
Conclave
Secure Multi-Party Computation on Big Data

1
Nikolaj Volgushev Malte Schwarzkopf Ben Getchell 

Andrei Lapets Mayank Varia Azer Bestavros

Image: National Geographic

🏛"

#🚕

%🚗 
How concentrated is the market airport

transfers in hired vehicles in NYC?

%🚙

How about trips in Manhattan?  

How about the morning rush hour?

2

🏛"

#🚕

%🚗

%🚙😈
3

🗂🗂🗂🗂🗂🗂

🏛"

#🚕

%🚗

%🚙

⛔

⛔

⛔

We’re worried about 
information leaking.

Competitors might 
see our pricing.

We’re a private 
company — no 

obligation to report.

4

Secure MPC
🏛"

#🚕

%🚙

🔒

5

A solution: Secure MPC

%🚗

🔒

🔒

🔒

🔒

🔒

How concentrated is the market airport
transfers in hired vehicles in NYC?

📊

🔒

🔒

🔒

Secure MPC
🏛"

#🚕

%🚙

🔒

6

A solution: Secure MPC

%🚗

🔒

🔒

🔒

🔒

🔒

How concentrated is the market airport
transfers in hired vehicles in NYC?

😈

🔒

🔒

🔒

📊

➡ Read network messages.
➡ Inspect memory & storage contents.
➡Observe control flow (IP + access patterns).

✓ Only local input and result are exposed.

Secure MPC
🏛"

#

%

🚕

🚗

%🚙

🔒

175M annual trips!

7

Does MPC scale?
• Garbled circuits: 1 wire = 1 bit = 1 label

• Scales poorly in space: state >> input size

• Secret sharing: multiplication = network I/O

• Vectorization & batching help, but only so much

• Mostly small computations with few operations

• Lots of research on scaling to many parties, but little on
scaling to large input data

8

Does MPC scale? — Projection

9

be
tte

r

N.B. 
log-scale!

Does MPC scale? — Agg: SUM

10

be
tte

r

Does MPC scale? — Join

11

be
tte

r

Secure MPC
🏛"

#

%

🚕

🚗

%🚙

🔒

⏳
12

Conclave

13

Key insights: 
 

For most queries, not all of the work must happen 
 using cryptographic MPC techniques. 

End-to-end guarantees can often be maintained 
even if part of the query is evaluated 
locally and in the clear by the parties. 

We can automatically determine the MPC bounds.

Contributions

14

1. Conclave paradigm: run as little as possible, but
as much as necessary under MPC

2. Automated analyses to determine which parts
of a query must run under MPC

3. New “hybrid” MPC-cleartext protocols to
accelerate expensive operators under MPC

4. Prototype query compiler implementation using
Spark and Sharemind & performance evaluation

#🚕 %🚗 %🚙

15

Conclave 
compiler

Conclave 
compiler

Conclave 
compiler

DECLARE TABLE trips (start_lat int, start_lon int, …);
SELECT SUM(mkt_share*mkt_share) AS hhi, SUM(trips.price) AS …  
 WHERE start_lat = … AND …;

Per-party, mixed local-MPC query plan

Local cleartext 
operators

🔒

Secure MPC
🔒 🔒

#🚕 %🚗 %🚙

16

Conclave 
compiler

Conclave 
compiler

Conclave 
compiler

DECLARE TABLE trips (start_lat int, start_lon int, …);
SELECT SUM(mkt_share*mkt_share) AS hhi, SUM(trips.price) AS …  
 WHERE start_lat = … AND …;

🔒

Local cleartext 
operators

Secure MPC

Conclave 
dispatcher

Conclave 
dispatcher

Conclave 
dispatcher

🔒 🔒

#🚕 %🚗 %🚙

17

Conclave 
compiler

Conclave 
compiler

Conclave 
compiler

DECLARE TABLE trips (start_lat int, start_lon int, …);
SELECT SUM(mkt_share*mkt_share) AS hhi, SUM(trips.price) AS …  
 WHERE start_lat = … AND …;

Conclave 
dispatcher

Conclave 
dispatcher

Conclave 
dispatcher

Secure MPC 🔒

Assumptions
• Existing local data-parallel infrastructure (e.g., Spark cluster)

• Schemas are public or common schema agreed

• Honest-but-curious adversary

• Honest majority or anytrust model

• Okay to leak intermediate relation sizes

- MPC backend might impose additional meta-data leakage

- Sensitive values never never exposed to untrusted parties

18

compute the Herfindahl-Hirschman Index (HHI) 
rev = taxi_data.project(["companyID", "price"])  
 .sum("local_rev", group=[“companyID”], over="price")  
 .project([0, "local_rev"])  
market_size = rev.sum(“total_rev", over=“local_rev")  
share = rev.join(market_size, left=[“companyID"],  
 right=[“companyID"])  
 .divide("m_share", "local_rev", by="total_rev")  
hhi = share.multiply(share, "ms_squared", "m_share")  
 .sum(“hhi", on="ms_squared")  
hhi.writeToCSV()

19

LINQ-style relational query specification

import conclave as cc  
pA, pB, pC = cc.Party("A"), cc.Party("B"), cc.Party("C")  
3 parties each contribute inputs with the same schema  
schema = [Column("companyID", cc.INTEGER), …  
 Column("price", cc.INTEGER)]  
inputA = cc.defineTable(schema, owner=[pA])  
inputB = cc.defineTable(schema, owner=[pB])  
inputC = cc.defineTable(schema, owner=[pC])  
create multi-party input relation  
taxi_data = cc.concat([inputA, inputB, inputC])  
 
compute the Herfindahl-Hirschman Index (HHI)  
rev = taxi_data.project(["companyID", "price"])  
 .sum("local_rev", group=[“companyID”], over="price")  
 .project([0, "local_rev"])  
market_size = rev.sum(“total_rev", over=“local_rev")  
share = rev.join(market_size, left=[“companyID"],  
 right=[“companyID"])  
 .divide("m_share", "local_rev", by="total_rev")  
hhi = share.multiply(share, "ms_squared", "m_share")  
 .sum(“hhi", on="ms_squared")  
hhi.writeToCSV(owner=[pA])

20

21

🔒

#🚕 %🚗 %🚙

🏛"

SUM🔒

MULTIPLY🔒

DIVIDE🔒

JOIN🔒

PROJECT🔒

 CONCATENATE🔒

SUM🔒

SUM🔒

DIVIDE by 10k🔒

22

🔒

#🚕 %🚗 %🚙

🏛"

SUM🔒

MULTIPLY🔒

DIVIDE🔒

JOIN🔒

PROJECT🔒

 CONCATENATE🔒

SUM🔒

SUM🔒

DIVIDE by 10k🔒

🚕 🚗 🚙

23

🔒

#🚕 %🚗 %🚙

🏛"

SUM🔒

MULTIPLY🔒

DIVIDE🔒

JOIN🔒

PROJECT🔒

 CONCATENATE🔒
SUM🔒

SUM🔒

DIVIDE by 10k🔒

PROJECT🔒 PROJECT🔒

🚕 🚗 🚙

24

🔒

#🚕 %🚗 %🚙

🏛"

SUM🔒

MULTIPLY🔒

DIVIDE🔒

JOIN🔒

PROJECT

 CONCATENATE🔒
SUM🔒

SUM🔒

DIVIDE by 10k🔒

PROJECT PROJECT

25

🔒

#🚕 %🚗 %🚙

🏛"

SUM🔒

MULTIPLY🔒

DIVIDE🔒

JOIN🔒

PROJECT

 CONCATENATE🔒

SUM

SUM🔒

DIVIDE by 10k🔒

PROJECT PROJECT

SUM SUM

26

🔒

#🚕 %🚗 %🚙

🏛"

SUM🔒

MULTIPLY🔒

DIVIDE🔒

JOIN🔒

PROJECT

 CONCATENATE🔒

SUM

SUM🔒

DIVIDE by 10k🔒

PROJECT PROJECT

SUM SUM

🏛

27

🔒

#🚕 %🚗 %🚙

🏛"

SUM🔒

MULTIPLY🔒

DIVIDE🔒

JOIN🔒

PROJECT

 CONCATENATE🔒

SUM

SUM🔒

DIVIDE by 10k

PROJECT PROJECT

🚕 🚗 🚙

SUM SUM

import conclave as cc
 
pA, pB, pC = cc.Party(“regulator"), cc.Party(“bankA"), \
 cc.Party(“bankB")
demo_schema = [Column("ssn", cc.INTEGER),
 Column(“race", cc.INTEGER)]
demographics = cc.defineTable(demo_schema, owner=[pA])

credit card companies trust the regulator to compute on SSNs
bank_schema = [Column("ssn", cc.INTEGER, trust=[pA]),
 Column("score", cc.INTEGER)]
scores1 = cc.defineTable(bank_schema, owner=[pB])
…

28

Regulator has 
SSNs anyway

🏛. %
💳

#
💳

JOIN ON ssn🔒

(ssn, race) (ssn, score) (ssn, score)

🔒

29

🏛. %
💳

#
💳

JOIN ON ssn🔒

(ssn, race) (ssn, score) (ssn, score)

…

🔒

30

🏛. %
💳

#
💳

SHUFFLE🔒

(ssn, race) (ssn, score) (ssn, score)

🔒 JOIN ON index🔒

SHUFFLE🔒

ENUM

JOIN

ENUM

PROJECT index

ENUM

SHUFFLE🔒 SHUFFLE🔒

PROJECT ssn🔒 PROJ ssn🔒 PROJ ssn🔒

Large join 
outside MPC!

Implementation

• LINQ-style relational front-end

• Rewrite rules on intermediate DAG of operators

• Back-ends generate code

- Cleartext: Spark, sequential Python

- MPC: Sharemind

• ~5,000 lines of Python

31

Evaluation
1. How does Conclave scale to increasingly large inputs?

2. How much does automatic MPC frontier placement
reduce query runtime?

3. What impact do hybrid MPC-cleartext operators have on
query runtime?

• Three parties 
3 VM Spark cluster + Sharemind endpoint at each

• Two queries
1. Taxi market concentration: up to 1.3B trip records

2. Credit card regulation: up to 100k SSNs

32

33

Taxi market concentration query
be

tte
r Six orders of magnitude!

34

Hybrid MPC-cleartext operator impact

Join Aggregation

35

Credit card regulation query
be

tte
r

Four orders of magnitude!

Related work

• Mixed-mode MPC: Wysteria [S&P 2014] — custom DSL

• Query rewriting for MPC

• SMCQL [VLDB 2017]: binary public/private columns,
no hybrid operators

• Opaque [NSDI 2017]: computation under SGX, focus
on reducing oblivious shuffles

36

Summary
• Conclave is a query compiler for efficient MPC on “big data”

• Computes as much as possible locally in the clear

• Automatically shrinks MPC step to be as small as possible

• New hybrid MPC-cleartext protocols speed up operators

• Scales up to 7 orders of magnitude better than pure MPC

https://github.com/multiparty/conclave

37

Ask me for our draft paper if you’re interested! :)

https://github.com/multiparty/conclave

