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Project Background
• Securing computing systems is hard, especially those built 

using cryptographic schemes and protocols 
• Proving the security of complex systems all in one “go” is 

unrealistic 
• Instead a modular approach is needed 
• Even with a modular approach, paper and pencil 

mathematics imperfectly copes with the complexity of 
security proofs 

• Consequently, the mechanization of security proofs is 
desirable
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Project Genesis and Goals
• Our project is an outgrowth of the MACS 
• We are seeking to combine Universally Composable (UC) 

Security — as pioneered Canetti and others — with proof 
mechanization 
• UC Security is a refinement of the familiar real/ideal 

paradigm 
• We are also interested in connecting such mechanized, 

modular high-level proofs with verified implementations
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Real/Ideal Paradigm
• For a given protocol, two games: 

• a real game, based on the protocol 
• an ideal game, that’s secure by construction 

• The protocol is said to be secure iff a realistic adversary can’t 
distinguish the real and ideal games, or, more precisely, iff the 
probability of it distinguishing the real and ideal games is 
negligible 

• In a typical real/ideal formulation, the games drive the 
computation, calling the adversary at various points, and 
eventually returning the adversary’s overall boolean judgment 

• But this architecture doesn’t support modularity
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Universally Composable Security
• Universally Composable (UC) Security is a refinement of the 

real/ideal paradigm that does support modular proof 
development 

• In UC, a real or ideal functionality interacts with 
• an environment, which supplies functionality inputs and 

consumes functionality outputs 
• an adversary, which is given certain powers to observe or 

corrupt the functionalities 
• The environment and adversary also communicate 
• In UC, the environment is in charge 
• UC uses a coroutine style of message passing in which 

control is transferred along with data 
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Universal Composability
• We say that a real functionality RF UC-realizes an ideal 

functionality IF iff, for all adversaries Adv, there is a simulator 
Sim (which will be built out of Adv in a black box way), such 
that, for all environments Env, Env can’t tell if it is interacting 
with 
• RF/Adv or 
• IF/Sim 

• The UC Composition Theorem says that if RF UC-realizes IF, 
and φ is a functionality using IF, then φIF->RF UC-realizes φ 

• UC was originally formalized in a computation theory style 
with systems of interactive Turing machines
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Proof Mechanization
• Several frameworks have been developed for mechanizing 

cryptographic security proofs: 
• FCF (Petcher & Morrisett) is shallowly embedded in Coq 
• CryptHOL (Basin, Lochbihler & Sefidgar) is embedded in 

Isabelle/HOL 
• EasyCrypt (Barthe, Grégoire, Strub, …, Stoughton, …) is a 

standalone proof assistant, with a fairly small and well-
studied TCB 
• Use of external SMT solvers is optional
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EasyCrypt’s Modules
• In EasyCrypt, cryptographic games are modeled as modules, 

which consists of global variables and procedures 
• Modules may be parameterized, e.g., by adversaries 
• Procedures are written in a simple imperative language, with 

while loops and random assignments (choosing values from 
probability sub-distributions)
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EasyCrypt’s Logics
• EasyCrypt has four logics: 

• a Probabilistic Relational Hoare Logic (pRHL) for proving 
relations between pairs of games 

• a Probabilisitic Hoare logic (pHL) for proving probabilistic 
facts about single games 

• an ordinary Hoare logic (HL) 
• an ambient higher-order logic for proving mathematical 

facts and connecting judgements from the other logics
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EasyCrypt’s Proofs and Theories
• Proofs are carried out using tactics, as in Coq 
• Proofs are developed interactively, but may be replayed step-

by-step or checked in batch mode 
• Proofs may be structured as sequences of lemmas 
• EasyCrypt theories may be used to group definitions, 

modules and lemmas together 
• Theories may be specialized via cloning
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Indistinguishability vs Real/Ideal Formulations
• Initially, most EasyCrypt proofs were about 

indistinguishability-style security formulations 
• But Real/Ideal developments are also possible 

• E.g., my and Mayank’s CSF 2017 paper on security of a 
simple secure database 

• Almeida etal.’s CCS 2017 paper on on secure function 
evaluation
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Sequence of Games Approach
• In general, it takes some number of steps to connect the real 

and ideal games 
• Each step establishes an upper bound on the ability of the 

adversary to discriminate between the two games 
• The sum of these upper bounds is an upper bound on the 

ability of the adversary to discriminate the real and ideal 
games 

• Steps may be proved by reductions (maybe with their own 
game sequences), or upto-bad reasoning, …

 12

b1 b2 b3



UC in EasyCrypt
• We are in the early stages of researching how UC may be 

mechanized in EasyCrypt 
• A major challenge is how to deal with UC’s coroutine style of 

communication in EasyCrypt’s procedural programming 
language 

• Our approach is to give functionalities addresses, and to 
build abstractions that route messages to their destinations 

• Two kinds of messages: 
• direct — supplying functionality inputs, returning their 

results 
• adversarial — other communications, including 

environment to adversary, functionality to adversary/
simulators
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Message Flow Architecture
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Message Flow Architecture

 15

α β

Interface
{1}

([],0)
Env

([],0)

Fun Adv
02 1

β []

Env: 
Dir to Fun; 
Adv to Adv 

(incl. (β,1))



Message Flow Architecture
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Message Flow Architecture
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Initial Case Study
• As a first case study, we are formalizing and proving the 

security of secure message communication using a one-time 
pad, where the one-time pad is agreed by the parties using 
Diffie-Hellman key exchange 

• We first proved the UC security of Diffie-Hellman key 
exchange 

• We are now applying this theorem to the security of secure 
message communication using a one-time pad 

• In both cases, we are assuming an adversary that can 
observe and delay, but not corrupt, communications between 
protocol parties
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Initial Case Study
• Our case study is intended to test our architecture of 

embedding UC in EasyCrypt 
• It involves: 

• an instance of the UC composition operator and theorem; 
and 

• the composition of simulators
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Case Study Status
• Proof of Diffie-Hellman security is finished 
• Proof of security of secure message communication has two 

gaps, which are rapidly being filled 
• Case study is giving us confidence in the soundness of our 

architecture
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Case Study Status
• Proofs use relational invariants allowing the related evolution 

of RF/Adv and IF/Sim(Adv) to be tracked 
• Since the real and ideal worlds are structurally dissimilar, this 

means doing a lot of (manual) symbolic execution, guided by 
case analysis
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Case Study Status
• Currently far too much effort needed to do proofs 

• Most pressing need: better support for guided symbolic 
execution needed 

• Git repo: 

github.com/alleystoughton/EasyUC
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Research Plan
• Want to make it much easier to carry out UC security 

formalizations and proofs in EasyCrypt 
• New EasyCrypt tactics for guided symbolic execution 
• Domain specific language for UC functionalities involving 

coroutine communication 
• Translating DSL into EasyCrypt 
• Automate UC’s Composition Theorem in EasyCrypt 
• Adding DSL to EasyCrypt as alternative programming 

language 
• Increasingly complex case studies… 
• Connection with verified implementations
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Our research group at Boston University, 
led by Ran Canetti, Assaf Kfoury, Mayank Varia 

and myself, 
is actively looking to recruit graduate students 

wanting to work at the 
intersection of cryptography and formal 

methods/programming languages
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