Once value is added to key, it cannot be removed.

Server API (i.e., log server):
Append(D;, k,v) — dir1,Div1 = D; U{(k,v)}
ProveLookup(D;, k) — my, V = {v1,v2,...,Um}
ProveAppendOnly(D;,D;) — m;

Client API (e.g., VISA, Alice):

93

Abstracting Certificate Transparency (CT)

An authenticated dictionary. Maps key to list of values. (i.e., a domain name to
its history of certificates). Once value is added to key, it cannot be removed.

Server API (i.e., log server):

Append(D;, k, v) —>D7;+1 =D; U{(k,v)}
ProveLookup(D;, k) — my, V = {v1,v2,...,Um}
ProveAppendOnly(D;,D;) — m;

Client API (e.g., VISA, Alice):

VerLookupk:, V,my) — 0/1

94

Abstracting Certificate Transparency (CT)

An authenticated dictionary. Maps key to list of values. (i.e., a domain name to
its history of certificates). Once value is added to key, it cannot be removed.

Server API (i.e., log server):
Append(D;, k,v) — dir1,Div1 = D; U{(k,v)}
ProveLookup(D;, k) — my, V = {v1,v2,...,Um}
ProveAppendOnly(D;,D;) — m;

Client API (e.g., VISA, Alice): Agggrlgﬁeegfss J
VerLookup(d;, k,V,m,) — 0/1

95

Abstracting Certificate Transparency (CT)

An authenticated dictionary. Maps key to list of values. (i.e., a domain name to
its history of certificates). Once value is added to key, it cannot be removed.

Server API (i.e., log server):
Append(D;, k,v) — dir1,Div1 = D; U{(k,v)}
ProveLookup(D;, k) — my, V = {v1,v2,...,Um}
ProveAppendOnly(D;,D;) — m;

Client API (e.g., VISA, Alice): Agggrlgﬁeegfss }
VerLookup(d;, k,V,my) — 0/1
VerAppendOnly(d;, dj, m;,;) — 0/1

96

Abstracting Certificate Transparency (CT)

An authenticated dictionary. Maps key to list of values. (i.e., a domain name to
its history of certificates). Once value is added to key, it cannot be removed.

Server API (i.e., log server):
Append(D;, k,v) — dir1,Div1 = D; U{(k,v)}
ProveLookup(D;, k) — my, V = {v1,v2,...,Um}
ProveAppendOnly(D;,D;) — m;

Completeness
guarantees!

Client API (e.g., VISA, Alice):

VerLooku p(dz, k V 7TV — 0/1 %[Gap between i and j is typically large. }

VerAppendOnly(d;,d;, m; ;) — 0/1

97

