
Splinter: Practical Private
Queries on Public Data
Frank Wang, Catherine Yun, Shafi Goldwasser, Vinod

Vaikuntanathan (MIT CSAIL), and Matei Zaharia (Stanford)

1

Users regularly perform
online searches

2

Users regularly perform
online searches

2

Users regularly perform
online searches

2

Users regularly perform
online searches

2

These searches reveal
sensitive information

3

These searches reveal
sensitive information

3

These searches reveal
sensitive information

3

These searches reveal
sensitive information

3

Naive Approach

4

Naive Approach

4

Naive Approach

Problem: Large databases and user has to
re-download on updates.

4

Naive Approach

How do we build a practical system
that keeps user queries private?

Problem: Large databases and user has to
re-download on updates.

4

Splinter Design

5

Splinter Design
Providers

User

5

Splinter Design
Providers

User

5

Splinter Design
Providers

User

query1

query2

query3

5

Splinter Design
Providers

User

query1

query2

query3

resp1

resp2

resp3

5

Splinter Design
Providers

User

query1

query2

query3

resp1

resp2

resp3resp1 + resp2 + resp3 =
result

5

Splinter Design
Providers

User

query1

query2

query3

resp1

resp2

resp3resp1 + resp2 + resp3 =
result

5E Boyle, N Gilboa, Y Ishai. “Function Secret Sharing”. EUROCRYPT 2015

Queries with low communication
cost, computation, and number of

round trips

Threat Model
• Data on the providers not sensitive and in cleartext
• Providers are passive adversaries

- Try to learn user’s query
- Cannot tamper with query or database

• At least one provider does not collude with others

6

Performance
• Response times of < 1.6 seconds for databases

with millions of records (NYC map, US flights, etc.)
• Up to 10x fewer round trips than prior systems that

use PIR and garbled circuits

7

Key Contributions
Splinter builds on Function Secret Sharing (FSS) to
divide queries into opaque shares
• New protocols to run complex queries, such as

MAX, TOPK, and disjunctions, over FSS
• Optimized implementation of FSS protocol using

AES-NI instruction

8

Outline
• Splinter Queries
• Implementation
• Evaluation

9

Query Format
• Splinter supports a subset of SQL: projections,

limiting filters, aggregates, no joins

SELECT aggregate1, aggregate2, … | projections
FROM table
WHERE condition
[GROUP BY expr1, expr2, …]
[ORDER BY expr1, expr2, …]
[LIMIT k]

10

Query Format
• Splinter supports a subset of SQL: projections,

limiting filters, aggregates, no joins

SELECT aggregate1, aggregate2, … | projections
FROM table
WHERE condition
[GROUP BY expr1, expr2, …]
[ORDER BY expr1, expr2, …]
[LIMIT k]

10

Supported conditions
• Splinter query algorithm for aggregates depends on condition type

11

Supported conditions
• Splinter query algorithm for aggregates depends on condition type

11

Condition Form

Equality-only e1 = secret1 AND … AND en = secretn

Intervals secret1 ≤ e1 ≤ secret2

Disjoint ORs c1 OR … OR cn
(ci can be equality or interval condition)

FSS Properties
• Divides a function f into k shares, fi, such that:

- fi can be evaluated quickly
- fi (x) = f(x)
- Given k-1 shares, cannot recover f

12

f2

f1

f3

resp1

resp2

resp3fi(x) = f(x)

FSS Properties
• Efficient constructions exist for two cases:

- Point functions: f(x) = 1 if x = a, 0 otherwise
- Interval functions: f(x) = 1 if a ≤ x ≤ b, 0 otherwise

13

COUNT Query

14

COUNT Query

route price

5 8

2 8

5 9

3 4

2 7

14

COUNT Query

route price

5 8

2 8

5 9

3 4

2 7

SELECT COUNT(*) where route = 5

14

COUNT Query

route price

5 8

2 8

5 9

3 4

2 7

SELECT COUNT(*) where route = 5?

14

COUNT Query

route price

5 8

2 8

5 9

3 4

2 7

SELECT COUNT(*) where route = 5?
f(x) = 1 if x = 5 and 0 otherwise

14

COUNT Query

route price

5 8

2 8

5 9

3 4

2 7

SELECT COUNT(*) where route = 5?
f(x) = 1 if x = 5 and 0 otherwise

14

function shares: f1, f2
FSS

COUNT Query

route price

5 8

2 8

5 9

3 4

2 7

SELECT COUNT(*) where route = 5?
f(x) = 1 if x = 5 and 0 otherwise

14

function shares: f1, f2
FSS

f1(x) + f2(x) = f(x)

Having either f1 or f2 does not
reveal any information about f

COUNT Query

route price

5 8

2 8

5 9

3 4

2 7

SELECT COUNT(*) where route = 5?
f(x) = 1 if x = 5 and 0 otherwise

f1(route) f2(route)

10 -9

-3 3

10 -9

7 -7

-3 3

14

function shares: f1, f2
FSS

f1(x) + f2(x) = f(x)

Having either f1 or f2 does not
reveal any information about f

COUNT Query

route price

5 8

2 8

5 9

3 4

2 7

SELECT COUNT(*) where route = 5?
f(x) = 1 if x = 5 and 0 otherwise

f1(route) f2(route)

10 -9

-3 3

10 -9

7 -7

-3 3

21 -19
14

function shares: f1, f2
FSS

f1(x) + f2(x) = f(x)

Having either f1 or f2 does not
reveal any information about f

COUNT Query

route price

5 8

2 8

5 9

3 4

2 7

SELECT COUNT(*) where route = 5?
f(x) = 1 if x = 5 and 0 otherwise

f1(route) f2(route)

10 -9

-3 3

10 -9

7 -7

-3 3

21 -19+ = 2
14

function shares: f1, f2
FSS

f1(x) + f2(x) = f(x)

Having either f1 or f2 does not
reveal any information about f

COUNT Query

route price

5 8

2 8

5 9

3 4

2 7

SELECT COUNT(*) where route = 5?
f(x) = 1 if x = 5 and 0 otherwise

f1(route) f2(route)

10 -9

-3 3

10 -9

7 -7

-3 3

21 -19+ = 2
14

function shares: f1, f2
FSS

f1(x) + f2(x) = f(x)

Having either f1 or f2 does not
reveal any information about f

COUNT Query

route price

5 8

2 8

5 9

3 4

2 7

SELECT COUNT(*) where route = 5?
f(x) = 1 if x = 5 and 0 otherwise

f1(route) f2(route)

10 -9

-3 3

10 -9

7 -7

-3 3

21 -19+ = 2

= 1

= 1

14

function shares: f1, f2
FSS

f1(x) + f2(x) = f(x)

Having either f1 or f2 does not
reveal any information about f

COUNT Query

route price

5 8

2 8

5 9

3 4

2 7

SELECT COUNT(*) where route = 5?
f(x) = 1 if x = 5 and 0 otherwise

f1(route) f2(route)

10 -9

-3 3

10 -9

7 -7

-3 3

21 -19+ = 2

= 0

= 0
= 0

14

function shares: f1, f2
FSS

f1(x) + f2(x) = f(x)

Having either f1 or f2 does not
reveal any information about f

SUM Query
SELECT SUM(price) where route = 5?

f(x) = 1 if x = 5 and 0 otherwise

15

function shares: f1, f2
FSS

route price

5 8

2 8

5 9

3 4

2 7

SUM Query
SELECT SUM(price) where route = 5?

f(x) = 1 if x = 5 and 0 otherwise

f1(route)*price f2(route)*price

80 -72

-24 24

90 -81

28 -28

-21 21

15

function shares: f1, f2
FSS

route price

5 8

2 8

5 9

3 4

2 7

SUM Query
SELECT SUM(price) where route = 5?

f(x) = 1 if x = 5 and 0 otherwise

f1(route)*price f2(route)*price

80 -72

-24 24

90 -81

28 -28

-21 21

15

function shares: f1, f2
FSS

route price

5 8

2 8

5 9

3 4

2 7

Scale matching records by price

SUM Query
SELECT SUM(price) where route = 5?

f(x) = 1 if x = 5 and 0 otherwise

f1(route)*price f2(route)*price

80 -72

-24 24

90 -81

28 -28

-21 21

15

function shares: f1, f2
FSS

route price

5 8

2 8

5 9

3 4

2 7

Scale matching records by price

153 -136+ = 17

MIN Query for Equality-Only

16

MIN Query for Equality-Only

route price

5 8

2 8

5 9

3 4

2 7
16

MIN Query for Equality-Only

route price

5 8

2 8

5 9

3 4

2 7

SELECT MIN(price) where route = 5

16

MIN Query for Equality-Only

route price

5 8

2 8

5 9

3 4

2 7

SELECT MIN(price) where route = 5?

16

MIN Query for Equality-Only

route price

5 8

2 8

5 9

3 4

2 7

SELECT MIN(price) where route = 5
f(x) = 1 if x = 5 and 0 otherwise

?

16

function shares: f1, f2
FSS

MIN Query for Equality-Only

route price

5 8

2 8

5 9

3 4

2 7

SELECT MIN(price) where route = 5
f(x) = 1 if x = 5 and 0 otherwise

Intermediate table

?

16

function shares: f1, f2
FSS

SELECT MIN(price)
GROUP BY route

MIN Query for Equality-Only

route price

5 8

2 8

5 9

3 4

2 7

SELECT MIN(price) where route = 5
f(x) = 1 if x = 5 and 0 otherwise

route MIN(price)

5 8

2 7

3 4

Intermediate table

?

16

function shares: f1, f2
FSS

SELECT MIN(price)
GROUP BY route

MIN Query for Equality-Only

route price

5 8

2 8

5 9

3 4

2 7

SELECT MIN(price) where route = 5
f(x) = 1 if x = 5 and 0 otherwise

route MIN(price)

5 8

2 7

3 4

Intermediate table

fi(route1) * MIN(price)1

fi(route2) * MIN(price)2

fi(route3) * MIN(price)3

?

16

function shares: f1, f2
FSS

SELECT MIN(price)
GROUP BY route

MIN Query for Equality-Only

route price

5 8

2 8

5 9

3 4

2 7

SELECT MIN(price) where route = 5
f(x) = 1 if x = 5 and 0 otherwise

route MIN(price)

5 8

2 7

3 4

Intermediate table

fi(route1) * MIN(price)1

fi(route2) * MIN(price)2

fi(route3) * MIN(price)3

?

+
+

16

function shares: f1, f2
FSS

SELECT MIN(price)
GROUP BY route

MIN Query for Intervals

17

SELECT MIN(price) where 2 ≤ route ≤ 6

MIN Query for Intervals

17

SELECT MIN(price) where 2 ≤ route ≤ 6? ?

MIN Query for Intervals
1. Each provider computes a sorted table T:

17

SELECT MIN(price) where 2 ≤ route ≤ 6? ?

SELECT route, price ORDER BY route

MIN Query for Intervals
1. Each provider computes a sorted table T:

17

SELECT MIN(price) where 2 ≤ route ≤ 6? ?

SELECT route, price ORDER BY route

2. Providers find MIN on power-of-2 intervals:

3 5 1 2 4 1 0 1

3 1 1 0

1 0

0

T

Size-2 Intervals

Size-4 Intervals

Size-8 Intervals

MIN Query for Intervals
3. Round 1: Find minimum and maximum indices
where 3 ≤ route ≤ 6.

18

4. Round 2: Select at most 2 intervals of each size to
cover target interval (e.g. [3,6]).

3 5 1 2 4 1 0 1

3 1 1 0

1 0

0

T

A[3..6]

(2 point funcs)

(log n point funcs)

Size-2 Intervals

Size-4 Intervals

Size-8 Intervals

Other algorithms

19

Algorithms Supported queries

FSS additive aggregates for all conditions
(COUNT, SUM, AVG, STDEV, HISTOGRAM)

FSS + intermediate table MAX, MIN, TOPK for equality-only

FSS + Fenwick tree-like data
structure MAX, MIN, TOPK for intervals

FSS + private binary search MAX, MIN for disjoint ORs

FSS + private binary search +
sampling TOPK for disjoint ORs

Other algorithms

19

Algorithms Supported queries

FSS additive aggregates for all conditions
(COUNT, SUM, AVG, STDEV, HISTOGRAM)

FSS + intermediate table MAX, MIN, TOPK for equality-only

FSS + Fenwick tree-like data
structure MAX, MIN, TOPK for intervals

FSS + private binary search MAX, MIN for disjoint ORs

FSS + private binary search +
sampling TOPK for disjoint ORs

Other algorithms

19

Algorithms Supported queries

FSS additive aggregates for all conditions
(COUNT, SUM, AVG, STDEV, HISTOGRAM)

FSS + intermediate table MAX, MIN, TOPK for equality-only

FSS + Fenwick tree-like data
structure MAX, MIN, TOPK for intervals

FSS + private binary search MAX, MIN for disjoint ORs

FSS + private binary search +
sampling TOPK for disjoint ORs

Complexity of Splinter
algorithms

20

Aggregate Condition Computation Round Trips Bandwidth

Sum-based any O(n) 1 O(1)

MAX/MIN
MAX/MIN
MAX/MIN

equality-only
intervals

disjoint ORs

O(n)
O(n log n)
O(n log n)

1
2

O(log n)

O(1)
O(log n)
O(log n)

TOPK
TOPK
TOPK

equality-only
intervals

disjoint ORs

O(n)
O(n log n)
O(n log n)

1
2

O(log n)

O(1)
O(log n)
O(log n)

Complexity of Splinter
algorithms

20

Aggregate Condition Computation Round Trips Bandwidth

Sum-based any O(n) 1 O(1)

MAX/MIN
MAX/MIN
MAX/MIN

equality-only
intervals

disjoint ORs

O(n)
O(n log n)
O(n log n)

1
2

O(log n)

O(1)
O(log n)
O(log n)

TOPK
TOPK
TOPK

equality-only
intervals

disjoint ORs

O(n)
O(n log n)
O(n log n)

1
2

O(log n)

O(1)
O(log n)
O(log n)

Computation time is O(n log n) for all
queries and communication costs much

smaller than the database

Implementation
• Optimized FSS C++ library: 2000 LoC
• General Query Library: 1500 LoC
• Applications

- Yelp clone, Flight search, Map routing

https://github.com/frankw2/libfss

21

https://github.com/frankw2/libfss

Case Studies
Application # of rows Size (MB)

Yelp clone 225,000 23

Flight search 6,100,000 225

NYC Map
Routing

260,000 nodes
733,000 edges 300

22

Providers: 64-core x1 Amazon EC2 instance
Client: 2 GHz Intel Core i7 machine
Network latency: 14 ms

Case Studies

All case studies based on real datasets

Application # of rows Size (MB)

Yelp clone 225,000 23

Flight search 6,100,000 225

NYC Map
Routing

260,000 nodes
733,000 edges 300

22

Providers: 64-core x1 Amazon EC2 instance
Client: 2 GHz Intel Core i7 machine
Network latency: 14 ms

Case Study Queries

23

Application Query

Case Study Queries

23

Application Query

Yelp clone

• SELECT COUNT(*) WHERE category=“Thai”
• SELECT TOP 10 restaurant WHERE
category="Mexican" AND hex2mi in (1, 2, 3)
ORDER BY stars

• SELECT restaurant, MAX(stars) WHERE category in  
(“Mexican”, “Chinese”, “Indian”, “Greek”,
“Thai”, “Japanese”) 
GROUP BY category

Case Study Queries

23

Application Query

Yelp clone

• SELECT COUNT(*) WHERE category=“Thai”
• SELECT TOP 10 restaurant WHERE
category="Mexican" AND hex2mi in (1, 2, 3)
ORDER BY stars

• SELECT restaurant, MAX(stars) WHERE category in  
(“Mexican”, “Chinese”, “Indian”, “Greek”,
“Thai”, “Japanese”) 
GROUP BY category

Flight search
• SELECT AVG(price) WHERE month=3 AND route = 5
• SELECT TOP 10 flight_no WHERE route = 5  
ORDER BY price

Case Study Queries

23

Application Query

Yelp clone

• SELECT COUNT(*) WHERE category=“Thai”
• SELECT TOP 10 restaurant WHERE
category="Mexican" AND hex2mi in (1, 2, 3)
ORDER BY stars

• SELECT restaurant, MAX(stars) WHERE category in  
(“Mexican”, “Chinese”, “Indian”, “Greek”,
“Thai”, “Japanese”) 
GROUP BY category

Flight search
• SELECT AVG(price) WHERE month=3 AND route = 5
• SELECT TOP 10 flight_no WHERE route = 5  
ORDER BY price

Map routing
• SELECT grid_nodes WHERE grid_no = 5
• SELECT path WHERE src = 4 and dst = 10

Performance

24

Query Dataset Providers Round
Trips Communication Response

Time
Count of Thai
Restaurants Yelp 2 

3 1 3 KB 
30 KB

57 ms 
52 ms

Top 10 Mexican
restaurants Yelp 2 

3 1 24 KB
2 MB

150 ms 
542 ms

Best rated restaurant
in category subset Yelp 2 

3 11 245 KB
1.2 MB

1.3 s
1.6 s

AVG monthly price Flights 2 
3 1 9 KB

450 KB
1.0 s
1.2 s

Top 10 cheapest
flights Flights 2 

3 1 4 KB
20 KB

30 ms
39 ms

NYC Routing Maps 2 
3 2 45 KB

725 KB
1.2 s
1.0 s

Splinter has lower response times and fewer
rounds trips compared to Olumofin et al.

System Round Trips Response Times

Olumofin et al. log n
(all queries) 2-18 seconds

Splinter

constant
(most queries)

log n
(select queries)

50 ms - 1.6
seconds

25

Other related work:
• PIR systems (Readon et al., Popcorn)
• Garbled circuits (Wu et al., Embark)

Conclusion
• Splinter is the first practical system that protects

users’ queries on real datasets
• We develop new protocols to execute complex

queries over FSS and have fewer round trips and
lower response times than prior systems

26

