
Elastic Secure Marketplace
For

Trading Bare-metal Servers

MACS 2018

Sahil Tikale Amin Mosayyebzadeh
 (PhD Candidate) (PhD Student)
ECE, Boston University ECE, Boston University

MACS (12/07/2018)

Public Cloud

2

Public Cloud Private cloud

3

Hybrid
Cloud

Public Cloud Private cloud

4

Hybrid
Cloud

CAN WE DO
BETTER THAN

THIS ?

Public Cloud Private cloud

5

6

Share excess capacity with others

Common shared pool

Bare Metal Servers

7

HPC/HTC
Cluster

● Unlimited CPU demand.
● Aggregated CPU usage per month
● Happy to share if monthly CPU usage

> HPC owned CPUtime

Common shared pool

Bare Metal Servers

8

HPC/HTC
Cluster

● Unlimited CPU demand.
● Aggregated CPU usage per month
● Happy to share if monthly CPU usage

> HPC owned CPUtime

Common shared pool

Bare Metal Servers

9

HPC/HTC
Cluster

● Unlimited CPU demand.
● Aggregated CPU usage per month
● Happy to share if monthly CPU usage

> HPC owned CPUtime

● Interactive demand: Short term peaks.
● Let other use than running idle

OpenStack
Cluster

Common shared pool

Bare Metal Servers

10

HPC/HTC
Cluster

● Unlimited CPU demand.
● Aggregated CPU usage per month
● Happy to share if monthly CPU usage

> HPC owned CPUtime

● Interactive demand: Short term peaks.
● Let other use than running idle

OpenStack
Cluster

Common shared pool

Bare Metal Servers

11

HPC/HTC
Cluster

● Unlimited CPU demand.
● Aggregated CPU usage per month
● Happy to share if monthly CPU usage

> HPC owned CPUtime

● Interactive demand: Short term peaks.
● Let other use than running idle

OpenStack
Cluster

 OS researchers:
Deterministic Experiments

● Need “Exact-same-hardware”
● Willing to share if guaranteed availability

“exact-same-hardware” is guaranteed to be
available on demand.

● Peak demand : paper deadlines

Common shared pool

Bare Metal Servers

12

HPC/HTC
Cluster

● Unlimited CPU demand.
● Aggregated CPU usage per month
● Happy to share if monthly CPU usage

> HPC owned CPUtime

● Interactive demand: Short term peaks.
● Let other use than running idle

OpenStack
Cluster

 OS researchers:
Deterministic Experiments

● Need “Exact-same-hardware”
● Willing to share if guaranteed availability

“exact-same-hardware” is guaranteed to be
available on demand.

● Peak demand : paper deadlines

Common shared pool

Bare Metal Servers

13

HPC/HTC
Cluster

● Unlimited CPU demand.
● Aggregated CPU usage per month
● Happy to share if monthly CPU usage

> HPC owned CPUtime

● Interactive demand: Short term peaks.
● Let other use than running idle

OpenStack
Cluster

 OS researchers:
Deterministic Experiments

● Need “Exact-same-hardware”
● Willing to share if guaranteed availability

“exact-same-hardware” is guaranteed to be
available on demand.

● Peak demand : paper deadlines

Scalability Lab
@ Red Hat

● High volume demand: 1000s of servers
● Predictable cyclical demands.

Common shared pool

Bare Metal Servers

14

HPC/HTC
Cluster

● Unlimited CPU demand.
● Aggregated CPU usage per month
● Happy to share if monthly CPU usage

> HPC owned CPUtime

● Interactive demand: Short term peaks.
● Let other use than running idle

OpenStack
Cluster

 OS researchers:
Deterministic Experiments

● Need “Exact-same-hardware”
● Willing to share if guaranteed availability

“exact-same-hardware” is guaranteed to be
available on demand.

● Peak demand : paper deadlines

Scalability Lab
@ Red Hat

● High volume demand: 1000s of servers
● Predictable cyclical demands.

Common shared pool

Bare Metal Servers

15

HPC/HTC
Cluster

● Unlimited CPU demand.
● Aggregated CPU usage per month
● Happy to share if monthly CPU usage

> HPC owned CPUtime

● Interactive demand: Short term peaks.
● Let other use than running idle

OpenStack
Cluster

 OS researchers:
Deterministic Experiments

● Need “Exact-same-hardware”
● Willing to share if guaranteed availability

“exact-same-hardware” is guaranteed to be
available on demand.

● Peak demand : paper deadlines

Scalability Lab
@ Red Hat

● High volume demand: 1000s of servers
● Predictable cyclical demands.

HIPAA Complaint Clusters

● Tedious and time consuming to built
● Utilization < 1%
● Willing to share if compliant hardware

available when required.

Common shared pool

Bare Metal Servers

16

HPC/HTC
Cluster

● Unlimited CPU demand.
● Aggregated CPU usage per month
● Happy to share if monthly CPU usage

> HPC owned CPUtime

● Interactive demand: Short term peaks.
● Let other use than running idle

OpenStack
Cluster

 OS researchers:
Deterministic Experiments

● Need “Exact-same-hardware”
● Willing to share if guaranteed availability

“exact-same-hardware” is guaranteed to be
available on demand.

● Peak demand : paper deadlines

Scalability Lab
@ Red Hat

● High volume demand: 1000s of servers
● Predictable cyclical demands.

HIPAA Complaint Clusters

● Tedious and time consuming to built
● Utilization < 1%
● Willing to share if compliant hardware

available when required.

Common shared pool

Bare Metal Servers

17

HPC/HTC
Cluster

● Unlimited CPU demand.
● Aggregated CPU usage per month
● Happy to share if monthly CPU usage

> HPC owned CPUtime

● Interactive demand: Short term peaks.
● Let other use than running idle

OpenStack
Cluster

 OS researchers:
Deterministic Experiments

● Need “Exact-same-hardware”
● Willing to share if guaranteed availability

“exact-same-hardware” is guaranteed to be
available on demand.

● Peak demand : paper deadlines

Scalability Lab
@ Red Hat

● High volume demand: 1000s of servers
● Predictable cyclical demands.

HIPAA Complaint Clusters

● Tedious and time consuming to built
● Utilization < 1%
● Willing to share if compliant hardware

available when required.

● Dedicated data-centers
for National
emergencies utilized
mostly around 2%

● Willing to share if they
can use the shared pool
to ramp up their
systems in during
emergencies.

Common shared pool

Bare Metal Servers

18

HPC/HTC
Cluster

● Unlimited CPU demand.
● Aggregated CPU usage per month
● Happy to share if monthly CPU usage

> HPC owned CPUtime

● Interactive demand: Short term peaks.
● Let other use than running idle

OpenStack
Cluster

 OS researchers:
Deterministic Experiments

● Need “Exact-same-hardware”
● Willing to share if guaranteed availability

“exact-same-hardware” is guaranteed to be
available on demand.

● Peak demand : paper deadlines

Scalability Lab
@ Red Hat

● High volume demand: 1000s of servers
● Predictable cyclical demands.

HIPAA Complaint Clusters

● Tedious and time consuming to built
● Utilization < 1%
● Willing to share if compliant hardware

available when required.

● Dedicated data-centers
for National
emergencies utilized
mostly around 2%

● Willing to share if they
can use the shared pool
to ramp up their
systems in during
emergencies.

Common shared pool

Bare Metal Servers

19

HPC/HTC
Cluster

● Unlimited CPU demand.
● Aggregated CPU usage per month
● Happy to share if monthly CPU usage

> HPC owned CPUtime

● Interactive demand: Short term peaks.
● Let other use than running idle

OpenStack
Cluster

 OS researchers:
Deterministic Experiments

● Need “Exact-same-hardware”
● Willing to share if guaranteed availability

“exact-same-hardware” is guaranteed to be
available on demand.

● Peak demand : paper deadlines

Scalability Lab
@ Red Hat

● High volume demand: 1000s of servers
● Predictable cyclical demands.

HIPAA Complaint Clusters

● Tedious and time consuming to built
● Utilization < 1%
● Willing to share if compliant hardware

available when required.

● Dedicated data-centers
for National
emergencies utilized
mostly around 2%

● Willing to share if they
can use the shared pool
to ramp up their
systems in during
emergencies.

Common shared pool

Bare Metal Servers

20

How do we achieve this ?
● Goal 1: Elastic sharing of hardware between different deployment system

○ Mechanism that supports movement of bare-metal nodes between different clusters.

○ Allows clusters to choose their own method of deploying operating system and application software.

● Goal 2: Minimize the cost of moving nodes between clusters.
○ Minimize the time to setup a cluster.

○ Reduce dependency of state of clusters on the underlying hardware.

● Goal 3: Security for sharing bare-metal servers between non-trusting entities.
○ Protecting incumbent users of bare-metal nodes from malicious previous tenants.

○ Protecting incumbent users of bare-metal nodes from future malicious tenants.

● Goal 4: A system to incentivize sharing of bare-metal servers.
○ Encourage users to give up their nodes when they do not need them.

○ Incentivize users to proactively make nodes available to others who may need it more. 21

How do we achieve this ?
● Goal 1: Elastic sharing of hardware between different deployment system

○ Mechanism that supports movement of bare-metal nodes between different clusters.

○ Allows clusters to choose their own method of deploying operating system and application software.

● Goal 2: Minimize the cost of moving nodes between clusters.

○ Minimize the time to setup a cluster.

○ Reduce dependency of state of clusters on the underlying hardware.

● Goal 3: Security for sharing bare-metal servers between non-trusting entities.

○ Protecting incumbent users of bare-metal nodes from malicious previous tenants.

○ Protecting incumbent users of bare-metal nodes from future malicious tenants.

● Goal 4: A system to incentivize sharing of bare-metal servers.

○ Encourage users to give up their nodes when they do not need them.

○ Incentivize users to proactively make nodes available to others who may need it more. 22

 Goal 1: Elastic sharing of hardware between different deployment system

23

BIG
Data

Cloud HPC

24

BIG
Data

Cloud HPC

 Goal 1: Elastic sharing of hardware between different deployment system

25

HPC BIG
Data

Cloud

 Goal 1: Elastic sharing of hardware between different deployment system

 Goal 1: Elastic sharing of hardware between different deployment system

26

HPC BIG
Data

Cloud

27

Hardware Isolation Layer (HIL)

A fundamental new layer in the data center

that decouples server allocation

from how they are provisioned.

J. Hennessey, et al., "HIL: Designing an Exokernel for the Data Center”, SoCC '16

 Goal 1: Elastic sharing of hardware between different deployment system

28

Hardware Isolation Layer (HIL)

 Goal 1: Elastic sharing of hardware between different deployment system

Colocated pool of
Bare Metal Server

29

Allocate
Bare Metal Servers

Hardware Isolation Layer (HIL)

 Goal 1: Elastic sharing of hardware between different deployment system

30

Hardware Isolation Layer (HIL)

 Goal 1: Elastic sharing of hardware between different deployment system

Connect Network

31

Hardware Isolation Layer (HIL)

 Goal 1: Elastic sharing of hardware between different deployment system

Install using your
favourite

Provisioning System

32

Hardware Isolation Layer (HIL)

 Goal 1: Elastic sharing of hardware between different deployment system

Just 2 api calls: Move
nodes between

clusters

33

Hardware Isolation Layer (HIL)

 Goal 1: Elastic sharing of hardware between different deployment system

Just 2 api calls: Move
nodes between

clusters

34

● Minimal Attack Surface: Core code ~3000 LoC

● Standard proxy interface:
○ Out of band management of servers
○ Network calls of switches.

● Extensible:
○ Cisco, Brocade, Dell, Openvswitch
○ Authentication: Database, Keystone

● Compatible with any provisioning system:
○ IRONIC, MaaS, emulab,
○ Forman, Geni, xCAT, M2, etc

● Used in production for over two years at MOC

 Goal 1: Elastic sharing of hardware between different deployment system

Hardware Isolation Layer (HIL)

How do we achieve this ?
● Goal 1: Elastic sharing of hardware between different deployment system

○ Mechanism that supports movement of bare-metal nodes between different clusters.

○ Allows clusters to choose their own method of deploying operating system and application software.

● Goal 2: Minimize the cost of moving nodes between clusters.
○ Minimize the time to setup a cluster.

○ Reduce dependency of state of clusters on the underlying hardware.

● Goal 3: Security for sharing bare-metal servers between non-trusting entities.

○ Protecting incumbent users of bare-metal nodes from malicious previous tenants.

○ Protecting incumbent users of bare-metal nodes from future malicious tenants.

● Goal 4: A system to incentivize sharing of bare-metal servers.

○ Encourage users to give up their nodes when they do not need them.

○ Incentivize users to proactively make nodes available to others who may need it more. 35

Goal 2: Minimize the cost of moving nodes between clusters.

Existing Bare Metal Offerings Provision to Local Disk - Stateful

Over the network from an ISO or a Pre-installed image

36

 COPY

Heroic approaches have been proposed:
Y. Omote, T. Shinagawa, and K. Kato, “Improving Agility and Elasticity in Bare-metal Clouds,” ASPLOS’15

Problems with Stateful provisioning

37

Goal 2: Minimize the cost of moving nodes between clusters.

❏ Slow Provisioning
Upto tens of minutes to provision

❏ Boot Storms
Heavy network traffic

❏ Single point of failure.
Loss of both OS and application

❏ Bad for moving between
services.
Have to provision from scratch, everytime.

Could we provision Bare Metal
like Virtual Machines

38

Distributed
 Storage

NETBOOT

Bare Metal server

Goal 2: Minimize the cost of moving nodes between clusters.

Problems with Stateful provisioning

39

Goal 2: Minimize the cost of moving nodes between clusters.

❏ Slow Provisioning
Upto tens of minutes to provision

❏ Boot Storms
Heavy network traffic

❏ Single point of failure.
Loss of both OS and application

❏ Bad for moving between
services.
Have to provision from scratch, everytime.

Problems with Stateful provisioning

❏ Slow Provisioning
Upto tens of minutes to provision

❏ Boot Storms
Heavy network traffic

❏ Single point of failure.
Loss of both OS and application

❏ Bad for moving between
services.
Have to provision from scratch, everytime.

40

Goal 2: Minimize the cost of moving nodes between clusters.

★ Only copy what you need.

Problems with Stateful provisioning

❏ Slow Provisioning
Upto tens of minutes to provision

❏ Boot Storms
Heavy network traffic

❏ Single point of failure.
Loss of both OS and application

❏ Bad for moving between
services.
Have to provision from scratch, everytime.

41

Goal 2: Minimize the cost of moving nodes between clusters.

★ Only copy what you need.

★ Multiple NICs and
Distributed File System

Problems with Stateful provisioning

❏ Slow Provisioning
Upto tens of minutes to provision

❏ Boot Storms
Heavy network traffic

❏ Single point of failure.
Loss of both OS and application

❏ Bad for moving between
services.
Have to provision from scratch, everytime.

42

Goal 2: Minimize the cost of moving nodes between clusters.

★ Only copy what you need.

★ Multiple NICs and
Distributed File System

★ Reboot from a saved Image

M2: Malleable Metal as a Service

43

Goal 2: Minimize the cost of moving nodes between clusters.

Simple Microservice

for

Rapid Provisioning and Image Management

"An Experiment on Bare-Metal BigData Provisioning", HotCloud 16
"M2: Malleable Metal as a Service." IC2E 2018

Provisioning/Re-Provisioning Times Comparison For
Single OpenStack Node

~ 25 Minutes

Foreman
Provision

or
Re-Provision

Goal 2: Minimize the cost of moving nodes between clusters.

Node Power
Cycle

Foreman
Provision

Goal 2: Minimize the cost of moving nodes between clusters.

Provisioning Times Comparison For Single OpenStack Node

Power-on Self-test (POST)

Foreman
Provision

Goal 2: Minimize the cost of moving nodes between clusters.

Provisioning Times Comparison For Single OpenStack Node

PXE Request

Foreman
Provision

Goal 2: Minimize the cost of moving nodes between clusters.

Provisioning Times Comparison For Single OpenStack Node

Kernel Download & Local Disk Installation

Foreman
Provision

Goal 2: Minimize the cost of moving nodes between clusters.

Provisioning Times Comparison For Single OpenStack Node

Node Power
Cycle

Foreman
Provision

Goal 2: Minimize the cost of moving nodes between clusters.

Provisioning Times Comparison For Single OpenStack Node

Power-on Self-test (POST) & PXE Request

Foreman
Provision

Goal 2: Minimize the cost of moving nodes between clusters.

Provisioning Times Comparison For Single OpenStack Node

Booting OS from Local DisK

Foreman
Provision

Goal 2: Minimize the cost of moving nodes between clusters.

Provisioning Times Comparison For Single OpenStack Node

OpenStack Package Installation

Foreman
Provision

Goal 2: Minimize the cost of moving nodes between clusters.

Provisioning Times Comparison For Single OpenStack Node

OpenStack Node Configuration

Foreman
Provision

Goal 2: Minimize the cost of moving nodes between clusters.

Provisioning Times Comparison For Single OpenStack Node

~ 25 Minutes

Foreman
Provision

Goal 2: Minimize the cost of moving nodes between clusters.

Provisioning Times Comparison For Single OpenStack Node

~ 25 Minutes

Foreman
Provision

Foreman
Re- Provision

Goal 2: Minimize the cost of moving nodes between clusters.

Provisioning Times Comparison For Single OpenStack Node

~ 25 Minutes

Node Power
Cycle

M2
Provision

Foreman
Provision

or
Re-Provision

Goal 2: Minimize the cost of moving nodes between clusters.

Provisioning Times Comparison For Single OpenStack Node

Power-on Self-test (POST) & PXE Request
M2

Provision

~ 25 Minutes

Foreman
Provision

or
Re-Provision

Goal 2: Minimize the cost of moving nodes between clusters.

Provisioning Times Comparison For Single OpenStack Node

OS Chain Booting (iPXE)
M2

Provision

~ 25 Minutes

Foreman
Provision

or
Re-Provision

Goal 2: Minimize the cost of moving nodes between clusters.

Provisioning Times Comparison For Single OpenStack Node

OpenStack Package Installation and Configuration

M2
Provision

~ 25 Minutes

Foreman
Provision

or
Re-Provision

Goal 2: Minimize the cost of moving nodes between clusters.

Provisioning Times Comparison For Single OpenStack Node

M2
Provision

~ 25 Minutes

Foreman
Provision

or
Re-Provision

~ 11 Minutes

Goal 2: Minimize the cost of moving nodes between clusters.

Provisioning Times Comparison For Single OpenStack Node

M2
Provision

~ 11 Minutes

~ 25 Minutes

Foreman
Provision

or
Re-Provision

~ 5 Minutes 30 Seconds

M2
Re-Provision

● OpenStack Package Installation overhead removed ().

Goal 2: Minimize the cost of moving nodes between clusters.

Provisioning Times Comparison For Single OpenStack Node

M2
Re-Provision ~ 5 Minutes 30 Seconds

~ 25 Minutes

Foreman
Re-Provision

~5X

Goal 2: Minimize the cost of moving nodes between clusters.

Provisioning Times Comparison For Single OpenStack Node

M2
Re-Provision ~ 5 Minutes 30 Seconds

~ 25 Minutes

Foreman
Re-Provision

● M2 Reduces Provisioning/Re-Provisioning Times.

● POST () dominates M2 provisioning time.

Goal 2: Minimize the cost of moving nodes between clusters.

Provisioning Times Comparison For Single OpenStack Node

HIL

M2 Architecture Overview

64

❏ Bare Metal Allocation

❏ Network Isolation (layer 2)

Goal 2: Minimize the cost of moving nodes between clusters.

CEPHHIL

65

❏ Data Store

❏ Pre-Installed Images

Goal 2: Minimize the cost of moving nodes between clusters.

M2 Architecture Overview

CEPHHIL

66

iSCSI
Gateway

❏ Software iSCSI Server

❏ TGT Software iSCSI

Goal 2: Minimize the cost of moving nodes between clusters.

M2 Architecture Overview

CEPHHIL

67

iSCSI
Gateway

DHCP

iPXE TFTP

❏ Diskless Booting from iSCSI target

Goal 2: Minimize the cost of moving nodes between clusters.

M2 Architecture Overview

CEPHHIL

68

iSCSI
Gateway

DHCP

iPXE TFTP

REST Service

❏ Orchestration Engine

Goal 2: Minimize the cost of moving nodes between clusters.

M2 Architecture Overview

CEPH

REST Service

USER

HIL

69

Goal 2: Minimize the cost of moving nodes between clusters.

M2 Architecture Overview

CEPH

Reserved
Servers

1. Reserve Nodes

USER

REST Service

HIL

70

Goal 2: Minimize the cost of moving nodes between clusters.

M2 Architecture Overview

CEPH

2. Provision Reserved Node

USER

REST Service

1. Reserve Nodes

Reserved
Servers

HIL

71

Goal 2: Minimize the cost of moving nodes between clusters.

M2 Architecture Overview

CEPH

REST Service

CEPH
Interface

USER

3. Clone Golden Image

Cloned
Images

2. Provision Reserved Node
1. Reserve Nodes

Reserved
Servers

HIL

72

Goal 2: Minimize the cost of moving nodes between clusters.

M2 Architecture Overview

CEPH

REST Service

CEPH
Interface

iSCSI
Gateway

USER

4. Expose
Cloned Image

as iSCSI Target

3. Clone Golden Image
2. Provision Reserved Node

1. Reserve Nodes

Reserved
Servers

Cloned
Images

HIL

73

Goal 2: Minimize the cost of moving nodes between clusters.

M2 Architecture Overview

CEPH

REST Service

DHCP

iSCSI
Gateway

USER

5. Configure
M2 to PXE

boot

CEPH
Interface

Reserved
Servers

4. Expose
Cloned Image

as iSCSI Target

3. Clone Golden Image
2. Provision Reserved Node

1. Reserve Nodes

Cloned
Images

HIL

74

iPXE TFTP

Goal 2: Minimize the cost of moving nodes between clusters.

M2 Architecture Overview

CEPH

REST Service

HIL
Interface

CEPH
Interface

DHCP

iSCSI
Gateway

USER

6. Attach
Nodes to

Provisioning
NetworkReserved

Servers
5. Configure
M2 to PXE

boot

4. Expose
Cloned Image

as iSCSI Target

3. Clone Golden Image
2. Provision Reserved Node

1. Reserve Nodes

Cloned
Images

HIL

75

iPXE TFTP

Goal 2: Minimize the cost of moving nodes between clusters.

M2 Architecture Overview

CEPH

REST Service

HIL
Interface

CEPH
Interface

DHCP

iSCSI
Gateway

USER

7. PXE Boot
Reserved

Nodes

Reserved
Servers

6. Attach
Nodes to

Provisioning
Network 5. Configure

M2 to PXE
boot

4. Expose
Cloned Image

as iSCSI Target

3. Clone Golden Image
2. Provision Reserved Node

1. Reserve Nodes

Cloned
Images

HIL

76

iPXE TFTP

Goal 2: Minimize the cost of moving nodes between clusters.

M2 Architecture Overview

How do we achieve this ?
● Goal 1: Elastic sharing of hardware between different deployment system

○ Mechanism that supports movement of bare-metal nodes between different clusters.

○ Allows clusters to choose their own method of deploying operating system and application software.

● Goal 2: Minimize the cost of moving nodes between clusters.

○ Minimize the time to setup a cluster.

○ Reduce dependency of state of clusters on the underlying hardware.

● Goal 3: Security for sharing bare-metal servers between non-trusting entities.
○ Protecting incumbent users of bare-metal nodes from malicious previous tenants.

○ Protecting incumbent users of bare-metal nodes from future malicious tenants.

● Goal 4: A system to incentivize sharing of bare-metal servers.

○ Encourage users to give up their nodes when they do not need them.

○ Incentivize users to proactively make nodes available to others who may need it more. 77

Today's Bare Metal Clouds
● Don't share machines between tenants: no co-location attacks
● However:

○ Large TCB & attack surface
○ "Trust-me" model
○ Fixed security
○ Hardware vulnerabilities is exposed to the tenants: firmware
○ Provisioning is slow

78

Bare Metal
Problems

Shared hardwareTrust-Me modelLarge attack
surface

Exposed
hardware

vulnerabilities
Slow Provisioning Fixed

Cost/security

Goal 3: Security for sharing bare-metal servers between non-trusting entities.

BOLTED: a new architecture for bare metal cloud

● Minimizing trust in the provider
● Supporting even the most security sensitive tenants
● Tenants can make the cost/performance/security tradeoff
● Provisioning time as fast as virtual
● Small Microservices; most can be deployed by tenants and not in TCB

79

Bare Metal
Problems

Shared hardwareTrust-Me modelLarge attack
surface

Exposed
hardware

vulnerabilities
Slow Provisioning Fixed

Cost/security

Goal 3: Security for sharing bare-metal servers between non-trusting entities.

Isolation
Service

Attestation
Service

Provisioning
Service

Free Node Pool

Airlock

Rejected Pool
Tenant Secure Pool

3

Attest Node’s
Firmware

Allocate a node
and move it into a
quarantined state

where node is
isolated

1

Download
bootloader and client
side attestation
software

2
If Attestation passes:
move the node
to tenant’s
enclave

5

If Attestation
fails: moves the
node to rejected

pool

7

Provision
the node
with tenant’s
OS and
applications

6

Bolted architecture

Allocate a node
and move it into a
quarantined state

where node is
isolated

1

Download
bootloader and client
side attestation
software

2
If Attestation passes:
move the node
to tenant’s
enclave

5

3

Attest Node’s
Firmware

Provision
the node
with tenant’s
OS and
applications

6

HILKeylimeM2

Goal 3: Security for sharing bare-metal servers between non-trusting entities.

How do we attest a node?
● Software hash measurements are stored in TPM

● Attestation client side sends these measurement

ro server side

● Attestation server side check them against a
whitelist

81

Airlock

Goal 3: Security for sharing bare-metal servers between non-trusting entities.

What about the firmware?

● Legacy BIOS, UEFI, … are huge
○ Vulnerable to attacks;

potentially enabling tenants to modify FW
○ No way for tenant to inspect FW

● LinuxBoot: A stripped down linux firmware
○ Small, Open source
○ Deterministically built

● Bolted works with either UEFI or LinuxBoot

82

Goal 3: Security for sharing bare-metal servers between non-trusting entities.

Answering different needs of different tenants

Tenant’s
Attestation Service

Tenant’s
Provisioning Service

Provider’s
Isolation Service

Provider’s
Attestation Service

Provider’s
Provisioning Service

Alice Bob Charlie

83

Disk Encryption
Network Encryption

Goal 3: Security for sharing bare-metal servers between non-trusting entities.

Foreman
Provision

Bolted - Performance/Security tradeoff
Goal 3: Security for sharing bare-metal servers between non-trusting entities.

~700 Seconds

M2
Provision

Bolted - Performance/Security tradeoff
Goal 3: Security for sharing bare-metal servers between non-trusting entities.

~300 Seconds

Foreman

M2 with
LinuxBoot

Bolted - Performance/Security tradeoff
Goal 3: Security for sharing bare-metal servers between non-trusting entities.

~190 Seconds

Foreman

M2 with
UEFI

Bolted - Performance/Security tradeoff
Goal 3: Security for sharing bare-metal servers between non-trusting entities.

Bolted
Provision

(UEFI)

~370 Seconds

Foreman

M2 with
UEFI

M2 with
LinuxBoot

Bolted - Performance/Security tradeoff
Goal 3: Security for sharing bare-metal servers between non-trusting entities.

Bolted
Provision

(LinuxBoot)
~270 Seconds

~300 Seconds

Foreman

M2 with
UEFI

M2 with
LinuxBoot

Bolted
Provision

(UEFI)
Better runtime

Bolted - Performance/Security tradeoff
Goal 3: Security for sharing bare-metal servers between non-trusting entities.

Bolted - UEFI
(Disk and Network

Encryption)

Bolted - LinuxBoot
(Disk and Network

Encryption)

~370 Seconds

~270 Seconds

~450 Seconds

~350 Seconds

Bolted
(LinuxBoot)

Bolted
(UEFI)

35% overhead

Runtime Overhead: Microbenchmarks

90

Goal 3: Security for sharing bare-metal servers between non-trusting entities.

Runtime Overhead: Real World Applications
16 Dell M620 nodes, 64 GB memory, 2 Xeon E5-2650 v2 2.60GHz processors 8 cores

91

Goal 3: Security for sharing bare-metal servers between non-trusting entities.

Bolted: A Secure Cloud
with Minimal Provider Trust

92

Goal 3: Security for sharing bare-metal servers between non-trusting entities.

Putting tenants, rather than the provider, in charge
to choose the tradeoffs between security, price, and performance

“A Secure Cloud with Minimal Provider Trust”, HotCloud’18
“Tenant Controlled Security for Bare Metal Clouds”, submitted to EuroSys’19

How do we achieve this ?
● Goal 1: Elastic sharing of hardware between different deployment system

○ Mechanism that supports movement of bare-metal nodes between different clusters.

○ Allows clusters to choose their own method of deploying operating system and application software.

● Goal 2: Minimize the cost of moving nodes between clusters.

○ Minimize the time to setup a cluster.

○ Reduce dependency of state of clusters on the underlying hardware.

● Goal 3: Security for sharing bare-metal servers between non-trusting entities.

○ Protecting incumbent users of bare-metal nodes from malicious previous tenants.

○ Protecting incumbent users of bare-metal nodes from future malicious tenants.

● Goal 4: A system to incentivize sharing of bare-metal servers.
○ Encourage users to give up their nodes when they do not need them.

○ Incentivize users to proactively make nodes available to others who may need it more. 93

HPC/HTC
Cluster

● Unlimited CPU demand.
● Aggregated CPU usage per month
● Happy to share if monthly CPU usage

> HPC owned CPUtime

● Interactive demand: Short term peaks.
● Let other use than running idle

OpenStack
Cluster

 OS researchers:
Deterministic Experiments

● Need “Exact-same-hardware”
● Willing to share if guaranteed availability

“exact-same-hardware” is guaranteed to be
available on demand.

● Peak demand : paper deadlines

Scalability Lab
@ Red Hat

● High volume demand: 1000s of servers
● Predictable cyclical demands.

HIPAA Complaint Clusters

● Tedious and time consuming to built
● Utilization < 1%
● Willing to share if compliant hardware

available when required.

● Dedicated data-centers
for National
emergencies utilized
mostly around 2%

● Willing to share if they
can use the shared pool
to ramp up their
systems in during
emergencies.

Common shared pool

Bare Metal Servers

94

Requirements

How do we satisfy all these divergent needs ?

● Access to hardware you own whenever you want.

● Ability to reserve nodes for future use.

● Ability to request and offer specific hardware.

● Strong incentive to give up nodes when

○ You do not need them

○ Or someone else needs them more than you do.

Solution: Marketplace with an underlying economic model
95

Goal 4: A system to incentivize sharing of bare-metal servers.

Towards a Simple Marketplace: First-Steps

Assumptions:
● Homogeneous pools of Bare-Metal Servers
● Marketplace Tracks of Tenant Credits and Server Ownership

Incentivization:
● Tenants Accrue Credits when Other Tenants Lease their Servers
● Expend Credits to Lease Servers
● Price High ⇒ Release Servers

96

Goal 4: A system to incentivize sharing of bare-metal servers.

Shared PoolHIPAAHPC/HTCOpenStack

HIL FLOCX

M2 BoltedM2

FLOCX: Marketplace for Bare-Metal Servers

97

Goal 4: A system to incentivize sharing of bare-metal servers.

Future Features

● Bids: Requesting hardware at desired asking price-range

● Offers: Complex time intervals for sharing idle nodes

● Advanced Reservation System: Ability to make reservations in future

● Dynamic Pricing: Prices reflecting demand and supply fluctuations

98

Goal 4: A system to incentivize sharing of bare-metal servers.

Agent-Based Trading

● Initially human bid/offer resources in the FLOCX

● Consequently, develop agents for automated trading
○ Exemplary agents for HPC and OpenStack
○ HPC Agent: maximize CPUtime
○ OpenStack Agent: maximize revenue

99

Goal 4: A system to incentivize sharing of bare-metal servers.

Future Directions

○ Integrate these services in all the clusters at MGHPCC.

○ Scaling and Productizing:

■ Increase open source community support.

■ Improve robustness for each service.

○ Formalizing the security guarantees from hardware isolation using the Universally Composable

(UC) security framework.

○ Expanding the attestation workflow to include all firmwares.

○ Integration of extra layers of encryptions for additional compliance regimes.

○ Enable Organization to Deploy and Manage agents for automatic trading of resources.

100

Questions / Feedback

Elastic Secure Marketplace for
Trading Bare-metal Servers

where sharing (servers) is always good !!

Thank You

101

