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Certificate Authority (CA)

Transparency log

cert'

3

Validity: A certificate is valid only if it's in the log.

Consequence: Fake certs must be published in the log.
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Certificate Transparency (CT) to the rescue

Certificate Authority (CA)

Transparency log

      , PK       , PK'

Non-equivocation: Everybody "sees" the same log.

Consequence: Fake cert for VISA is discovered by VISA in the log.

Transparency: Once certificate is in the log, (1) it stays 
there forever and (2) it can be efficiently discovered.
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Problem: In current logs, one of the proofs is large.
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Problem: In current logs, one of the proofs is large.

Solution: AADs with polylogarithmic proof sizes!

Transparency log Append time Lookup proof size Append-only 
proofs size

CT log n n log n

ECT, CONIKS, etc. log n log n n

Our work λ log3 n
(amortized)

log2 n log n

Our work: 
Append-only Authenticated Dictionaries (AADs)

n = # of certificates in log, λ = security parameter 35

reduce log bandwidth from 

hundreds of GBps down to 

a few GBps!



In this talk: Append-only Authenticated Set (AAS) from bilinear accumulators

1. Bilinear accumulators
2. Bilinear Trees (BTs)
3. Bilinear Prefix Trees (BPTs)
4. Bilinear Frontier Trees (BFTs)
5. Amortization
6. From AAS to AAD (not in this talk)

Overview
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Bilinear accumulators

q-SDH public parameters                                   , deg(α) < q. Commit to α(x) as 
follows:
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Set A = {e1, e2, …, en}, polynomial α(x) = (x - e1)(x - e2)...(x - en) with coefficients 
(a0, a1, …, an)

The commitment acc(A) is a bilinear accumulator. Expensive: O(n log2 n) time
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Let A with polynomial α(x), accumulator a,
and let B with polynomial β(x), accumulator b,

Subset proof is gq(s) and is verified using bilinear map e():

Accumulator subset proofs

45(* under q-SBDH)Expensive: O(n log n) time to compute one proof



Accumulator disjointness proofs



1. Bilinear accumulators
2. Bilinear Trees (BTs)
3. Bilinear Prefix Trees (BPTs)
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O(n log2 n) time to precompute all membership proofs
...but what about precomputing non-membership?
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+ accumulate!set of all prefixes!

i.e., a prefix tre
e

O(λn log2 n) time to precompute all membership proofs
No seriously, how do we precompute non-membership?
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Bilinear Frontier Trees (BFTs)
Precompute non-membership proofs
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P = prefixes of {e1, e2, e3, e4}
     = set in root of BPT
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e3 e1 e2
F = frontier(P)P = prefixes of {e1, e2, e3, e4}

O(λn log2 n) time to precompute all non-membership proofs

F ∩ P = ⦰ 
disjointness proof!
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Static AAS data structure so far. How can we append efficiently? And what 
about append-only proofs?

Dynamic AAS via amortization
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Static AAS data structure so far. How can we append efficiently? And what 
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acc(E5)acc(E1) acc(E2) acc(E3) acc(E4)

acc(E3 ∪ E4)acc(E1 ∪ E2)

acc(E1 ∪ E2 ∪ E3 ∪ E4)
compute BFTs

for each root!

Ei = pfx(ei)



Dynamic AAS via amortization
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acc(E5) acc(E6) acc(E7) acc(E8)

acc(E7 ∪ E8)acc(E5 ∪ E6)

acc(E5 ∪ E6 ∪ E7 ∪ E8)

acc(E1 ∪ E2 ∪ ... ∪ E8)

acc(E1) acc(E2) acc(E3) acc(E4)

acc(E3 ∪ E4)acc(E1 ∪ E2)

acc(E1 ∪ E2 ∪ E3 ∪ E4)

T(λ, n) = 2T(λ, n/2) + O(λn log2 n) = O(λn log3 n)
⇒ O(λ log3 n) amortized append time
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AAD from AAS

Quick idea: Build AAS over H(k) | H(v). 

Plus, leverage frontier nodes for lookup proofs.
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Experiments: Lookup proof size
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Experiments: Append time
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Conclusion

● HTTPs is vulnerable to CA compromises
● Certificate Transparency (CT) helps detect CA compromises

○ ...but CT logs are inefficient to audit

● We introduced Append-only Authenticated Dictionaries (AADs)
○ Foundation for building efficient-to-audit transparency logs
○ 200x bandwidth savings
○ Further secure HTTPs and messaging apps (e.g., WhatsApp)

● Future work
○ Faster appends (de-amortization?)
○ Smaller lookups (SNARKs?)
○ Simpler assumptions?
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Abstracting Certificate Transparency (CT)
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Completeness 
guarantees!

Gap between i and j is typically large.

An authenticated dictionary. Maps key to list of values. (i.e., a domain name to 
its history of certificates). Once value is added to key, it cannot be removed.


