Splinter: Practical Private
Queries on Public Data

Frank Wang, Catherine Yun, Shafi Goldwasser, Vinod
Vaikuntanathan (MIT CSAIL), and Matei Zaharia (Stanford)

Users regularly perform
online searches

Users regularly perform
online searches

velp M

¥{ Restaurants Y Nightiife /A Home Services - Write a Review Events Talk

Users regularly perform
online searches

velp::

Y{ Restaurants Y Nightlife Y Home Services -+ Write a Review Events Talk

Users regularly perform
online searches

m Find dinner Near Cambridge, MA

Y{ Restaurants Y Nightlife Y Home Services -+ Write a Review Events

® = B K MH
home

boston marriott

Round-trip One-way Multi-City Explore

Boston (BOS) = San Francisco (SFO) 1 Thu 3/30 1 Mon 4/3 1 adult, Economy

| hese searches reveal
sensitive Information

| hese searches reveal
sensitive Information

Expedia is charging more for flights because you look for
them!

| hese searches reveal
sensitive Information

Eﬁ(pedia Is charging more for flights because you look for
them!

by Drew Macomber | Jan 15,2013 | 12 comments

NEWS

The price of free: how Apple, Facebook,
Microsoft and Google sell you to advertisers

rosott collect — and what voL

| hese searches reveal
sensitive Information

Expedia is charging more for flights because you look for
them!
ew Macomber | Jan 15,2013 | 12 comments

The price of free: how Apple, Facebook,
Microsoft and Google sell you to advertisers

THE YEAR'S BIGGEST HACKS
FROM YAH00 T0 THE DNC

Nal
Ve

Approacnh
9

il
3

Problem: Large databases and user has to
re-download on updates.

Problem: Large databases and user has to
re-download on updates.

How do we bulld a practical system

that keeps user queries private”?

Splinter Design

Splinter Design

Providers

User

Splinter Design

Providers

User

Splinter Design

Providers

()

y O
ﬂ*
@)

User

Splinter Design

Providers

Splinter Design

Providers

resp1 + respz + resps
result

Splinter Design

Providers

Queries with low communication
cost, computation, and number of
round trips

resp1 + respo + resps =
result

Threat Model

* Data on the providers not sensitive and in cleartext
* Providers are passive adversaries

- Iry to learn user's query
- Cannot tamper with query or database

* At least one provider does not collude with others

Performance

* Response times of < 1.6 seconds for databases
with millions of records (NYC map, US flights, etc.)

* Up to 10x fewer round trips than prior systems that
use PIR and garbled circuits

Key Contributions

Splinter builds on Function Secret Sharing (FSS) to
divide gueries into opaqgue shares

* New protocols to run complex qgueries, such as
MAX, TOPK, and disjunctions, over FSS

» Optimized implementation of FSS protocol using
AES-NI instruction

Outline

e Splinter Queries
* Implementation

e Evaluation

Query Format

* Splinter supports a subset of SQL.: projections,
[imiting filters, aggregates, no joins

SELECT aggregatel, aggregatel,
FROM table

WHERE condition

GROUP BY exprl, expr2, ..l
ORDER BY exprl, expr2, ..l
LIMIT K]

.. | projections

10

Query Format

* Splinter supports a subset of SQL.: projections,
[imiting filters, aggregates, no joins

SELECT aggregatel, aggregatel,
FROM table

WHERE|condition;

GROUP BY exprl, expr2, ..l
ORDER BY exprl, expr2, ..l
LIMIT K]

.. | projections

10

Supported conditions

e Splinter query algorithm for aggregates depends on condition type

11

Supported conditions

e Splinter query algorithm for aggregates depends on condition type

Condition Form

Equality-only e+ =secreti AND ... AND en = secrety

Intervals secreti < e < secrety

c1 OR ... ORcn

DISJOINtORS . can be equality or interval condition)

11

FSS Properties

 Divides a function finto k shares, f;, such that:
- f; can be evaluated quickly
- Lh() = f(x)

- Given k-1 shares, cannot recover f

k

'
>_fi(x) = f(

=1

12

FSS Properties

e Efficient constructions exist for two cases:
- Point functions: f(x) =1 if x = a, 0 otherwise

- Interval functions: f(x) =1 it a < x < b, 0 otherwise

13

COUNT Query

COUNT Query

route price

5 8
2 38
5 9
3 4
2 /

COUNT Query

SELECT COUNT (%) where route =

route price

5 8
2 38
5 9
3 4
2 /

COUNT Query

SELECT COUNT (%) where route =

route price

5

2
5
3
2

38

3
9
4
.

’?

14

COUNT Query

SELECT COUNT(%) where route =
f(x)=1itx=5and0 otherW|se

route price

5

2
5
3
2

38

3
9
4
.

’?

14

FSS

COUNT Query

SELECT COUNT(%) where route =
f(x) =1 if x =5 and 0 otherwise

I—bfunction shares: f1, f2

route price

5

2
5
3
2

38

3
9
4
.

14

COUNT Query

SELECT COUNT(*) where route =
f(x) =1 if x =5 and 0 otherwise

FSS
I—bfunction shares: f1, f2

f1(x) + f2(x) = f(x)

route price

5 8
2 38
5 9
3 4
2 /

Having either fy or f> does not

reveal any information about f

COUNT Query

f(x) =1 if x =5 and 0 otherwise

FSS
I—bfunction shares: f1, f2

route price fi(route) fo(route)

Having either fy or f> does not
reveal any information about f

14

COUNT Query

f(x) =1 if x =5 and 0 otherwise
I—bfunction shares: f1, f2

FSS

route price fi(route) fo(route)

5 3 10 -9
3 3
10 -9
7 -7
3 3
Having either f1 or f does not 21 -19

reveal any information about f

14

FSS

COUNT Query

SELECT COUNT (%) where route =
f(x) =1 if x =5 and 0 otherwise

I—bfunction shares: f1, f2

f1(x) + f2(x) = f(x)

route price fi(route) fo(route)

5 3 10 -9
3 3
10 -9
7 -7
3 3
Having either f1 or fo does not 21 + -19

reveal any information about f

14

FSS

COUNT Query

SELECT COUNT (%) where route =

f(x) =1 if x = 5|and 0 otherwise

I—bfunction shares: f1, f2

f1(x) + f2(x) = f(x)

route price fi(route) fo(route)

5 3 10 -9
3 3
10 -9
7 -7
3 3
Having either f1 or fo does not 21 + -19

reveal any information about f

14

COUNT Query
f(x) =1 if x = 5|and 0 otherwise .

I—bfunction shares: f1, f2

FSS

route price fi(route) fo(route)

5 8 10 9 =
3 3
10 9 =1
7 7
3 3
Having either f1 or f does not 21 + -19 =2

reveal any information about f

14

COUNT Query

FSS
I—bfunction shares: f1, f2

route price fi(route) fo(route)

Having either fy or f> does not
reveal any information about f

f(x) = 1 if x = 5 and|0 otherwise

14

SUM Query

SELECT SUM(prlce) where route —

route price

5 3

2 3
5 9
3 4
2 /

SUM Query

SELECT SUM(price) where route =
f(x) =1 if x =5 and 0 otherwise

FSS
I—bfunction shares: f1, f2

route price fi(route)*price fo(route)*price

15

SUM Query

SELECT SUM(price) where route =
f(x) =1 if x =5 and 0 otherwise

FSS

I—bfunction shares: f1, f2

Scale matching records by price

route price fi(route)*price fo(route)*price

15

SUM Query

SELECT SUM(price) where route =
f(x) =1 if x =5 and 0 otherwise

FSS

I—bfunction shares: f1, f2

Scale matching records by price

route price fi(route)*price fo(route)*price

153 + -136

17

15

MIN Query for Equality-Only

MIN Query for Equality-Only

5 8
2 8
5 9
3 4
2 /

MIN Query for Equality-Only

SELECT MIN(price) where route = 5

route price

5

2
5
3
2

8

3
9
4
/

16

MIN Query for Equality-Only

SELECT MIN(price) where route =]?]

route price

5

2
5
3
2

8

3
9
4
.

16

MIN Query for Equality-Only

SELECT MIN(price) where route _

route price

5

2
5
3
2

8

3
9
4
.

16

MIN Query for Equality-Only

route price

5

2
5
3
2

8

3
9
4
.

SELECT MIN(price) where route —

SELECT MIN(price)

GROUP BY route

Intermediate table

16

MIN Query for Equality-Only

SELECT MIN(price) where route =|?]
f(x) =1 if x =5 and 0 otherwise

FSS
|—> function shares: f1, f2

SELECT MIN(price)

GROUP BY route

Intermediate table

5 8 route MIN(price)

2 8
5 9
3 4
2 /

MIN Query for Equality-Only

SELECT MIN(price) where route =|?]
f(x) =1 if x =5 and 0 otherwise

|—> function shares: fq1, fo
SELECT MIN(price)

route price

5

2
5
3
2

FSS

8

3
9
4
.

GROUP BY route

Intermediate table

route MIN(price)
—» fi(routeq) *

—» fi(routep) *

—p fi(routes) *

(price)
(price):

(price)s

16

MIN Query for Equality-Only

SELECT MIN(price) where route =|?]

route price

5

2
5
3
2

FSS

8

3
9
4
.

f(x) =1 if x =5 and 0 otherwise

|—> function shares: fq1, fo
SELECT MIN(price)

GROUP BY route

Intermediate table

route MIN(price)
—» fi(routeq)

—» fi(routey)

—» fi(routes)

o=

-+

(price)
(price):

(price)s

16

MIN Query for Intervals

SELECT MIN(price) where 2 < route < 6

MIN Query for Intervals

SELECT MIN(price) wheres route <

MIN Query for Intervals

SELECT MIN(price) wheres route <
1. Each provider computes a sorted table T:

SELECT route, price ORDER BY route

17

MIN Query for Intervals

SELECT MIN(price) wheres route <
1. Each provider computes a sorted table T:

SELECT route, price ORDER BY route

2. Providers find MIN on power-of-2 intervals:

T 3 5 1 2 4 1 0 1

Size-2 Intervals 3 1 1 0

Size-4 Intervals 1 0

Size-8 Intervals 0

17

MIN Query for Intervals

3. Round 1: FiInd minimum and maximum indices
where 3 < route < 6. (2 point funcs)

4. Round 2: Select at most 2 intervals of each size to

cover target interval (e.g. [3,6]). (log n point funcs)
A[3..6]
T 3 5 1 2 4 1 0 1
Size-2 Intervals 3 1 1 0
Size-4 Intervals 1 0
Size-8 Intervals 0

18

Other algorithms

Algorithms Supported queries

additive aggregates for all conditions

FSS (COUNT, SUM, AVG, STDEV, HISTOGRAM)

FSS + intermediate table MAX, MIN, TOPK for equality-only

FSS + Fenwick tree-like data

MAX, MIN, TOPK for intervals
structure

FSS + private binary search MAX, MIN for disjoint ORs

FSS + private binary search +

. TOPK for disjoint ORs
sampling

Other

Algorithms

FSS

FSS + intermediate table

FSS + Fenwick tree-like data
structure

FSS + private binary search

FSS + private binary search +
sampling

algorithms

Supported queries

additive aggregates for all conditions
(COUNT, SUM, AVG, STDEV, HISTOGRAM)

MAX, MIN, TOPK for equality-only

MAX, MIN, TOPK for intervals

MAX, MIN for disjoint ORs

TOPK for disjoint ORs

19

Other algorithms

Algorithms Supported queries

additive aggregates for all conditions

FSS (COUNT, SUM, AVG, STDEV, HISTOGRAM)

FSS + intermediate table MAX, MIN, TOPK for equality-only

FSS + Fenwick tree-like data

MAX, MIN, TOPK for intervals
structure

FSS + private binary search MAX, MIN for disjoint ORs

FSS + private binary search +

. TOPK for disjoint ORs
sampling

Complexity of Splinter

Aggregate Condition Computation Round Trips Bandwidth
Sum-based any O(n) 1 O(1)
MAX/MIN equality-only O(n) 1 O(1)
MAX/MIN intervals O(n log n) 2 O(log n)
MAX/MIN disjoint ORs O(n log n) O(log n) O(log n)
TOPK equality-only O(n) 1 O(1)
TOPK intervals O(n log n) 2 O(log n)
TOPK disjoint ORs O(n log n) O(log n) O(log n)

Aggregate Condition Computation Round Trips Bandwidth
Sum-based any O(n) 1
MAX/MIN equality-only O(n) 1
MAX/MIN intervals O(n log n) 2
MAX/MIN disjoint ORs O(n log n) O(log n)
TOPK equality-only O(n) 1
TOPK intervals O(n log n) 2
TOPK disjoint ORs O(n log n) O(log n)

Complexity of Splinter

Computation time is O(n log n) for all

O(1)

O(1)
O(log n)
O(log n)

O(1)
O(log n)
O(log n)

gueries and communication costs much

smaller than the database

20

Implementation

* Optimized FSS C++ library: 2000 LoC
* General Query Library: 1500 LoC
* Applications

- Yelp clone, Flight search, Map routing

https://github.com/frankw2/libfss

21

https://github.com/frankw2/libfss

Case Studies

Application # of rows

Yelp clone 225,000

Flight search 6,100,000 225

NYC Map 260,000 nodes

Routing /33,000 edges 300

Providers: 64-core x1 Amazon EC2 instance
Client: 2 GHz Intel Core i7 machine
Network latency: 14 ms

22

Case Studies

Application # of rows

Yelp clone 225,000
Flight search 6,100,000 225

NYC Map 260,000 nodes

Routing /33,000 edges 300

All case studies based on real datasets

Providers: 64-core x1 Amazon EC2 instance
Client: 2 GHz Intel Core i7 machine
Network latency: 14 ms

22

Case Study Queries

Application Query

Case Study Queries

Application

« SELECT COUNT(x) WHERE category=“Thai”

« SELECT TOP 10 restaurant WHERE
category="Mexican" AND hex2mi in (1, 2, 3)
ORDER BY stars

« SELECT restaurant, MAX(stars) WHERE category in
(“Mexican”, “Chinese”, “Indian”, “Greek”,

“Thai”, “Japanese”)
GROUP BY category

Yelp clone

23

Case Study Queries

Application

SELECT COUNT(*) WHERE category=“Thai”

« SELECT TOP 10 restaurant WHERE
category="Mexican" AND hex2mi in (1, 2, 3)
ORDER BY stars

« SELECT restaurant, MAX(stars) WHERE category in
(“Mexican”, “Chinese”, “Indian”, “Greek”,
“Thai”, “Japanese”)

GROUP BY category

Yelp clone

SELECT AVG(price) WHERE month=3 AND route = 5

SELECT TOP 10 flight_no WHERE route = 5
ORDER BY price

Flight search

23

Case Study Queries

Application Query

« SELECT COUNT(x) WHERE category=“Thai”

« SELECT TOP 10 restaurant WHERE
category="Mexican" AND hex2mi in (1, 2, 3)
ORDER BY stars

« SELECT restaurant, MAX(stars) WHERE category in
(“Mexican”, “Chinese”, “Indian”, “Greek”,

“Thai”, “Japanese”)
GROUP BY category

Yelp clone

SELECT AVG(price) WHERE month=3 AND route = 5

SELECT TOP 10 flight_no WHERE route = 5
ORDER BY price

Flight search

SELECT grid_nodes WHERE grid_no = 5

. .
S EBE R | SELECT path WHERE src = 4 and dst = 10

23

Performance

Round .. Response
Communication

Query Dataset Providers Trips Time

Count of Thai

Restaurants velp
Top 10 Mexican Yelp
restaurants
Best rated restaurant
Yelp

in category subset

AVG monthly price Flights

Top 10 cheapest

flights Flights

WNd LN WM W W Wi

NYC Routing Maps

24

Splinter has lower response times ar

rounds trips compared to Olumofir

System Round Trips Response Times
Olumofin et al. 09 " 2-18 seconds
(all queries)
constant
(most queries) 50ms - 1.6
Splinter |
log n seconds

(select queries)

Other related work:
e P|R systems (Readon et al., Popcorn)
e Garbled circuits (Wu et al., Embark)

d fewer
et al.

Conclusion

e Splinter is the first practical system that protects
users’ queries on real datasets

* We develop new protocols to execute complex
queries over FSS and have fewer round trips and
lower response times than prior systems

20

