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How concentrated is the market airport 

transfers in hired vehicles in NYC?
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How about trips in Manhattan?  

How about the morning rush hour?
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We’re worried about 
information leaking.

Competitors might 
see our pricing.

We’re a private 
company — no 

obligation to report.
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Secure MPC 
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A solution: Secure MPC
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A solution: Secure MPC
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➡ Read network messages.  
➡ Inspect memory & storage contents. 
➡Observe control flow (IP + access patterns). 

✓ Only local input and result are exposed.
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175M annual trips!
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Does MPC scale?
• Garbled circuits: 1 wire = 1 bit = 1 label


• Scales poorly in space: state >> input size


• Secret sharing: multiplication = network I/O


• Vectorization & batching help, but only so much


• Mostly small computations with few operations


• Lots of research on scaling to many parties, but little on 
scaling to large input data
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Does MPC scale? — Projection
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N.B. 
log-scale!



Does MPC scale? — Agg: SUM
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Does MPC scale? — Join
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Conclave
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Key insights: 
 

For most queries, not all of the work must happen 
 using cryptographic MPC techniques. 

End-to-end guarantees can often be maintained 
even if part of the query is evaluated 
locally and in the clear by the parties. 

We can automatically determine the MPC bounds. 



Contributions
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1. Conclave paradigm: run as little as possible, but 
as much as necessary under MPC


2. Automated analyses to determine which parts 
of a query must run under MPC


3. New “hybrid” MPC-cleartext protocols to 
accelerate expensive operators under MPC


4. Prototype query compiler implementation using 
Spark and Sharemind & performance evaluation
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Conclave 
compiler

Conclave 
compiler

Conclave 
compiler

DECLARE TABLE trips (start_lat int, start_lon int, … );
SELECT SUM(mkt_share*mkt_share) AS hhi, SUM(trips.price) AS …  
       WHERE start_lat = … AND …;

Per-party, mixed local-MPC query plan

Local cleartext 
operators

🔒

Secure MPC
🔒 🔒
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Conclave 
compiler

Conclave 
compiler

Conclave 
compiler

DECLARE TABLE trips (start_lat int, start_lon int, … );
SELECT SUM(mkt_share*mkt_share) AS hhi, SUM(trips.price) AS …  
       WHERE start_lat = … AND …;

🔒

Local cleartext 
operators

Secure MPC

Conclave 
dispatcher

Conclave 
dispatcher

Conclave 
dispatcher
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Conclave 
compiler

Conclave 
compiler

Conclave 
compiler

DECLARE TABLE trips (start_lat int, start_lon int, … );
SELECT SUM(mkt_share*mkt_share) AS hhi, SUM(trips.price) AS …  
       WHERE start_lat = … AND …;

Conclave 
dispatcher

Conclave 
dispatcher

Conclave 
dispatcher

Secure MPC 🔒



Assumptions
• Existing local data-parallel infrastructure (e.g., Spark cluster)


• Schemas are public or common schema agreed


• Honest-but-curious adversary


• Honest majority or anytrust model


• Okay to leak intermediate relation sizes


- MPC backend might impose additional meta-data leakage


- Sensitive values never never exposed to untrusted parties
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# compute the Herfindahl-Hirschman Index (HHI) 
rev = taxi_data.project(["companyID", "price"])  
          .sum("local_rev", group=[“companyID”], over="price")  
          .project([0, "local_rev"])  
market_size = rev.sum(“total_rev", over=“local_rev")  
share = rev.join(market_size, left=[“companyID"],  
                 right=[“companyID"])  
           .divide("m_share", "local_rev", by="total_rev")  
hhi = share.multiply(share, "ms_squared", "m_share")  
           .sum(“hhi", on="ms_squared")  
hhi.writeToCSV()
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LINQ-style relational query specification



import conclave as cc  
pA, pB, pC = cc.Party("A"), cc.Party("B"), cc.Party("C")  
# 3 parties each contribute inputs with the same schema  
schema = [Column("companyID", cc.INTEGER), …  
          Column("price", cc.INTEGER)]  
inputA = cc.defineTable(schema, owner=[pA])  
inputB = cc.defineTable(schema, owner=[pB])  
inputC = cc.defineTable(schema, owner=[pC])  
# create multi-party input relation  
taxi_data = cc.concat([inputA, inputB, inputC])  
 
# compute the Herfindahl-Hirschman Index (HHI)  
rev = taxi_data.project(["companyID", "price"])  
          .sum("local_rev", group=[“companyID”], over="price")  
          .project([0, "local_rev"])  
market_size = rev.sum(“total_rev", over=“local_rev")  
share = rev.join(market_size, left=[“companyID"],  
                 right=[“companyID"])  
           .divide("m_share", "local_rev", by="total_rev")  
hhi = share.multiply(share, "ms_squared", "m_share")  
           .sum(“hhi", on="ms_squared")  
hhi.writeToCSV(owner=[pA])
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import conclave as cc
 
pA, pB, pC = cc.Party(“regulator"), cc.Party(“bankA"), \
             cc.Party(“bankB")
demo_schema = [Column("ssn", cc.INTEGER),
               Column(“race", cc.INTEGER)] 
demographics = cc.defineTable(demo_schema, owner=[pA]) 

# credit card companies trust the regulator to compute on SSNs 
bank_schema = [Column("ssn", cc.INTEGER, trust=[pA]), 
               Column("score", cc.INTEGER)]
scores1 = cc.defineTable(bank_schema, owner=[pB])
…
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Regulator has 
SSNs anyway
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Large join 
outside MPC!



Implementation

• LINQ-style relational front-end


• Rewrite rules on intermediate DAG of operators


• Back-ends generate code


- Cleartext: Spark, sequential Python


- MPC: Sharemind


• ~5,000 lines of Python
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Evaluation
1. How does Conclave scale to increasingly large inputs?


2. How much does automatic MPC frontier placement 
reduce query runtime?


3. What impact do hybrid MPC-cleartext operators have on 
query runtime?

• Three parties 
3 VM Spark cluster + Sharemind endpoint at each


• Two queries 
1. Taxi market concentration: up to 1.3B trip records

2. Credit card regulation: up to 100k SSNs
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Hybrid MPC-cleartext operator impact

Join Aggregation
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Credit card regulation query
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Four orders of magnitude!



Related work

• Mixed-mode MPC: Wysteria [S&P 2014] — custom DSL


• Query rewriting for MPC


• SMCQL [VLDB 2017]: binary public/private columns, 
no hybrid operators


• Opaque [NSDI 2017]: computation under SGX, focus 
on reducing oblivious shuffles
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Summary
• Conclave is a query compiler for efficient MPC on “big data”


• Computes as much as possible locally in the clear


• Automatically shrinks MPC step to be as small as possible


• New hybrid MPC-cleartext protocols speed up operators


• Scales up to 7 orders of magnitude better than pure MPC

https://github.com/multiparty/conclave
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Ask me for our draft paper if you’re interested! :)

https://github.com/multiparty/conclave

