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Abstrat

What does it mean for a ryptographi protool to be \seure"? Capturing the seurity

requirements of ryptographi tasks in a meaningful way is a slippery business: On the one

hand, we want seurity riteria that prevent \all feasible attaks" against a protool. On the

other hand, we want our riteria to not be overly restritive; that is, we want them to aept

those protools that do not suumb to \feasible attaks".

This tutorial studies a general methodology for de�ning seurity of ryptographi protools.

The methodology, often dubbed the \trusted party paradigm", allows for de�ning the seurity

requirements of pratially any ryptographi task in a uni�ed and natural way. We �rst review

a basi formulation that aptures seurity in isolation from other protool instanes. Next we

address the seure omposition problem, namely the vulnerabilities resulting from the often

unexpeted interations among di�erent protool instanes that run alongside eah other in the

same system. We demonstrate the limitations of the basi formulation and review a formulation

that guarantees seurity of protools even in general omposite systems.
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1 Introdution

Cryptographi protools, namely distributed algorithms that aim to guarantee some \seurity prop-

erties" in fae of adversarial behavior, have beome an integral part of our soiety and everyday

lives. Indeed, we have grown austomed to relying on the ubiquity and funtionality of omputer

systems, whereas these systems make ruial use of ryptographi protools to guarantee their \ex-

peted funtionality." Furthermore, the pereived seurity properties of ryptographi protools

and the funtionality expeted from appliations that use them is being used by lawmakers to

modify the ground rules of our soiety. It is thus ruial that we have sound understanding of how

to speify, develop, and analyze ryptographi protools.

The need for sound understanding is highlighted by the empirial fat that ryptographi pro-

tools have been notoriously \hard to get right," with subtle aws in protools being disovered

long after development, and in some ases even after deployment and standardization. In fat,

even speifying the seurity properties required from protools for a given task in a rigorous and

meaningful way has proved to be elusive.

The goal of this tutorial is to introdue the reader to the problems assoiated with formulating

and asserting seurity properties of protools, and to present a general methodology for modeling

protools and asserting their seurity properties. The tutorial attempts to be aessible to non-

ryptographers and ryptographers alike. In partiular, for the most part it assumes very little prior

knowledge in ryptography. Also, while the main fous is on the foundational aspets of speifying

seurity, the text attempts to be aessible and useful to pratitioners as well as theoretiians.

Indeed, the onsidered seurity onerns are realisti ones, and the end goal is to enable analyzing

the seurity of real-world protools and systems.

Cryptographi tasks. In general, a ryptographi task, or a protool problem, involves a set

parties that wish to perform some joint omputational task based on their respetive loal inputs,

while guaranteeing some \seurity properties" in the fae of various types of \adversarial behavior"

by di�erent omponents of the system and its users.

To get some feel for the range of issues and onerns involved, we briey review some of the

ommonplae ryptographi tasks onsidered in the literature. Let us start with the very basi

goal of guaranteeing seure ommuniation between parties, in fae of an external adversarial entity

(or entities) that have some aess to the ommuniation network. When the adversarial aess

enables only reording of the transmissions, the most entral onern that omes to mind is serey,

namely guaranteeing that the atual transmissions leak as little as possible on the ommuniated

information. When adversarial entities an obtain also ative ontrol over the network the serey

onern beomes more intriate, and furthermore an even more basi onerns arises: how to

guarantee the authentiity of messages, namely �nding out whether a reeived message was indeed

sent by its laimed sender. Additional onerns inlude anonymity, namely the ability to hide the

identities of the ommuniating parties, and non-repudiation, namely the ability to prove to a third

party that the ommuniation took plae. Central tasks that are typially needed to guarantee

seure ommuniation inlude enryption, digital signatures, and key-exhange, where two parties

wish to agree on a random value (a key) that is known only to them.

Another set of tasks, often alled two-party tasks, involve two parties who are mutually distrust-

ful but still wish to perform some joint omputation. Here the only adversarial behavior under

onsideration is typially that of the parties themselves, and the ommuniation medium is treated

as trusted. One suh task is zero-knowledge (as in [gmra89℄), where one party wishes to onvine
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the other in the orretness of some statement without dislosing any additional information on

top of the mere fat that the statement is orret. Another example is ommitment (as in [b82℄),

where a party C an ommit to a seret value x, by providing some \ommitment information" 

that keeps x seret, while guaranteeing to a veri�er that C an later ome up with only one value x

that's onsistent with . Another example is oin-tossing [b82℄, namely the task where two parties

want to agree on a bit, or a sequene of bits, that are taken from some prede�ned distribution, say

the uniform distribution. This should hold even if one of the parties is trying to bias the output

towards some value. In addition to being natural tasks on their own, protools for these tasks are

often used as building bloks within more omplex protools.

More generally, ryptographi tasks may involve multiple parties with intriate trust relation-

ships, and exhibit a wide variety of serey and orretness requirements. Furthermore, in addition

to plain orretness and serey, there are typially other task-spei� onerns. We briey men-

tion some examples: Eletroni voting, in a number of ontexts, require areful balaning among

orretness, publi aountability, privay and deniability. Eletroni-ommere appliations suh

as on-line autions, on line trading and stok markets, and plain on-line shopping require fairness

in ompletion of the transation, as well as the ability to resolve disputes in an aeptable way.

On-line gambling tasks require, in addition, the ability to guarantee fair distribution of the out-

omes. Privay-preserving omputations on databases introdue a host of additional onerns and

goals, suh as providing statistial information while preserving the privay of individual entries,

obtaining data while hiding from the database whih data was obtained, and answering queries

that depend on several databases without leaking additional information in the proess. Seure dis-

tributed depositories, either via a entrally-managed distributed system or in an open, peer-to-peer

fashion, involve a host of additional serey, anonymity, availability and integrity onerns.

Cryptographi protools. There is vast literature desribing protools aimed at solving the

problems mentioned above, and many others, in a variety of settings. Out of this literature, let us

mention only the works of Yao [y86℄, and Goldreih, Miali and Wigderson [gmw87, g04℄, whih

give a mehanial way to generate protools for solving pratially any multi-party ryptographi

protool problem \in a seure way", assuming authentiated ommuniation. (These onstru-

tions do not over all tasks; for instane, they do not address the important problem of obtaining

authentiated ommuniation. Still, they are very general.)

De�ning seurity of protools. But, what does it mean for a ryptographi protool to solve

a given protool problem, or a ryptographi task, \in a seure way"? How an we formalize

the relevant seurity requirements in a way that makes mathematial sense, mathes our informal

intention, and at the same time an also be met by atual protools? This turns out to be a triky

business.

Initially, de�nitions of seurity were problem-spei�. That is, researhers ame up with ad-ho

models of protools and sets of requirements that seem to math the intuitive pereption of the

problem at hand. In addition, de�nitions were often tailored to apture the properties of spei�

solutions or protools. However, as pointed out already in [y82a℄, we would like to have a general

framework for speifying the seurity properties of di�erent tasks. A general framework allows for

uniform and methodologial spei�ation of seurity properties. Suh a spei�ation methodology

may provide better understanding of requirements and their formalization. It is also likely to result

in fewer aws in formulating the seurity requirements of tasks. In fat, it an be argued that

having a general de�nitional framework is essential for understanding the notion of seurity of
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protools.

Yet there is another, more onrete argument in favor of having a general analytial framework.

Traditionally, notions of seurity tend to be very sensitive to the spei� \exeution environment"

in whih the protool is running, and in partiular to the other protools running in the system

at the same time. Thus, a set of requirements that seem appropriate in one setting may easily

beome insuÆient when the setting is hanged only slightly. This is a serious drawbak when

trying to build seure systems that make use of ryptographi protools. Here a general analytial

framework with a uniform methodology of speifying seurity requirements an be very useful: It

allows formulating statements suh as \A protool that realizes some task an be used in onjuntion

with any protool that makes use of this task, without bad interations," or \Protools that realize

this task ontinue to realize it in any exeution environment, regardless of what other protools run

in the system." Suh seurity-preserving omposition theorems are essential for building seurity

protools in a systemati way. They an be meaningful only in the ontext of a general framework

for representing ryptographi protools.

Several general frameworks for representing ryptographi protools and speifying the seurity

requirements of tasks were developed over the years, e.g. [gl90, mr91, b91, bg93, pw94, lmms98,

00, hm00, dm00, pw00, pw01, 01, mrst06, mms03, k06℄. All of these frameworks follow in

one way or another the same underlying de�nitional approah, alled the trusted-party paradigm.

Still, these frameworks di�er greatly in their expressibility (i.e., the range of seurity onerns and

tasks that an be aptured), in the models addressed, and in many signi�ant tehnial details.

They also support di�erent types of seurity-preserving omposition theorems.

This tutorial. This tutorial onentrates on the trusted-party de�nitional paradigm and the se-

urity it provides. Speial attention is given to the importane of seurity-preserving omposition

in ryptographi protools, and to the omposability properties of this paradigm in partiular. We

also briey disuss the relations with other (non-ryptographi) general approahes for modeling

distributed protools and analyzing their properties. For sake of onreteness, we base the ur-

rent treatment on two spei� formalizations of the trusted-party paradigm; other formulations

are surveyed in the Appendix. The �rst formalization [00℄ is somewhat simpler and provides a

rather basi notion of seurity, with limited expressibility and a limited form of seurity-preserving

omposition. The seond one [01℄ is more general in terms of expressibility of onerns and situ-

ations, and also enables a very general form of seurity-preserving omposition. The presentation

here tries to \de-ouple" the expressibility aspet from the aspet of the seurity level; indeed, we

believe that the two aspets are very di�erent from eah other.

We start (in Setion 2) with very high-level motivation and exposition of the trusted-party

paradigm. We �rst demonstrate the failure of some naive approahes for de�ning seurity. We

then present the paradigm in an abstrat form and argue why it ould allow overoming the same

pitfalls. We also try to demonstrate the intuitive appeal of this paradigm.

We then ontinue to develop (in Setion 3) a highly simpli�ed formalization of the general

paradigm, that deals only with two parties that wish to ompute a pre-spei�ed funtion of their

inputs, one, in isolation. While onsiderably restrited in its expressibility, this formulation (whih

is a restrited ase of [00℄) allows onentrating on the main ideas without muh of the omplexity

of the general ase.

Setion 4 presents a generalization of the model from Setion 3 that allows apturing general

ryptographi tasks, inluding multi-party tasks, reative tasks (i.e. tasks where parties provide

multiple inputs and reeive multiple outputs), as well as �ne-tuning of the seurity requirements.
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This model an be seen as a generalization of [00℄. Still, this model onentrates on protools that

are exeuted one, in isolation. At the end of this setion we briey review some basi feasibility

results for this \stand-alone seurity" model.

Setion 5 introdues the notion of seurity-preserving protool omposition. We start by demon-

strating, via some examples, the seurity pitfalls assoiated with protool omposition. We then

survey some salient omposition operations and senarios. Finally, we de�ne what it means for a

notion of seurity to provide \omposable seurity" (with respet to some type of omposition).

The presentation in this setion is, for the most part, independent of the material in the previous

setions.

Setion 6 reviews the omposability properties of the \stand-alone" notion of seurity from

Setion 4. In a nutshell, it is demonstrated that seurity is preserved as long as no two protool

instanes run onurrently with eah other. However, no seurity is guaranteed as soon as even two

protools instanes run onurrently.

Setion 7 presents and disusses the notion of Universally Composable (UC) seurity [01℄. The

salient feature of this notion is that it guarantees that seurity is preserved in any omposite system,

and for any set of protools running onurrently. After presenting the notion and its relation to

the stand-alone notion from Setion 4, we briey review the known feasibility results, as well as

some relaxations of this notion that were reently studied in the literature.

Setion 8 provides a brief and subjetive view of notions of seurity for ryptographi protools.

The Appendix ontains a mini survey of de�nitional works that follow the trusted-party paradigm.

2 The trusted-party paradigm

This setion motivates and skethes the trusted-party de�nitional paradigm, and highlights some of

its main advantages. More detailed desriptions of atual de�nitions are left to subsequent setions.

Let us onsider, as a generi example, the task of two-party seure funtion evaluation. Here two

mutually distrustful parties P

0

and P

1

want to \seurely evaluate" some known funtion f , in the

sense that P

i

has value x

i

and the parties wish to jointly ompute f(x

0

; x

1

) \in a seure way."

Whih protools should we onsider adequate for this task?

First attempts. Two basi types of requirements ome to mind. The �rst is orretness: the

parties that follow the protool (often alled the \good parties" or \honest parties") should output

the orret value of the funtion evaluated at the inputs of all parties. Here the \orret funtion

value" may apture multiple onerns, inluding authentiity of the identities of the partiipants,

integrity of the input values, orret hoie of random values, et. The seond requirement is

serey, or hiding the loal information held by the parties as muh as possible.

For instane, onsider two parties (say, two databases), eah having a list of items, that wish

to �nd out whih items appear in both lists. Here, orretness means that the parties output all

the entries whih appear in both lists, and only those entries. Serey means that no party learns

anything from the interation other than the joint entries.

However, in general, formalizing these requirements in a meaningful way seems problemati.

Let us briey mention some of the issues. First, de�ning orretness is ompliated by the fat that

it is not lear how to de�ne the \input value" that an arbitrarily-behaving party ontributes to

the omputation. In partiular, it is of ourse impossible to \fore" suh parties to use some value

given from above. So, what would be a \legitimate", or \aeptable" proess for hoosing inputs

by parties who do not neessarily follow the protool?
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Another question is how to formulate the serey requirement. Here it seems reasonable to

require that parties should be able to learn from partiipating in the protool nothing more than

their presribed outputs of the omputation, namely the \orret" funtion value. But, even

before getting into the more tehnial question of how to formulate suh a \learn nothing more"

requirement, we run into the problem that the \orret funtion value" in itself depends on the

inputs ontributed by parties who may not follow the protool.

Let us exemplify some of these issues via the following toy protool (taken from [mr91℄): Assume

that x

0

; x

1

2 f0; 1g, and that f is the exlusive or funtion, namely f(x

0

; x

1

) = x

0

� x

1

. That

is, eah party ontributes an (a priori seret) input value, and obtains the exlusive or of the two

inputs. The protool instruts P

0

to send its input to P

1

; then P

1

announes the result. Intuitively,

this protool is inseure sine P

1

an unilaterally determine the output, after learning P

0

's input.

Yet, the protool maintains serey (whih holds vauously for this problem sine eah party an

infer the input of the other party from its own input and the funtion value), and is ertainly

\orret" in the sense that the output �ts the input that P

1

\ontributes" to the omputation.

This example seems to indiate that the a seure protool must guarantee that the input that

a party ontribute to the protool should be hosen without knowledge of the inputs of the other

parties (at least those who follow the protool). This, in turn, suggests that the orretness and

serey requirements are in fat intertwined, namely they are two faets of a single requirement,

rather than two di�erent requirements.

The same example also brings forth another seurity requirement from protools, in addition

to orretness and serey: We want to prevent one party from inuening the output of the other

parties in illegitimate ways, even when plain orretness is not violated.

Additional problems arise when the funtion to be evaluated is probabilisti, namely the parties

wish to jointly \sample" from a given distribution that may depend on seret values held by the

parties. Here it seems lear that orretness should take the form of some statistial requirement

from the output distribution. In partiular, eah party should be able to inuene the output dis-

tribution only to the extent that the funtion allows, namely only in ways that an be interpreted

as providing a legitimately determined input to the funtion. Furthermore, as demonstrated by the

following example, the ase of probabilisti funtions puts forth an additional, impliit serey re-

quirement. (We note that this onern arises even in the simpli�ed ase where all parties are trusted

to follow the protool instrutions and the goal is to prevent illegitimate information leakage.)

Assume that the parties want to toss k oins, where k is a seurity parameter; formally, the

evaluated funtion is f(�; �) = r, where r

R

 f0; 1g

k

. Let f be a one-way permutation on domain

f0; 1g

k

(i.e., given a random k-bit value x, it is infeasible to ompute f

�1

(x)). The protool instruts

P

0

to hoose s

R

 f0; 1g

k

and send r = f(s) to P

1

. Both parties output r.

This protool preserves serey vauously (sine the parties do not have any seret inputs), and

is also perfetly orret in the sense that the distribution of the joint output is perfetly uniform.

However, the protool lets P

0

hold some \seret trapdoor information" on the joint random string.

Furthermore, P

1

does not have this information, and annot feasibly ompute it (assuming that f

is one-way). This \quirk" of the protool is not merely an aestheti onern. Having suh trapdoor

information an be devastating for seurity if the output string r is used within other protools.

This example seems to suggest that a de�nition of seurity should somehow speify also the proess

in whih the output is to be obtained.

Other onerns, not disussed here, inlude issues of fairness in obtaining the outputs (namely,

preventing parties from aborting the omputation after they reeived their outputs but before other

parties reeived theirs), and addressing break-ins into parties that our during the ourse of the
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omputation.

The trusted party paradigm. The trusted party paradigm follows the \uni�ed requirement"

approah mentioned above. The idea (whih originates in [gmw87℄, albeit very informally) proeeds

as follows. In order to determine whether a given protool is seure for some ryptographi task,

�rst envision an ideal proess for arrying out the task in a seure way. In the ideal proess all

parties seretly hand their inputs to an external trusted party who loally omputes the outputs

aording to the spei�ation, and seretly hands eah party its presribed outputs. This ideal

proess an be regarded as a \formal spei�ation" of the seurity requirements of the task. (For

instane, to apture the above seure funtion evaluation task, the trusted party simply evaluates

the funtion on the inputs provided by the parties, and hands the outputs bak to the parties. If

the funtion is probabilisti then the trusted party also makes the neessary random hoies.) The

protool is said to seurely realize a task if running the protool amounts to \emulating" the ideal

proess for the task, in the sense that any damage that an be aused by an adversary interating

with the protool an also be aused by an adversary in the ideal proess for the task.

In priniple, this idea seems to have the potential to answer all the onerns disussed above.

Indeed, in the ideal proess both orretness and lak of inuene are guaranteed in �at, sine

the inputs provided by any adversarial set of parties annot depend on the inputs provided by the

other parties in any way, and furthermore all parties obtain the orret output value aording

to the spei�ation. Serey is also immediately guaranteed, sine the only information obtained

by any adversarial oalition of parties is the legitimate outputs of the parties in this oalition. In

partiular, no impliit leakage of side-information orrelated with the output is possible. Another

attrative property of this approah is its apparent generality: It seems possible to apture the

requirements of very di�erent tasks by onsidering di�erent sets of instrutions for the external

trusted party.

It remains to substantiate this de�nitional approah in a way that maintains its intuitive appeal

and seurity guarantees, and at the same time allows for reasonable analysis of \natural" protools.

In this tutorial we desribe several formalizations, that di�er in their omplexity, generality and

omposability guarantees. Yet, all these formalizations follow the same outline, skethed as follows.

The de�nition proeeds in three steps. First we formalize the proess of exeuting a distributed

protool in the presene of adversarial behavior of some parts of the system. Here the adversarial

behavior is embodied via a single, entralized omputational entity alled the adversary. Next

we formalize the ideal proess for the task at hand. The formalized ideal proess also involves

an adversary, but this adversary is rather limited and its inuene on the omputation is tightly

ontrolled. Finally, we say that a protool � seurely realizes a task F if for any adversary A

that interats with � there exists an adversary S that interats with the trusted party for F , suh

that no \external environment," that gives inputs to the parties and reads their outputs, an tell

whether it is interating with � or with the trusted party for F . (Here the \environment" represents

\everything that happens outside the protool exeution," inluding both the the immediate users

of the protool and other parties and protools.)

Very informally, the goal of the above requirement is to guarantee that any information gathered

by the adversary A when interating with �, as well as any \damage" aused by A, ould have

also been gathered or aused by an adversary S in the ideal proess with F . Now, sine the

ideal proess is designed so that no S an gather information or ause damage more than what is

expliitly permitted in the ideal proess for F , we an onlude that A too, when interating with

�, annot gather information or ause damage more than what is expliitly permitted by F .
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We note that the de�nitional approah of omparing an exeution to an idealized system an be

viewed as a natural extension of the approah taken when de�ning semanti seurity of enryption

sheme [gm84℄ and zero-knowledge proofs [gmra89℄. Furthermore, the formulation desribed here

an be seen as a diret generalization of the formulations in [gm84, gmra89℄.

Jumping ahead, we also note that the above formulation has an apparent intuitive \ompo-

sitionality" guarantee: Sine it is expliitly required that no \environment" an tell the protool

from the trusted party, it makes sense to expet that a protool will exhibit the same properties

regardless of the ativity in the rest of the system. We postpone additional disussion of this

important issue to later setions.

3 Basi seurity: A simpli�ed ase

For the �rst formalization, we onsider a relatively simple setting: As in the previous setion, we

restrit ourselves to two-party seure funtion evaluation, namely the ase of two parties that wish

to jointly ompute a funtion of their inputs. We also restrit ourselves to the \stand-alone" ase,

where the protool is exeuted one, and no other parties and no other protool exeutions are

onsidered. Furthermore, we are only onerned with the ase where one of the two parties is

adversarial. In partiular, the ommuniation links are onsidered \trusted", in the sense that eah

party reeives all the messages sent by the other party, and only those messages. It turns out that

this setting, while highly simpli�ed, still aptures muh of the omplexity of the general problem.

We thus present it in detail before onsidering more omplex (and more realisti) settings.

Setion 3.2 presents the de�nition. Setion 3.3 exempli�es the de�nition by providing some

de�nitions of ryptographi tasks, ast in this model. First, however, we present the underlying

model of distributed omputation, in Setion 3.1.

3.1 A basi system model

Before de�ning seurity of protools, one should �rst formulate a model for representing distributed

systems and protools within them. Informally, we wish to apture a system of (resoure bounded)

omputing elements that ommuniate in an arbitrary asynhronous manner. This setion skethes

suh a model; sine we only need to apture two-party protools, the model is somewhat simpli�ed

(it is extended later). Still, readers that are satis�ed with a more informal notion of distributed

systems, protools, and polynomial-time omputation an safely skip this setion.

Several general models for representing and arguing about distributed systems exist, e.g. the

CSP model of Hoare [h85℄, the �-alulus of Milner [m89, m99℄, or the I/O automata of Lynh

and Tuttle [lt89℄. Here we build on the interative Turing mahines (ITMs) model, put forth in

Goldwasser, Miali and Rako� [gmra89℄ (see also [g01℄). Indeed, while the ITM model is more

\low level" and provides fewer and less elegant abstration mehanisms than the above models, it

allows for apturing in a natural way the subtle relations between randomization, interation, and

resoure-bounded adversarial behavior. Spei�ally, we formulate a simpli�ed version of the model

of [01, 2005 revision℄. (Some models that aim at ombining the omputational advantages of the

ITM model with the analytial advantages of more abstrat models inlude [pw00, pw01, +06,

k06℄.)

Interative Turing Mahines. Interative Turing mahines (ITMs) are probabilisti Turing

mahines augmented with mehanisms that allow transferal of data between di�erent mahines.
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Spei�ally, an ITM is a Turing mahine with some externally writable tapes, namely tapes that an

be written into by other mahines. It will be onvenient to distinguish three externally writable

tapes: An input tape, representing inputs provided by the \invoking program", an inoming om-

muniation tape, representing messages oming from the network, and a subroutine output tape,

representing outputs provided by subroutines invoked by the present program. The input tape

represents information oming from \outside the protool instane", while the inoming ommu-

niation tape and the subroutine output tapes provide information that is \internal to a protool

instane." In addition, the inoming ommuniation tape models information oming from un-

trusted soures, while the information on the subroutine output tapes is treated as oming from a

trusted soure.

Systems of ITMs. The model of omputation onsists of several instanes of ITMs that an

write on the externally writable tapes of eah other, subjet to some global rules. We all an ITM

instane an ITI. Di�erent ITIs an run the same ode (ITM); however they would, in general, have

di�erent loal states.

An exeution of a systems of ITMs onsists of a sequene of ativations of ITIs. In eah ativa-

tion, the ative ITI proeeds aording to its urrent state and ontents of tapes until it enters a

speial wait state. In order to allow the writing ITI to speify the target ITI we enumerate the ITIs

in the system in some arbitrary order, and require that the write instrution speify the numeral

of the target ITI. (This addressing mehanism essentially means that eah two ITIs in the system

have a \diret link" between them. A more general addressing mehanism is desribed in Setion

4.1.) The order of ativation is determined as follows: There is a pre-determined ITI, alled the

initial ITI, whih is the �rst one to be ativated. At the end of eah ativation, the ITI whose tape

was written to is ativated next. If no external write operation was made then the initial ITI is

ativated. The exeution ends when the initial ITI halts. (To disambiguate the order of ativations,

we allow an ITI to write on an externally writable tape of at most one other ITI per invoation.)

In priniple, the global input of an exeution should be the initial inputs of all ITIs. For

simpliity, however, we de�ne the global input as the input of the initial ITI alone. Similarly,

the output of an exeution is the output of the initial ITI. (This formulation will suÆe for our

purposes.) A �nal ingredient of a system of ITMs is the ontrol funtion, whih determines whih

tapes of whih ITI an eah ITI write on. As we'll see, the ontrol funtion will be instrumental in

de�ning di�erent notions of seurity.

Looking ahead, we remark that this very rudimentary model of ommuniation, with its simple

and sequential sheduling of events, atually proves suÆient for expressing general synhrony,

onurreny, and sheduling onerns.

Polynomial-Time ITMs. In order to model resoure-bounded programs and adversaries, we

need to de�ne resoure-bounded ITMs. We onentrate on polynomial time ITMs. We wish to

stik with the traditional interpretation of polynomial time as \polynomial in the length of the

input." However, sine in our model ITMs an write on the tapes of eah other, are should be

taken to guarantee that the overall running time of the system remains polynomial in the initial

parameters. We thus say that an ITM M is polynomial time (PT) if there exists a polynomial

p(�) suh that at any point during the omputation the overall number of steps taken by M is at

most p(n), where n is the overall number of bits written so far into the input tape of M , minus the

number of bits written by M to the input tapes of other ITIs. This guarantees that a system of

ommuniating ITMs ompletes in polynomial time in the overall length of inputs, even when ITIs
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write on the input tapes of eah other. (An alternative, somewhat simpler formulation says that

the overall running time of an ITM should be polynomial in the value of a \seurity parameter".

However, this formulation onsiderably limits the expressibility of the model, espeially in the ase

of reative omputation. See [01℄ for more disussion on notions of PPT ITMs.)

Protools. A protool is de�ned simply as an ITM. This ITM represents the ode to be run by

eah partiipant, namely the set of instrutions to be arried out upon reeipt of an input, inoming

message, or subroutine output (namely, output from a subroutine). If the protool has di�erent

instrutions for di�erent roles, then the ITM representing the protool should speify the behaviors

of all roles. A protool is PT if it is PT as an ITM.

3.2 The de�nition of seurity

We esh out the de�nitional plan from Setion 2, for the ase of two-party, stand-alone, non-reative

tasks (see Figure 1).

E

A

E

S

T_f

Pi

Figure 1: The de�nition of seurity at a glane. The left �gure depits an exeution of the protool

with an adversary A. The right �gure depits the ideal proess for a funtion f ; here a party and

the adversary interat via a trusted party T

f

. A protool � seurely evaluates a funtion f if for any

adversary A there is an adversary S suh that no environment an tell with signi�ant probability

whether it is interating with A and a party running � or with S in the ideal proess for f .

The protool exeution experiment.

1

Let � be a two-party protool. The protool exeution

experiment proeeds as follows. There are three entities (modeled as ITIs): an entity P , that runs

the ode of �, the adversary, denoted A, and the environment, denoted E .

The environment (who is ativated �rst) provides initial inputs to A and the party P running

�; later, it obtains the �nal outputs of P and A. (The initial inputs an be thought of as enoded

in E 's own input.)

One either P or A is ativated, with either an input value or an inoming message (i.e., a value

written on the inoming ommuniation tape), it runs its ode and potentially generates a message

to be written on the other party's inoming ommuniation tape, or an output, to be read by E .

Both P and A an generate only a single output value throughout the omputation.

The �nal output of the exeution is the output of the environment. As we'll see, it's enough to

let this output onsist of s single bit.

1

The presentation below is somewhat informal. Formal desription, in terms of a system of ITMs as skethed in the

previous setion, an be easily inferred. In partiular, the various model restritions are enfored via an appropriate

ontrol funtion.
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We use the following notation. Let exe

�;A;E

(x) denote the random variable desribing the

output of environment E when interating with adversary A and protool � on input x (for E).

Here the probability is taken over the random hoies of all the partiipating entities. Let exe

�;A;E

denote the ensemble of distributions fexe

�;A;E

(x)g

x2f0;1g

� .

The ideal proess. Next an ideal proess for two-party funtion evaluation is formulated. Let

f : (f0; 1g

�

)

2

! (f0; 1g

�

)

2

be the (potentially probabilisti) two-party funtion to be evaluated.

We want to formalize a proess where the parties hand their inputs to a trusted entity whih

evaluates f on the provided inputs and hands eah party its presribed output. For that purpose,

we add to the system an additional entity (ITI), denoted T

f

, whih represents the trusted party

and aptures the desired funtionality. P now runs the following simple ideal protool for f : When

reeiving input value, P forwards this input to T

f

. When reeiving an output from T

f

, P forwards

this output to E .

T

f

proeeds as follows: It �rst waits to reeive input (b; x) from P and input x

0

from the

adversary A, where b 2 f1; 2g denotes whether x is to be taken as the �rst or seond input to f .

One the inputs are reeived, T

f

evaluates the funtion, namely it lets x

b

 x, x

3�b

 x

0

, and

(y

1

; y

2

)  f(x

1

; x

2

). Next, T

f

outputs y

3�b

to A. One it reeives an ok message from A, T

f

outputs y

b

to P .

Analogously to the protool exeution experiment, let ideal

f;A;E

(x) denote the random variable

desribing the output of environment E when interating with adversary A and the ideal protool for

f on input x (for E), where the probability is taken over the random hoies of all the partiipating

entities. Let ideal

f;A;E

denote the ensemble fideal

f;A;E

(x)g

x2f0;1g

� .

Seurely evaluating a funtion. Essentially, a two-party protool � is said to seurely evaluate

a two-party funtion f if for any adversary A, that interats with �, there exists another adversary,

denoted S, that interats with T

f

, suh that no environment will be able to tell whether it is

interating with � and A, or alternatively with T

f

and S.

To provide a more rigorous de�nition, we �rst de�ne indistinguishability of probability ensem-

bles. A funtion is negligible if it tends to zero faster than any polynomial fration, when its

argument tends to in�nity. Two distribution ensembles X = fX

i

g

a2f0;1g

�
and X

0

= fX

0

i

g

a2f0;1g

�

are indistinguishable (denoted X � X

0

) if for any a; a

0

2 f0; 1g

k

the statistial distane between

distributions X

a

and X

0

a

is a negligible funtion of k.

2

Seure evaluation is then de�ned as follows:

De�nition 1 (Basi seurity for two-party funtion evaluation) A two-party protool � se-

urely evaluates a two-party funtion f if for any PT adversary A there exists a PT adversary S

suh that for all PT environments E that output only one bit:

ideal

f;S;E

� exe

�;A;E

3.2.1 Disussion

Motivating some hoies in the model. Reall that the protool exeution experiment in-

volves only a single party running the two-party protool, where the messages are exhanged with

2

The use of an asymptoti notion of similarity between distribution ensembles greatly simpli�es the presentation

and argumentation. However it inevitably introdues some slak in measuring distane. More preise and quantitative

notions of similarity may be needed to determine the exat quantitative seurity of protools. Also, note that we do

not de�ne omputational indistinguishability of probability ensembles. This is so sine we will only be interested in

ensembles of distributions over the binary domain f0; 1g, and for these ensembles the two notions are equivalent.
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the adversary rather than with another party running the protool. This models the fat that we

onsider the behavior of the system when one of the parties follows the protool while the other

follows a potentially di�erent strategy. In two-party protools where there are two distint roles

there will be two distint ases depending on the role played by the party who is running the

protool. However, sine the role an be modeled as part of the input, this distintion need not be

made within the general modeling.

Reall that the environment only sees the inputs and outputs of the adversary and the party

running the protool; it does not have diret aess to the ommuniation between the parties.

Indeed, the environment aptures the \external system" that provides inputs to the parties and

obtains their outputs. the ommuniation between the parties is treated as internal to the protool

rather than part of its funtionality.

Also, notie that no generality is lost by restriting the environment to output only one bit, sine

a de�nition that allows the environment to generate long outputs would end up being equivalent

to the present one.

Interpreting the de�nition. It is instrutive to see how the informal desription of Setion 2

is substantiated. First, the ideal proess represents in a straightforward way the intuitive notion of

a trusted party that obtains the inputs from the parties and loally omputes the desired outputs.

In partiular, the input provided by the adversary depends only in the information it was initially

given from E . Furthermore, A obtains only the spei�ed funtion value.

Now, assume there existed an adversary A that ould interat with the protool and exhibit

\bad behavior" that annot be exhibited in the ideal proess, by any adversary S. Then there

would exist an environment E that outputs `1' with signi�antly di�erent probabilities in the two

exeutions, and the de�nition would be violated.

The notion of \bad behavior" is interpreted in terms of the joint distribution of the outputs

of P and A on any given input. This interpretation is very broad: For instane, it guarantees

that the protool does not allow the adversary to gather information on the other party's input,

where this information is not available in the ideal proess (sine otherwise the protool exeution

would have no ideal-proess ounterpart). It also guarantees that the protool does not allow an

adversarial party to inuene the output of the other party in ways that are not possible in the

ideal proess. In partiular, it is guaranteed that the adversary S in the ideal proess is able to

generate an \e�etive adversarial input" x

2

to the trusted party that is onsistent with P 's input

and output (namely, x

2

satis�es y

1

= f(x1; x2)

1

, where x

1

is P s input and y

1

is P 's output).

In addition, the environment an hoose to provide A with input that is either unorrelated

with P 's input, or alternatively partially or fully orrelated with P 's input. This guarantees that

the above properties of the protool hold regardless of how muh \partial information" on P 's input

is already known to the adversary in advane.

Also, notie that the orretness guarantee takes a somewhat di�erent avor for deterministi

and probabilisti funtions: For deterministi funtions, P 's output is guaranteed to be the ex-

at funtion value, exept for negligible probability, for any potential input value. For probabilisti

funtions, it is only guaranteed that the distribution of P 's output is omputationally indistinguish-

able from the distribution spei�ed by the funtion. This di�erene allows the analyst to hoose

whih level of seurity to require, by speifying an appropriate f .

Yet, the present formulation of the ideal proess does not guarantee fairness: A always reeives

the output �rst, and an then deide whether P will obtain its output.
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Extensions. The de�nition an be modi�ed in natural ways to require an information-theoreti

(or, statistial) level of seurity, by onsidering omputationally unbounded adversaries and envi-

ronments, or even perfet seurity, by requiring in addition that the two sides of (1) be idential.

(To preserve meaningfulness, S should still be polynomial in the omplexity of A, even when A

and E are unbounded.)

Similarly, the de�nition an be modi�ed to onsider only restrited types of maliious behavior

of the parties, by appropriately restriting the adversary. For instane, seurity against \semi-

honest" parties that follow the protool, but may still try to gather additional information, an be

aptured by requiring A to follow the original protool. (Indeed, in situations where it is plausible

to assume that all parties always follow the presribed protool suh a weaker seurity guarantee

suÆes.)

3.3 Examples

To exemplify the use of De�nition 1 for apturing the seurity requirements of ryptographi tasks,

we use it to apture the seurity requirements of three quite di�erent tasks. That is, for eah of

these tasks we formulate a two-party funtion that aptures the seurity requirements of the task.

Database Intersetion. As a �rst example, onsider the task mentioned in Setion 2: Two par-

ties, eah having a list of items, wish to �nd out whih items appear in both lists. Here both parties

have private inputs and both have private outputs whih are di�erent than, but related to, eah

other. Still, it an be formulated as a funtion in a straightforward way: f

di

((x

1

1

; :::; x

1

n

); (x

2

1

; :::; x

2

m

)) =

((b

1

1

; :::; b

1

n

); (b

2

1

; :::; b

2

m

)), where b

i

j

= 1 if x

i

j

equals x

3�i

j

0

for some j

0

, and b

i

j

= 0 otherwise. This

would mean that a party P whih follows the protool is guaranteed to get a valid answer based on

its own database x and some database x

0

, where x

0

was determined by the other party based only

on the initial input of the other party. Furthermore, the information learned by the other party

is omputed based on the same two values x and x

0

. Also, if there is reason to believe that the

other party used some onrete \real" database x

0

, then orretness is guaranteed with respet to

that spei� x

0

. Reall, however, that the de�nition does not guarantee fairness. That is, the other

party may obtain the output value �rst, and based on that value deide whether P will obtain its

output value. In Setion 4 we will see how to express fairness within an extended formalism.

Common Randomness. Next, we onsider a task that involves randomness requirements from

the outputs of the parties. Spei�ally, we onsider the task of generating a ommon string that

is guaranteed to be taken from a pre-de�ned distribution, say the uniform distribution over the

strings of some length: f

k

r

(�;�) = (r; r), where r is a random k-bit string. Here the parties

are guaranteed that the output r is distributed (pseudo)randomly over f0; 1g

k

. Furthermore, eah

party is guaranteed that the other party does not have any \trapdoor information" on r that

annot be eÆiently omputed from r alone. As mentioned in the Introdution, this guarantee

beomes ruial in some ryptographi appliations. Finally, as in the previous ase, fairness is not

guaranteed.

Zero Knowledge. Let R : f0; 1g

�

� f0; 1g

�

! f0; 1g be a binary relation, and onsider the

bivariate funtion f

R

zk

((x;w);�) = (�; (x;R(x;w))). That is, the �rst party (the \prover") has

input (x;w), while the seond party (the \veri�er") has empty input. The veri�er should learn

x plus the one-bit value R(x;w), and nothing else. The prover should learn nothing from the
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interation. In partiular, when R is the relation assoiated with an NP language L (that is,

L = L

R

def

= fxj9w s.t. R(x;w) = 1g), these requirements are very reminisent of the requirements

from a Zero-Knowledge protool for L: The veri�er is guaranteed that it aepts, or outputs (x; 1),

only when x 2 L (soundness), and the prover is guaranteed that the veri�er learns nothing more

other than whether x 2 L (zero-knowledge).

It is tempting to onlude that a protool is Zero-Knowledge for language L

R

as in [gmra89℄

if and only if it seurely realizes f

R

zk

. This statement is true \in spirit", but some tehnial aveats

exist. Below we disuss these aveats; readers that are satis�ed with a more intuitive notion of

Zero-Knowledge or are not familiar with its lassi de�nition may safely skip this disussion.

The �rst aveat is that [gmra89℄ de�ne Zero Knowledge so that both parties reeive x as input,

whereas here the veri�er learns x only via the protool. This di�erene, however, is only \osmeti"

and an be resolved via simple syntati transformations between protools. The remaining two

di�erenes are more substantial: First, seurely realizing f

R

zk

only guarantees \omputational sound-

ness", namely soundness against PT adversarial provers. Seond, seurely realizing f

R

zk

implies an

additional, somewhat impliit requirement: When the adversary plays the role of a potentially

misbehaving prover, the de�nition requires the simulator to expliitly hand the input x and the

witness w to the trusted party. To do this, the simulator should be able to \extrat" these values

from the messages sent by the adversary. This requirement has the avor of a proof of knowledge

(see e.g. [g01℄), albeit in a slightly milder form that does not require a blak-box extrator.

In onlusion, we have that a protool seurely realizes f

R

zk

if and only if a slight modi�ation

of the protool is a omputationally sound Zero-Knowledge Proof of Knowledge for L

R

(with

potentially non blak-box extrators).

4 Basi seurity: The general ase

Setion 3 provides a framework for de�ning seurity of a restrited lass of protools for a restrited

lass of tasks: protools that involve only two parties, and tasks that an be aptured as two-party

funtions. While this ase aptures muh of the essene of the general notion, it laks in terms of

the expressibility and generality of the de�nitional paradigm.

This setion generalizes the treatment of Setion 3 in several ways, so as to apture a wider lass

of ryptographi tasks. First we onsider multi-party tasks and protools, namely the ase where

multiple (even unboundedly many) parties ontribute inputs and obtain outputs. This requires

apturing various synhrony and sheduling onerns. Seond, we onsider also reative tasks,

where a party provides inputs and obtains outputs multiple times, and new inputs may depend on

previously obtained outputs. Next, we let the adversary be a separate entity, rather than taking

the plae of some of the partiipants. This allows onsidering also tasks whih require seurity

against \the network", namely against parties that do not take legitimate part in the protool

but may have aess to the ommuniation. It also allows expressing situations where parties get

\orrupted", or \broken into" in an adaptive way throughout the omputation. Next, we allow the

adversary interat freely with the trusted party. This allows apturing seurity requirements in a

more �ne-grained way by speifying the allowed information leakage and adversarial inuene.

Still, throughout this setion we only onsider the ase of a single exeution of a protool, run

in isolation. Treatment of systems where multiple protool exeutions o-exist is deferred to the

next setions.

The neessary extensions to the basi system model are presented �rst, in Setion 4.1. Setion

4.2 presents the extensions to the de�nition of seurity, while Setion 4.3 provides some additional
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examples. Finally, Setion 4.4 briey reviews some basi feasibility results for this de�nition.

Overall, this setion is somewhat more detail-oriented. While useful for understanding many

ruial details in modeling seurity protools, it an be safely skipped (or only skimmed) at �rst

reading.

4.1 The system model

In many respets, the system model from Setion 3.1 suÆes for apturing general multi-party

protools and their seurity. (In fat, some existing formalisms o�er omparable generality, in

the sense that they do not inlude the extensions desribed below.) Still, that model has some

limitations: First, it an only handle a �xed number of interating ITIs. This suÆes for protools

where the number of partiipants is �xed. However, it does not allow modeling protools where

the number of parties an grow in an adaptive way based on the exeution of the protool, or even

only as a funtion of a seurity parameter. Suh situations may indeed our in real life, say in

an on-line aution or gambling appliation. Another limitation is that the addressing mehanism

for external write requests is highly idealized, and does not allow for natural modeling of routing

and identity management issues. While this level of abstration is suÆient for systems with small

number of partiipants that know eah other in advane, it does not suÆe for open systems, where

parties may learn about eah other only via the protool exeution.

We thus extend the model of Setion 3.1 in two ways (again, following [01, 2005 revision℄).

First, we allow for new ITIs to be added to the system during the ourse of the omputation. This

is done via a speial \invoke new ITI" instrution that an be exeuted by a urrently running

ITI. The ode of the new ITI should be spei�ed in the invoation instrution. The e�et of the

instrution is that a new ITI with the spei�ed ode is added to the system. The externally writable

tapes of the new ITI an now be written to by other ITIs. Note that, given the new formalism,

a system of ITMs an now be spei�ed by a single ITM, the initial ITM, along with the ontrol

funtion. All other ITIs in the system an be generated dynamially during the ourse of the

exeution. The notion of PT ITMs from Setion 3.1 remains valid, in the sense that it is still

guaranteed that a system of ITMs is guaranteed to omplete eah exeution in polynomial time, as

long as the initial ITM is PT and the ontrol funtion is polynomially omputable.

The seond hange is to add a speial identity tape to the desription of an ITM. This tape

will be written to one, upon invoation, and will be readable by the ITM itself. This means that

the behavior of the ITM an depend on its identity (namely on the ontents of its identity tape).

Furthermore, an external write instrution will now speify the target ITM via its identity, rather

than via a \dediated link" (represented via some external index).

The identity of an ITI is determined by the ITI that invokes it. To guarantee unambiguous

addressing, we require that identities (often dubbed IDs) be unique. That is, an invoation instru-

tion that spei�es an existing ID is rejeted. (This rule an be implemented, say, by the ontrol

funtion.)

4.2 De�nition of Seurity

We extend the de�nition of seurity in several steps. First, we extend the model of protool

exeution. Next, we extend the ideal proess. Finally, we extend the notion of realizing a trusted

party. As we'll see, in some respets the present more general de�nition is simpler to speify than

the one from Setion 3.
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The protool exeution experiment. We desribe the generalized protool exeution experi-

ment. Let � be a protool to be exeuted. As before, the model for exeuting � is parameterized

by an environment E and an adversary A.

Initially, the system onsists only of E and A. During the exeution, E invoke as many parties

(ITIs) as it wishes, and determine their identities. All of these parties run �. In addition, E an

write on the input tapes of the parties throughout the omputation, and parties an hand outputs

to E . In addition, E an give initial input to A and an obtain a single (presumable �nal) output

message from A. No other interation between E and the system is allowed.

One a party is ativated, either with an input value, or with an inoming message, it follows

its ode and potentially generates an outgoing message or an output. All outgoing messages are

handed to the adversary, regardless of the stated destinations of the messages. Outputs are handed

to E . Parties may also invoke new subroutines (ITIs), that may run either � or another ode.

However, these subroutines are not allowed to diretly ommuniate with E .

One the adversary is ativated, it an deliver a message to a party, i.e. write the message on

the party's inoming ommuniation tape. In its last ativation it an also generate an output, i.e.

write the output value on the inoming ommuniation tape of E .

As before, the �nal output of the exeution is the (one bit) output of the environment. With

little hane of onfusion, we re-de�ne the notation exe

�;A;E

to refer to the present modeling.

The ideal proess. The main di�erene from the ideal proess in Setion 3 is that, instead of

onsidering only trusted parties that perform a restrited set of operations (suh as evaluating a

funtion), we let the trusted party run arbitrary ode, and in partiular to repeatedly interat with

the parties, as well as diretly with the adversary. We say that the ode run by the trusted party

is the ideal funtionality representing the task.

In addition, the riher system model allows us to simplify the presentation by formulating the

ideal proess as a speial ase of the general protool exeution experiment. That is, given an ideal

funtionality F , we de�ne an ideal protool I

F

as follows: When a party running I

F

obtains an

input value, it immediately opies this value to the input of F . (The �rst party to do so will also

invoke F .) When a party reeives an output from F (on its subroutine output tape), it immediately

outputs this value to E .

The notation ideal

F ;A;E

from Setion 3.2 is no longer needed; it is replaed by exe

I

F

;A;E

.

Protool emulation and seure realization. The notion of realizing an ideal proess remains

essentially the same. Yet, formalizing the ideal proess as an exeution of a speial type of a

protool allows formalizing the de�nition of realizing an ideal funtionality as a speial ase of the

more general notion of emulating one protool by another. That is:

De�nition 2 (Protool emulation with basi seurity) A protool � emulates protool � if

for any PT adversary A there exists a PT adversary S suh that for all PT environments E that

output only one bit:

exe

�;S;E

� exe

�;A;E

De�nition 3 (Realizing funtionalities with basi seurity) A protool � realizes an ideal

funtionality F if � emulates I

F

, the ideal protool for F .
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Seure evaluation vs. observational equivalene. We ompare the notion of emulation with

the notion of observational equivalene, used in the �-alulus formalism of Milner [m89, m99℄, and

elsewhere. (This notion is sometimes alled also bi-simulatability.) The two notions have somewhat

of the same avor, in the sense that both require that an external environment (or, ontext) will be

unable to tell whether it is interating with one proess or with another. (In the work of Milner, the

environment is omputationally unbounded. A relaxation to the ase of omputationally bounded

environments appears in [lmms98℄.) However, emulation is a signi�antly more lenient notion,

sine it provides the additional \leeway" of onstruting an appropriate simulator S that will help

\fool" the external environment.

In other words, while \proess A is observationally equivalent to proess B" essentially means

that A and B look the same from the outside, \A emulates B" means that A an be made to look

the same as B by variating only the adversarial omponent.

This extra leniene of the notion of emulation is in fat at the ore of what makes it realiz-

able for interesting ryptographi tasks, while maintaining muh of the meaningfulness. (Another

onsequene is that the present notion is not symmetri, whereas observational equivalene is.)

4.2.1 Disussion

Some modeling deisions. We highlight some harateristis of the extended model of protool

exeution. First, the present model ontinues to treat the environment and adversary as entralized

entities that have global views of the distributed omputation. While in the two-party ase this

was a natural hoie, in the multi-party ase this modeling beomes an abstration of reality. This

modeling seems instrumental for apturing seurity in an appropriate way, sine we would want

seurity to hold even when the adversarial entities do have global view of the omputation. Still,

it does not allow formulating requirements that relate to a non-entralized ideal adversary.

Another point is the restrited ommuniation between E and A. Reall that E annot diretly

provide information to A other than at invoation time, and A an diretly provide information

to E only at the end of its exeution. (Of ourse, E and A an exhange information indiretly,

via the parties, but this type of exhange is limited by the properties of the spei� protool � in

question.) This restrition is indeed natural in a stand-alone setting, sine there is no reason to

let the adversarial ativity against the protool depend in an arti�ial way on the loal inputs and

outputs of the non-orrupted parties. Furthermore, it is very important tehnially, sine it allows

proving seurity of protools that are intuitively seure, suh as the [gmw87℄ protool (see Setion

4.4).

Also, note that the present modeling of asynhronous sheduling of events, while typial in ryp-

tography, is di�erent than the standard modeling of asynhronous sheduling in general distributed

systems, suh as those mentioned in Setion 3.1. In partiular, there asynhrony is typially ap-

tured via non-deterministi sheduling, where the non-determinism is resolved by an all-powerful

sheduler that has aess to the entire urrent state of the system. Here, in ontrast, the sheduling

is determined by the environment and adversary, namely in an algorithmi and omputationally

bounded way. This modeling of asynhrony, while admittedly weaker, seems essential for apturing

seurity that holds only against omputationally bounded attaks. Combining non-deterministi

and adversarial sheduling is an interesting hallenge.

Modeling various orruption and ommuniation methods. The simpli�ed model of Se-

tion 3 is onentrated on the ase where exatly one of the two parties is orrupted. Furthermore,

this party is orrupted in advane, before the protool starts. In ontrast, the extended model
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postulates that all parties follow the spei�ed protool �; no deviations are allowed. Deviations

from the original protool are aptured as additional protool instrutions that \get ativated"

upon reeiving speial orruption messages from the adversary. For instane, to apture arbitrary

deviation from the protool, instrut a party to follow the adversary's instrutions one it reeives

a speial orrupted message. To apture parties that ontinue following the protool but pool all

their information together (aka honest-but-urious orruptions, a party that reeives a orrupted mes-

sage will send all its internal state to the adversary, and otherwise ontinue to follow the protool.

Other types of orruptions an be aptured analogously. This way of modeling orruptions has

two advantages: First it simpli�es the basi model by avoiding the need to expliitly model party

orruption, and seond it provides exibility in onsidering multiple types of orruptions within the

same model, and even within the same exeution.

The above experiment gives the adversary full ontrol over the ommuniation, thus representing

ompletely asynhronous, unreliable and unauthentiated ommuniation. More abstrat ommu-

niation models, providing various levels of authentiation, serey, reliability and synhrony, an

be aptured by appropriately restriting the adversary. (For instane, to model authentiated om-

muniation, restrit the adversary to deliver only messages that were previously sent by parties,

and inlude the identity of the soure within eah message.) In addition, as will be seen in Setion

7, all these ommuniation models an be aptured as di�erent abstrations within the same basi

model, rather than having to re-de�ne the underlying model for eah one.

On the generalized modeling of the ideal proess. Modeling the trusted party as a general

ITM greatly enhanes the expressibility of the de�nitional framework, in terms of the types of

onerns and levels of seurity that an be aptured. Indeed, it beomes possible to \�ne-tune" the

requirements at wish. The down side of this generality is that the exat seurity impliation of a

given ideal funtionality (or, \ode for the trusted party") is not always immediately obvious, and

small hanges in the formulation often result in substantial hanges in the seurity requirements.

One way to address this diÆulty, espeially when the ideal funtionality ode is non-trivial, is to

expliitly analyze ertain key properties of that ode (see e.g. [psw00a, k02℄). Here we very briey

try to highlight some salient aspets of the formalism, as well as useful \programming tehniques"

for ideal funtionalities.

Two obvious aspets of the general formulation are that it is now possible to formulate multi-

party and reative tasks. In addition, letting the ideal funtionality interat diretly with the

adversary in the ideal proess (namely, with the \simulator") has two main e�ets. First, providing

information to the adversary an be naturally used to apture the \allowed leakage of information"

by protools that realize the task. For instane, if some partial information on the output value an

be leaked without violating the requirements, then the ideal funtionality might expliitly hand this

partial information to the adversary. (For instane, to apture the fat that an enryption sheme

need not hide th length of the plaintext, simply let the trusted party expliitly give the length of

th plaintext to the adversary.)

Reeiving information diretly from the adversary is useful in apturing the \allowed inuene"

of the adversary on the omputation. For instane, if the timing of a ertain output event is allowed

to be adversarially ontrolled (say, within some limits), then the ideal funtionality might wait for a

trigger from the adversary before generating that output. Alternatively, if several di�erent output

values are legitimate for a given set of inputs, the ideal funtionality might let the adversary hoose

the atual output within the given onstraints. In some ases it might even be useful to let the

adversary hand some arbitrary ode to be exeuted by the ideal funtionality in a \monitored way,"

namely subjet to onstraints set by the ideal funtionality.

19



In either ase, sine the ommuniation between the ideal funtionality and the adversary is not

part of the input-output interfae of the atual parties, the e�et of this ommuniation is always

to relax the seurity requirements of the task.

An example of the use of diret ommuniation between the adversary and the ideal funtionality

is the modeling of the allowable information leakage and adversarial inuene upon party orruption.

In the ideal proess, party orruption is aptured via a speial message from the adversary to the

ideal funtionality. In response to that message, the ideal funtionality might provide the adversary

with appropriate information (suh as past inputs and outputs of the orrupted party), allow the

adversary to hange the ontributed input values of the orrupted parties, or even hange its

behavior in more global ways (say, when the number of orrupted parties exeeds some threshold).

Finally, reall that the ideal funtionality reeives input diretly from the environment, and

provides outputs diretly to the environment, without intervention of the adversary. This has the

e�et that an ideal protool an guarantee delivery of messages, as well as onerns like fairness,

in the sense that one party obtains output if and only if another party does. In fat, speial are

should be taken, when writing an ideal funtionality, to make sure that the funtionality allows

the adversary to delay delivery of outputs (say, by waiting for a trigger from the adversary before

atually writing to the subroutine output tape of the reipient party); otherwise the spei�ation

may be too strong and unrealizable by a distributed protool.

4.3 More examples

De�nition 3 allows apturing the seurity and orretness requirements of pratially any distributed

task, in a stand-alone setting. This inludes, e.g., all the tasks mentioned in the introdution. Here

we sketh ideal funtionalities that apture the seurity requirements of three basi tasks. Eah

example is intended to highlight di�erent aspets of the formalism.

Commitment. First we formulate an ideal funtionality that aptures the seurity requirements

from a ommitment protool, as informally skethed in the introdution. Commitment is inherently

a two step proess, namely ommitment and opening. Thus it annot be naturally aptured within

the formalism of Setion 3, in spite of the fat that it is a two-party funtionality.

The ideal ommitment funtionality, F

om

, formalizes the \sealed envelope" intuition in a

straightforward way. That is, when reeiving from the ommitter C an input requesting to om-

mit to value x to a reeiver R, F

om

reords (x;R) and noti�es R and the adversary that C has

ommitted to some value. (Notifying the adversary means that the fat that a ommitment took

plae need not be hidden.) The opening phase is initiated by the ommitter inputting a request

to open the reorded value. In response, F

om

outputs x to R and the adversary. (Giving x to the

adversary means that the opened value an be publily available.)

In order to orretly handle adaptive orruption of the ommitter during the ourse of the

exeution, F

om

responds to a request by the adversary to orrupt C by �rst outputting a orruption

output to C, and then revealing the reorded value x to the adversary. In addition, if the Reeipt

value was not yet delivered to R, then F

om

allows the adversary to modify the ommitted value.

This last stipulation aptures the fat that the ommitted value is �xed only at the end of the

ommit phase, thus if the ommitter is orrupted during that phase then the adversary might still

be able to modify the ommitted value. (Corruption of the reeiver does not require any move.)

F

om

is desribed in Figure 2. For brevity, we use the following terminology: The instrution

\send a delayed output x to party P" should be interpreted as \send (x; P ) to the adversary; when

20



reeiving ok from the adversary, output x to P ."

Funtionality F

om

1. Upon reeiving an input (Commit; x) from party C, reord (C;R; x) and generate a delayed

output (Reeipt) to R. Ignore any subsequent (Commit:::) inputs.

2. Upon reeiving an input (Open) from C, do: If there is a reorded value x then generate a

delayed output (Open; x) to R. Otherwise, do nothing.

3. Upon reeiving a message (Corrupt; C) from the adversary, output a Corrupted value to C,

and send x to the adversary. Furthermore, if the adversary now provides a value x

0

, and the

(Reeipt) output was not yet written on R's tape, then hange the reorded value to x

0

.

Figure 2: The Ideal Commitment funtionality, F

om

Realizing F

om

is a stronger requirement than the basi notions of ommitment in the literature

(see e.g. [g01℄). In partiular, this notion requires both \extratability" and \equivoality" for

the ommitted value. These notions (whih are left unde�ned here) beome important when using

ommitment within other protools; they are disussed in subsequent setions, as well as in [f01,

01℄. Still, F

om

is realizable by standard onstrutions, assuming authentiated ommuniation

hannels.

Key Exhange. Key exhange (KE) is a task where two parties wish to agree on a random

value (a \key") that will remain seret from third parties. Typially, the key is then used to

enrypt and authentiate the ommuniation between the two parties. Key exhange may seem

reminisent of the oin-tossing task, disussed in Setion 3.3. However, it is atually quite di�erent:

Essentially, in the ase of key-exhange the two parties wish to jointly thwart an external attaker,

whereas in oin-tossing the parties wish to protet themselves from eah other. More preisely, for

key-exhange we only are about the fat that the key is random when both parties follow their

protool, whereas in oin-tossing the output should remain random and unpreditable even when

one or the parties deviates from the protool. On the other hand, in key exhange it is ruial

that the key remains seret from third parties, whereas in oin-tossing serey from third parties

is typially not a onern. Furthermore, sine key-exhange is usually arried out in a multi-party

environment with asynhronous and unauthentiated ommuniation, issues suh as preise timing

of events and binding of the output key to spei� identities beome ruial. Thus, modeling of

key-exhange naturally involves an interative interfae, as well ommuniating diretly with the

adversary.

Funtionality F

ke

, presented in Figure 3, proeeds as follows. Upon reeiving an (Initiate; I; R)

input from some party I (alled the initiator), F

ke

sends a delayed output (Initiate; I) to R.

Upon reeiving the input (Respond) from R, F

ke

forwards this input to the adversary. Now, when

reeiving a value (Key; P;

~

k) from the adversary, F

ke

�rst veri�es that P 2 fI;Rg, else P gets no

output. If the two peers are urrently unorrupted, then P obtains a truly random and seret key

� for that session. If any of the peers is orrupted then P reeives the key

~

k determined by the

adversary.

F

ke

attempts to make only a minimal set of requirements from a andidate protool. In parti-

ular, it attempts o allow the adversary maximum exibility in determining the order in whih the

parties obtain their outputs. Also, the fat that there is no requirement on the key when one of the

parties is orrupted is aptured by allowing the adversary to determine the key in this ase. Still,
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Funtionality F

ke

1. Upon reeiving an input (Initiate; I; R) from party I , send a delayed output (Initiate; I)

to R. Upon reeiving (Respond) from party R, send (Respond) to the adversary.

2. Upon reeiving a message (Corrupt; P) from the adversary, for P 2 fI; Rg, mark P as

orrupted and output (Corrupted) to P .

3. Upon reeiving a message (Key; P;

~

k) from the adversary, for P 2 fI; Rg do:

(a) If there is no reorded key � then hoose �

R

 f0; 1g

k

and reord �.

(b) If neither I nor R are orrupted then output (Key; �) to P . Else, output (Key;

~

k) to P .

Figure 3: The Key Exhange funtionality, F

ke

F

ke

guarantees that if two unorrupted parties loally obtain a key, then they obtain the same

value, and this value is uniformly generated and independent from the adversary's view.

Key Exhange is impossible to realize without some form of authentiation set-up, say pre-

shared keys, authentiation servers, or publi-key infrastruture. Still, the formulation of F

ke

is

agnosti to the partiular set-up in use. It only spei�es the desired overall funtionality. In eah

of these ases, F

ke

is realizable by standard protools, both with respet to basi seurity and with

respet to UC seurity, disussed in Setion 7.

Byzantine Agreement. Next we formulate an ideal funtionality that aptures (one variant of)

the Byzantine Agreement task. Here eah party has binary input, and the parties wish to output

a ommon value with the only restrition that if all parties have the same input value then they

output that value. The funtionality, F

ba

, is presented in Figure 4. Let us highlight some aspets

of its formulation. First, the number of parties (whih is a parameter to F

ba

) an depend on the

environment. Also the identities of the partiipants an be determined adaptively as they join

the protool. Seond, the fat that the adversary is noti�ed on any new input aptures the fat

that serey of the inputs of the parties is not guaranteed. Third, F

ba

allows the output value

to take any adversarially hosen value, unless all parties have the same input. (In partiular, the

parties are not guaranteed to ompute any pre-determined funtion of their inputs.) Four, F

ba

aptures a bloking primitive, namely no party obtains output unless all parties provide inputs. It

also guarantees fair output delivery: As soon as one party obtains its output, all parties who ask

for their output reeive it without delay. (Note that if F

ba

would have simply sent the outputs to

all parties, then fairness would not have been guaranteed sine the adversary ould have prevented

the delivery to some parties by not returning ontrol to F

ba

.) Five, while F

ba

does not restrit

the identities of partiipants, the output of eah partiipant inludes the set of all partiipants.

Alternatively, F

ba

ould allow a party to beome a partiipant only if it satis�es some riteria.

Finally, F

ba

does not have a postulation for the ase of party orruption. This aptures the fat

that orrupting a party should give no advantage to the adversary.

Note that F

ba

is agnosti to the spei� model of omputation in whih it is realized. Naturally,

realizing F

ba

requires di�erent tehniques in di�erent settings (depending e.g. on the level of

synhrony and the spei� authentiation set-up). We onjeture that, in eah suh setting, realizing

F

ba

is essentially equivalent to the standard de�nition of the primitive in that model. (In partiular,

it is easy to see that if half or more of the parties are orrupted then F

ba

beomes unrealizable

in any omputational model. Indeed, in suh settings the Byzantine Broadast formulation, where
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Funtionality F

ba

F

ba

proeeds as follows, when parameterized by the number n of partiipants. A set P of partiipant

identities is initialized to empty. Then:

1. Upon reeiving input (Input; v) from some new party P =2 P , where v 2 f0; 1g, add P to P ,

set x

P

= v, and send a message (Input; P; v) to the adversary. As soon as jPj = n, ignore

additional (Input...) inputs.

2. Upon reeiving input (Output) from a party P 2 P , if jPj < n then do nothing. Else:

(a) If the output value y is not yet determined then determine y as follows: If there exists

a value b 2 f0; 1g suh that x

P

= b for all parties P 2 P , then set y = b. Else, obtain a

value y from the adversary.

(b) Output (P ; y) to P .

Figure 4: The Byzantine Agreement funtionality, F

ba

only one party has input, is preferable.)

4.4 Feasibility

We very briey mention some of the basi feasibility results for ryptographi protools, whih

establish a remarkable fat: Pratially any ryptographi task an be realized, in priniple, by a

polynomial-time interative protool.

The �rst work to provide a general feasibility result is Yao [y86℄, whih showed how to seurely

evaluate any two-party funtion by a two-party protool, in a setting whih orresponds to that of

Setion 3, in the ase of \honest-but-urious orruptions" where even orrupted parties ontinue

to follow the protool.

The basi idea is as follows. Given a funtion f , �rst have one party, X, with input x, prepare

a binary iruit C

f

x

suh that for any y, C

f

x

(y) = f(x; y). Then X sends to the other party, Y , an

\obfusated version" of C

f

x

, so that Y an only evaluate C

f

x

on a single input of its hoie, without

learning any additional information on the \internals" of C

f

x

. The obfusation method involves

preparing a \garbled version" of eah gate in the iruit, plus allowing Y to obtain a mathing

\garbled version" of one of the possible two values of eah input line. Given this information, Y

will be able to evaluate the iruit in a gate by gate fashion, and obtain a \garbled version" of the

output line of the iruit. Finally, X will send Y a table that maps eah possible garbled value of

the output line to the orresponding real value.

Goldreih, Miali and Wigderson [gmw87℄ generalize [y86℄ in two main respets. First, they

generalize Yao's \obfusated iruit" tehnique to multi-party funtions. Here all parties partiipate

in evaluating the \garbled gates". Further generalization to reative funtionalities an be done in

a straightforward way, as demonstrated in [los02℄.

Perhaps more importantly, [gmw87℄ generalize Yao's paradigm to handle also Byzantine or-

ruptions, where orrupted parties may deviate from the protool in arbitrary ways. This is done

via a generi and powerful appliation of Zero-Knowledge protools. A somewhat over-simpli�ed

desription of the idea follows: In order to obtain a protool � that realizes some task for Byzan-

tine orruptions, �rst design a protool �

0

that realizes the task for honest-but-urious orruptions.

Now, in protool � eah party P runs the ode of �

0

, and in addition, along with eah message m
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sent by �

0

, P sends a Zero-Knowledge proof that the message m was omputed orretly, aording

to �

0

, based on some seret input and the (publily available) messages that P reeived. The proto-

ols of [gmw87℄ withstand any number of faults, without providing fairness in output generation.

Fairness is guaranteed only if the orrupted parties are a minority.

Ben-Or, Goldwasser and Wigderson [bgw88℄ demonstrate, using algebrai tehniques, that if

the parties are equipped with ideally seret pairwise ommuniation hannels, then it is possible to

seurely evaluate any multi-party funtion in a perfet way (see disussion following De�nition 1),

in the presene of honest-but-urious orruption of any minority of the parties. (A similar result,

with statistial rather than perfet seurity, is given by Chaum, Crepeau and Damgaard [d88℄.)

The same holds even for Byzantine orruptions, as long as less only less than a third of the parties

are orrupted. Rabin and Ben Or [rb89℄ showed how to withstand any dishonest minority in the

above model, assuming a broadast hannel, and at the prie of allowing statistial seurity. These

bounds are tight. A nie feature of the [bgw88, rb89℄ protools is that, in ontrast to the [gmw87℄

protools, they are seure even against adaptive orruptions. Seurity against adaptive orruptions

without ideally seure ommuniation hannels an be obtained by ombining these protools with

adaptively seure enryption protools suh as [bh92, fgn96℄.

All the above results assume ideally authentiated ommuniation. If an authentiated set-up

stage is allowed, then obtaining authentiated ommuniation is simple, say by digitally signing eah

message relative to pre-distributed veri�ation keys. When no authentiated set-up is available,

however, then no task that requires some form of authentiation of the partiipants an be realized.

Still, as shown in Barak et.al. [b

+

05℄, an \unauthentiated variant" of any ryptographi task

an still be realized, muh in the spirit of [y86, gmw87℄, even without any authentiated set-up.

Interestingly, the proof of this result uses in an essential way protools that are seurely omposable,

namely retain their seurity properties even when running together in the same system. This an

be seen as a demonstration of the fat that seure omposability, disussed next, is in fat a very

basi seurity requirement for ryptographi protools.

5 Protool omposition

So far, we have only onsidered seurity in a setting where the protool in question is exeuted

one, in isolation. This setting is indeed appropriate as a �rst one to onsider when the goal is to

understand the basi seurity properties of a protool. However, analyzing seurity of a protool in

this stand-alone setting does not allow disovering potential weaknesses that ome to play when the

protool runs alongside other protools, or even alongside other exeutions of the same protool.

Consequently, so far the only method we have for analyzing seurity of some system is to model

the entire system as a single protool and analyze it as an atomi unit.

Analyzing seurity of systems in this way is hallenging even for modest-size systems. When

onsidering seurity of modern, multi-party, omplex systems, the above one-shot approah beomes

ompletely impratial. Furthermore, in open systems (suh as today's Internet) whose makeup

may hange dynamially, and arbitrary new protools might be added after the time of analysis,

the above notion does not provide an adequate seurity guarantee to begin with.

Instead, we would like to be able to arve out piees of a large system, analyze the seurity of

eah piee as if it were stand-alone, and then use the seurity of the individual piees to dedue

seurity properties of the overall system. Furthermore, this should be doable even when the overall

system is not fully known at the time of analysis. To do that, we need to be able to argue about

the behavior and seurity of protools when running alongside, or omposed with, other protools.
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It turns out that this is a non-trivial task.

This setion provides an introdution to the seurity issues assoiated with protool omposition.

We start (in Setion 5.1) with some examples that demonstrate various ways in whih seurity

properties might fail to hold when omposing together protools, even when the omposed protools

guarantee these properties when run in isolation. We then proeed (in Setion 5.2) to provide a

brief taxonomy of the main types of omposition operations onsidered in the literature. Finally,

we motivate and present the onept of seurity-preserving omposition (Setion 5.3).

5.1 What might go wrong

To get some feel for the potential seurity pitfalls in protool omposition, we sketh three examples

that demonstrate di�erent ways in whih protools that are arguably seure in a stand-alone setting

beome inseure when run in onjuntion with other protools. In all the examples the problem

is the same: The attaker uses information learned in one exeution to \break" the seurity of

another exeution. In eah example, this attak takes on a di�erent form. The presentation is very

informal throughout this setion; indeed, the problems disussed are basi ones, and do not depend

on the details of a spei� de�nition of seurity.

Key Exhange and Seure Communiation. This example demonstrates how two protools

an interat badly in settings where the parties uses seret loal outputs obtained from one protool

as input for the other. It highlights the subtleties involved in maintaining overall seurity of a

system that is designed in a modular way and onsists of di�erent interating protools.

Consider the task of Key Exhange, disussed in Setion 4.3. Reall that here two parties, an

initiator I and a responder R wish to jointly generate a key that remains unknown to an external

adversary. This key is typially used in order to enrypt and authentiate messages between I and

R. Let � be key-exhange protool that's proven to be seure in a stand-alone setting (say, with

unauthentiated ommuniation), and onsider the protool �

0

that's idential to � exept that the

following instrution is added to the ode of I and R: \If the key has already been generated, and

the inoming message inludes the orret value of the key, then send a message yes. Else send

no."

We �rst laim that, in a stand-alone setting, �

0

is just as seure as �. Indeed, sine � is a

seure protool, then ertainly it does not instrut any party to send the generated key in the lear.

Furthermore, the adversary will be unable to �gure out the value of the key just by interating with

the protool. Thus, the added instrution will never be ativated (exept perhaps with negligible

probability), and �

0

is e�etively idential to �.

On the other hand, onsider a setting where � runs in onjuntion with a protool that uses

the key to enrypt messages. Furthermore, assume that the message takes one out of two possible

values (say, either \sell" or \buy"), and furthermore that the enryption sheme in use is one-time-

pad. That is, the enryption protool obtains the key k from �

0

, and has one party (say, I) send a

iphertext  whih is either k � \sell" or k � \buy". (Here � stands for bitwise exlusive or.) We

laim that now an adversary an use  in order to �nd out both k and the plaintext. In fat, all

the adversary has to do is to ompute 

0

= � \buy" and send it to the other party as a message

of �

0

. Now, if the enrypted message was \buy", then 

0

= � \buy" = k� \buy"� \buy" = k and

R will respond with yes. If the enrypted message was \sell", then R will respond with no.

The point of this example (whih is a variant of an observation of Rako� from '95), is that �

0

allows the attaker to use the legitimate parties as \orales" for testing guesses regarding the value
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of the key. As long as the system runs only �

0

, and the key is never used, this \weakness" has no

e�et. However, as soon as the key is used and some values of the key beome more plausible than

others, the weakness beomes devastating. Finally, we remark that some prominent de�nitions of

seurity for key-exhange in the literature (e.g., that of [br93℄) do not rule out this deeivingly

simple weakness.

Parallel omposition of Zero-Knowledge protools. This example shows how ertain pro-

tools may be seure when run in a stand-alone setting, but lose their basi seurity properties as

soon as even two instanes of the same protool are exeuted onurrently in the same system. This

holds even if the system involves no other protools. (Examples of a similar nature are given in

[llr02℄ for authentiated Byzantine Agreement protools, and in [klr06℄. An interesting aspet of

the [klr06℄ example is that it remains valid even when all parties are omputationally unbounded.)

Reall the task of Zero-Knowledge (ZK), disussed in Setion 3.3. Here we have a publi binary

relation R. The prover P transmits a value x to a veri�er V , and in addition wants to onvine V

that it (P ) has a seret \witness" w suh that R(x;w) holds. This should be done so that V learns

nothing more than the fat that P has suh a witness.

The example is essentially the one in [gk89, f91℄. It uses a ombinatorial gadget, whih we

desribe here only very informally. Assume we have a \puzzle system" where both the prover and

the veri�er an generate puzzles p that have the following properties. First, the prover an solve

any given puzzle. Seond, the veri�er annot feasibly solve puzzles; in fat, the veri�er annot even

verify the validity of a solution. That is, even for puzzles generated by the veri�er, the veri�er

annot distinguish between a valid solution or a random, invalid one. (Suh a gadget an be shown

to exist, either via allowing the prover to be omputationally unbounded, as in [gk89℄, or based

on some trapdoor information held by the prover, as in [f91℄.)

Now, let � be a ZK protool (for some relation R). Construt the protool �

0

where the parties

�rst run �, and then ontinue with the following interation. First, P sends a random puzzle p to

V . Then, V responds with a purported solution s for p, plus a puzzle p

0

. If s is a orret solution,

then P reveals the seret witness w. Otherwise, P sends to V a solution s

0

for the puzzle p

0

provided

by V .

We �rst argue that if � is ZK in a stand-alone setting, then �

0

satis�es the ZK requirement.

Intuitively, this holds sine, by assumption, V annot solve puzzles, thus in a stand-alone exeution

of � P never reveals w (exept perhaps with negligible probability). Furthermore, the fat that P

provides V with a solution s

0

to the puzzle p

0

is not really a problem in a stand-alone setting, sine

V annot distinguish s

0

from a random value (whih V ould have generated by itself).

However, when a prover P runs two onurrent exeutions of �

0

with V (say, on the same input

(x;w)), then a heating V an easily extrat the witness: V �rst waits to reeive the puzzles p

1

and

p

2

from P in the two sessions. It then sends (s; p

2

) to P in the �rst session, for some arbitrary s.

In response, V gets from P a solution s

2

to p

2

, whih it returns to P in the seond session. Sine

s

2

is a orret solution, P will now dislose w.

Malleability of ommitment. The following example highlight two issues. First, it demon-

strates that a multi-exeution system brings forth entirely new seurity onerns that do not exist

in a stand-alone setting. Seond, it highlights the diÆulty in arguing seurity of a protool with

respet to arbitrary other protools, espeially protools that have been designed spei�ally so as

to \interat badly" with the analyzed protool.

Reall the task of ommitment, disussed in Setion 4.3. This is a two-stage task, where in
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the ommit stage a ommitter C provides a reeiver R with a \ommitment value"  to a seret

value x. In the opening stage C disloses x. (For simpliity, we assume here that both stages

onsist of a single message from C to R.) There are essentially two seurity requirements: A

serey requirement, that x remains ompletely seret throughout the ommit stage, and a binding

requirement, that there is at most one value x that R will aept as a valid opening for a ommitment

value .

Consider the following natural sealed-bid aution protool: Eah party ommits to its bid (say,

over a broadast hannel). One the bidding stage is over, all parties open their ommitments

and the winner is deided. It is tempting to dedue that any seure ommitment protool would

suÆe here. It turns out, however, that there exist natural ommitment protools that satisfy both

serey and binding (and in fat satisfy the de�nition from Setion 4.3), but whih are suseptible

to the following attak: An attaker might use a ommitment , that was generated by an honest

ommitter C that ommits to a value x, to generate a ommitment 

0

; later, when C opens  to

value x, the attaker is able to \open" 

0

to a value x

0

that is related to x (say, x

0

= x + 1).

3

Of

ourse, this attak is devastating for the aution protool, in spite of the fat that neither serey

nor binding of the ommitment protool were violated here. Rather, a new onern arises, namely

the need to maintain \independene" between the ommitted values in di�erent exeutions of the

protool. This onern (whih is alled non-malleability in the literature, following [ddn00℄ who

pointed out this onern and showed how to address it) does not ome to play in a stand-alone

exeution.

Several non-malleable ommitment shemes have been onstruted, using di�erent set-up and

network assumptions. Indeed, these shemes are not suseptible to the above attak. However,

notie that this attak aptures only a limited aspet of the \independene" problem, where there

are only two exeutions, and more importantly the exeutions are of the same protool. What

about independene between an exeution of a ommitment protool � and an exeution of another

protool, �

0

? This seems like a hopeless goal, espeially when �

0

is designed spei�ally to interat

with �. To see this, onsider the following example. Let � be any (even non-malleable) ommitment

protool, and let �

0

be the protool where in order to ommit to a value x, one runs � on ommitted

value x� 1. Assume that C ommits using protool �, and that a maliious C

0

announes that it

ommits using protool �

0

. Now, when C sends its ommitment string , all C

0

has to do is to opy

 as its own ommitment. When C opens  to a value x, C

0

an use the same opening to open  to

the value x+1. Note that C

0

an use �

0

in a ompletely di�erent ontext, say with a set of parties

that do not know about C or �. This will make the attak hard to detet.

Indeed, guaranteeing seurity against these \hosen protool attaks" seems intuitively impossi-

ble. However, ontrary to this intuition, Setion 7 demonstrates that suh attaks an be proteted

against in most ases, via appropriate use of some set-up assumptions.

3

For instane, onsider Pedersen's ommitment sheme [p91℄: Let G be an algebrai group of large prime order,

and assume that two random generators g; h of G are publily known (say, they are announed by the autioneer).

In the ommit stage, C sends  = g

x

� h

r

, where x 2 G is the ommitted value, and r

R

 G. To open, C sends x

and r and R aepts if  = g

x

� h

r

. Here serey is perfet (and unonditional). Binding holds under the assumption

that omputing disrete logarithms in G is infeasible. In fat, a somewhat augmented variant also realizes F

om

as

in De�nition 3. Still, onsider a maliious ommitter C

0

that wishes to ommit to the value ommitted by C, plus

one. Then all C

0

has to do is to generate 

0

=  � g. When C

0

sees a valid opening (x; r) of , it an generate the valid

opening (x+ 1; r) of 

0

.

27



5.2 How an protools be omposed

This setion provides a brief taxonomy of the di�erent types of protool omposition operations

onsidered in the literature, namely the various ways of ombining together protools in a single

system. Taking another point of view, these operations naturally orrespond to di�erent ways of

de-omposing a omplex system into separate piees, whih we would like to view as individual

\protools."

We �rst list some salient parameters for omposition operations. Next we disuss some well-

studied settings in terms of these parameters. Finally, we show how all these settings an be ast

as speial ases of a single, general omposition operation.

Timing oordination: This parameter refers to the possible ways in whih the messages of the

individual exeutions an interleave with eah other. Salient options inlude:

Sequential omposition: Here no two messages of di�erent protool exeutions may inter-

leave. That is, when ordering the events of sending and reeiving of messages in the

system along a ommon time axis, then all the events related to eah protool exeution

must form an uninterrupted sequene.

Enforing global sequentiality requires eah party to loally oordinate the di�erent

exeutions in terms of the timing of message sending. It also requires some level of

global oordination among the parties, to guarantee that no party \gets ahead of the

pak" and starts sending messages of a new exeution before other parties ompleted

prior exeutions.

Non-onurrent omposition: This is a somewhat more general variant that allows \nest-

ing" of protool exeutions, as long as there is no \interleaving" of messages. That is,

assume some message of exeution e

1

was delivered, and at a later point a message of

exeution e

2

was delivered. Then, one another message of exeution e

1

is delivered,

messages of exeution e

2

an no longer be delivered. Also here, guaranteeing global

non-interleaving requires global oordination.

Parallel omposition: Here it is assumed that the messages in eah protool exeution are

naturally assoiated with \rounds", where a \round i message" is sent only in response

to reeiving a \round i� 1 message". The omposed exeution of a given set of protool

exeutions allows any interleaving of protool messages, as long as all the \round i

messages" of all the exeutions are delivered before any \round i+1 message" is delivered.

While this omposition method is also quite restritive and requires global timing oor-

dination among the exeutions, it is natural in synhronous systems where messages are

naturally assoiated with rounds.

Conurrent omposition: Here any interleaving of messages from di�erent protool exe-

utions is allowed. Clearly, onurrent omposition allows both sequential and parallel

omposition as speial ases. It also allows many other speial types of interleaving,

suh as the ommon ase where various exeutions wait for an external global event to

proeed. Conurrent omposition is very powerful in that it requires no timing oor-

dination among the various exeutions. Indeed, the timing of events may of ourse be

adversarially oordinated.

We note that the level of timing oordination between exeutions is in priniple unrelated to

the synhrony guarantees of the underlying ommuniation network. For instane, di�erent
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exeutions an be omposed onurrently and \asynhronously" even when eah exeution is

synhronous within itself. Also, sequential or non-onurrent omposition an be sometimes

guaranteed even in a ompletely asynhronous ommuniation network.

Input oordination: This parameter refers to the possible relations between the input values to

the various protool exeutions. We distinguish three variants:

Same input: Here eah party has the same input value for all the exeutions. Taking the

role of a party in a protool as part of its input, this means that eah party has the

same role in all the exeutions it partiipates in. Still, di�erent exeutions may inlude

di�erent parties. (A somewhat more restritive ase is where the same set of parties

partiipate in all exeutions.)

Fixed inputs: Here the inputs to di�erent exeutions an be arbitrarily di�erent from eah

other. In partiular, a party may have di�erent roles in di�erent exeutions. (For

instane a party may be a reeiver in one exeution of a ommitment protool, and a

ommitter in a di�erent exeution.) Still, all inputs, inluding the set of partiipants in

eah exeution, are �xed in advane before the exeution of the omposed system starts.

Adaptively hosen inputs: Here eah input to eah party in eah exeution an be deter-

mined adaptively based on the urrent state of the omposed system. This is of ourse

the most general setting of this parameter, and inludes the above two settings as spe-

ial ases. Variants of this setting depend on the amount of information available to

the entities that hoose the inputs; for instane, the inputs of a given party may be

determined only based on the information available to that party, or alternatively based

on the urrent global state of the system.

Protool oordination: This parameter refers to the possible relations between the programs, or

odes, exeuted in di�erent exeutions. We distinguish two main ases:

Self omposition: Here all exeutions run the same program. A losely related ase is

where di�erent exeutions may run di�erent programs, but the set of programs is �xed

and known in advane. (Indeed, running a �xed number of programs is equivalent to

running a single program that multiplexes between the many programs depending on

the input.)

General omposition: Here a given exeution of a protool may be running alongside arbi-

trary other protools (i.e., programs) that may not be known in advane. Furthermore,

these programs may be determined adaptively, depending on the protool in question

and potentially even on the urrent state of the omposed system. This is indeed a

highly adversarial setting. Still, it seems to adequately model the situation in open and

unregulated networks suh as the global Internet.

State oordination: This parameter refers to the amount and type of information that is shared

among di�erent exeutions. We distinguish the following ases:

Independent states: This is the \lassi" ase of protool omposition where di�erent ex-

eutions have no shared state. That is, The loal variables of eah exeution within

eah partiipant are seen only by that exeution. Also, the random hoies made within

eah exeution are independent from those in other exeutions. (Of ourse, di�erent

exeutions an still have related inputs.)
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Joint state: Here some variables or random hoies may be visible to multiple protool

exeutions. One salient example of suh a setting is a protool where the same seret

signing key for a signature sheme is used in multiple protool exeutions (say, for

generating multiple session keys). Another example is a \ommon random string",

namely a publi string that is drawn from some distribution and is assumed to be globally

available in the system. Here the \joint part" is typially modeled as a \subroutine

protool" that takes input from and provides output to multiple protool exeutions.

We note that, although this type of omposition is somewhat non-traditional, without

it it would not be possible to de-ompose suh systems into smaller omponents | suh

as a single exhange of a key in a key-exhange protool.

Number of exeutions: This parameter determines the number of protool exeutions that run

together in the omposed system. It is ruial, in the sense that, for most settings of the rest

of the parameters and for eah i, it is possible to onstrut protools that \ompose seurely"

as long as at most i exeutions run together, but break as soon as the system involves i + 1

exeutions. Three salient settings are:

Fixed number of exeutions: Here the number of exeutions is �xed in advane. In par-

tiular, it is does not depend on the input, nor on a seurity parameter.

Bounded number of exeutions: The maximum number of exeutions may depend on

publi information, suh as the seurity parameter or some global input, but is known

when designing the protool. In partiular, the omplexity of the protool may depend

on this bound.

Unbounded number of exeutions: The number of exeutions is hosen adversarially in

an adaptive way, and is limited only by the runtime of the adversary. In partiular, it

may depend on the exeution, and remain unknown to all or some of the parties.

Some studied settings. Almost any ombination of the above parameters yields a meaningful

setting for the study of seurity-preserving protool omposition. Yet, some settings have been

the fous of muh dediated study, both in the ontext of spei� primitives suh as key-exhange,

zero-knowledge or ommitment, and in more general ontexts. We briey mention some of these

settings. (For sake of oniseness and brevity, we do not expand here on the spei� ontributions

of the works mentioned below, nor on the notions of seurity that are obtained in eah of these

settings.)

Perhaps the simplest setting to onsider is that of sequential self-omposition with same input.

This setting is studied in the ontext of zero-knowledge in [go94℄ and general funtion evaluation in

[b91℄. In the ase of parallel and onurrent omposition, it was demonstrated in Setion 5.1 that

zero-knowledge is not preserved under same-input self-omposition of even two exeutions [gk89,

f91℄. Still, protools that remain zero-knowledge in this setting exist [go94℄. This primitive ase

of onurrent omposition is generalized in a number of diretions. One diretion is that of multiple

onurrent instanes, while keeping the restrition to same input. Obtaining zero-knowledge in this

ase, espeially when the number of exeutions is unbounded and not known a priori, turns out to

be a non-trivial problem that requires new protool tehniques [f91, dns98, rk99, prs02℄.

Another extension is to the ase of onurrent self-omposition when parties an have di�er-

ent inputs in di�erent exeutions. The ase of two opies and �xed inputs, studied in [ddn00℄

and its many follow-up papers, brings about the onern of malleability, or input independene.

Generalizing to adaptively hosen inputs and a bounded number of onurrent instanes, or else
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to �xed inputs and an unbounded number of sessions, requires yet another set of tehniques (e.g.

[pr03, p04, pr05a, pr05b℄), while a general solution for the ase of adaptively hosen inputs and

an unbounded number of instanes requires either some initial set-up [l04℄ or some relaxation of

the notion of seurity [bs05℄.

So far, we disussed the ase of self-omposition. General omposition was �rst studied in

the non-onurrent ase, where it was shown to preserve some general ideal-model based notions

of seurity for funtion evaluation [mr91, 00℄. Notions of ideal-model based seurity that are

preserved under onurrent general omposition were subsequently developed, e.g. [dm00, pw00,

pw01, 01, mrst06℄. Methods for arguing about omposition with joint state were developed in

the ontext of general omposition, e.g. [r03, dpw07℄.

Universal omposition. Next we desribe a single omposition operation (namely, a way of

ombining several protools into a single protool) that an be used to express all the settings

disussed above. Having suh a generi omposition operation is onvenient in that omposability

properties proven with respet to this operation apply to all settings. Furthermore, this spei�

operation seems to losely orrespond to the struture of atual protools. It also meshes niely

with the trusted party paradigm (we'll see this in the next setion).

The omposition operation, whih we all universal omposition, is a natural extension of the

\subroutine omposition" operation on sequential algorithms to distributed protools. That is,

let � be a protool (i.e., a set of instrutions for the partiipants), where the instrutions of eah

party inlude an instrution to provide input to some \subroutine program," denoted �, as well as

instrutions on what to do when the subroutine program � generates output. (Using the formalism

of Setion 3.1, the system ontains ITIs running the ode �, alongside ITIs running the ode �; the

ITIs running � write in the input tapes of ITIs running �, and the ITIs running � write on the

subroutine output tapes of ITIs running �.)

Let � be another protool. Then the omposed protool, denoted �

�=�

, is the protool where

the ode of eah party is the same as that of �, with the exeption that the instane of � is replaed

by an instane of �. That is, eah instrution to provide input to � is replaed by an instrution

to provide the same input to �, and the instrutions to be arried out upon reeipt of an output

from � are now arried out upon reeipt of an output from �. It is stressed that the replaement is

done separately within eah party running �. In partiular, an exeution of �

�=�

involves an entire

distributed instane of protool �, where the di�erent parties of this instane exhange messages

among themselves.

The ase where � uses multiple (potentially unboundedly many) instanes of � is de�ned anal-

ogously. That is, eah instane of � is replaed by an instane of �. It is assumed that protool

� has some mehanism to distinguish among the various instanes of �; this mehanism remains

the same with respet to distinguishing among the instanes of �. While in priniple there is no

need to speify a partiular mehanism, for sake of onreteness we assume that � assoiates a

unique session identi�er (SID) with eah instane of �, where the SID is inluded in all inputs to

and outputs from this instane. Then the omposed protool �

�=�

keeps the same SIDs as in �.

Now, the various settings desribed above for protool omposition an be aptured via di�erent

odes for the \high-level protool", �. For instane, onurrent self omposition with same input

is aptured by the protool � that simply runs multiple instanes of its subroutine � on the same

input, and outputs whatever these subroutines output. To apture �xed or adaptively hosen inputs

modify � aordingly, to obtain the inputs for the various instanes in advane or during the ourse

of the exeution. General omposition is aptured by allowing � to be arbitrary.
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Sequential self omposition in a synhronous exeution setting is aptured by the protool � that

runs multiple instanes of its subroutine �, one after the other in a sequential way, either with the

same input or with di�erent inputs, as may be the ase, and outputs whatever these subroutines

output. To apture parallel omposition, � runs all instanes of � together and in eah round

delivers all the urrent messages of all instanes. in lokstep. Non-onurrent general omposition

allows � to be arbitrary, as long as all parties start and end eah instane of � at the same global

round, and only messages of this instane of � are sent while this instane is ative.

Finally, we note that the above desription of universal omposition treats the protool � merely

as a formal \plaeholder" in the desription of protool �. Yet, as seen in the next setion, protool

� an have a entral role in speifying the seurity properties required from protool omposition.

5.3 Seurity preserving omposition

So far, we have treated the seurity requirements from ryptographi protools under omposition

in an informal way. That is, we have expressed the desire to have protools that \maintain their

seurity properties" when run alongside other protools. We have also observed, in Setion 5.1,

that some desirable seurity properties may no longer hold in suh settings. How an we formalize

the seurity requirements from protools under omposition?

One way, of ourse, is to list a set of spei� properties that we would like to guarantee, and

demonstrate that these properties hold. For instane, for protools that evaluate some funtion

of the inputs of the parties, we an require that orretness is preserved, in the sense that in

all instanes the outputs of the parties agrees with the value of the funtion at their inputs. If

the evaluated funtion is probabilisti then we an also require that the randomness used in eah

exeution is in some sense \independent" of the randomness used in other exeutions. We an also

require that serey of ertain values is preserved even in the omposed system. (An example of a

setting where suh a spei� requirement is made is that of onurrent zero-knowledge, mentioned

above.) An additional spei� requirement is that of input independene, or non-malleability,

namely that the outputs of a protool exeution will not depend in \illegitimate ways" on seret

inputs to another exeution.

However, in the spirit of Setion 2, we prefer to make a single, uni�ed seurity requirement

that would imply all of the spei� requirements mentioned above, as well as other potential

requirements. And, again, in the spirit of Setion 2, we use the ideal-model paradigm to do so.

Reall that, by this paradigm, a protool � is onsidered a seure implementation for a given

task if it behaves in essentially the same way as an ideal protool � for that task, where the ideal

protool instruts all parties to privately hand their inputs to a trusted party whih omputes the

desired outputs and hands them bak to the parties. Furthermore, the requirement \� behaves

in essentially the same way as �" is formalized to mean \� emulates �" as in De�nition 2. The

ompositionality requirement we make is analogous: Consider a task that is represented via an ideal

protool �, and let � be a protool that uses (potentially multiple instanes of) �. We say that �

implements the task in a omposable way with respet to �, if � ontinues to behave essentially

the same when the instanes of � are replaed by instanes of �. In the language of universal

omposition and emulation, we want that the protool �

�=�

will emulate the original protool �.

De�nition 4 Protool � emulates an ideal protool � with �-omposable seurity if it holds that

�

�=�

emulates �.

We observe that the notion of omposable seurity indeed guarantees all the ompositionality

requirements listed above. Indeed, when � makes subroutine alls to the various instanes of the
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ideal protool �, it is guaranteed that eah instane of � returns a orret funtion value, regardless

of the ativity in the rest of the system. The de�nition of emulation guarantees that � ontinues

to exhibit essentially the same behavior when the instanes of � are replaed with instanes of

�. Similarly, sine the trusted parties operate independently of eah other, their outputs are

omputed using independent random hoies. Also, the serey of data in eah individual exeution

is guaranteed regardless of the rest of the system. Input independene is guaranteed sine eah

party has to expliitly provide its inputs to eah instane of �, based only on its legitimate outputs

from the various instanes of �. Again, the de�nition of emulation guarantees that � ontinues to

exhibit essentially the same behavior when the instanes of � are replaed with instanes of �.

The above line of reasoning onsiders a single \alling protool", �. Seure omposability with

respet to di�erent types of omposition operations are aptured by onsidering the orresponding

lasses of the alling protool, as desribed in Setion 5.2.

One potential shortoming of De�nition 4 is that the notion of emulation, as de�ned so far,

does not neessarily imply omposable seurity. This means that De�nition 4 does not neessarily

guarantee that seurity is preserved under \iterated omposition". That is, the fat that � emulates

� with �-omposable seurity does not neessarily imply that �

�=�

emulates � with �

0

-omposable

seurity for an arbitrary �

0

(or even for �

0

= �). See more disussion on this point in Setion 7.

6 The omposability properties of basi seurity

Intuitively, the trusted-party de�nitional paradigm as formalized in Setion 4 appears to be \inher-

ently ompositional". In partiular, the notion of protool emulation seems to almost immediately

guarantee | at least in spirit | that no external proess will be able to distinguish between the

emulating protool and the emulated one. Thus it seems natural to expet that basi seurity will

imply �-omposable seurity with respet to any polytime protool �. That is, it is natural to

expet that if protool � realizes an ideal funtionality F with basi seurity (as in De�nition 3),

then �

�=�

would emulate � for any polytime protool �.

It turns out that this this intuition an indeed be formalized for some types of omposition,

namely non-onurrent general omposition. However, as soon as the non-onurreny ondition is

violated this intuition is inorret. Details follow.

Reall that in non-onurrent omposition it is guaranteed that no two protool instanes run

onurrently with eah other, exept for simple nesting (see Setion 5.2). More preisely, say that a

protool � is non-onurrent if any exeution of �

�

, with any subroutine protool �, has the following

property: Order all messages sent in the system along a single time axis, and Let e

1

and e

2

be two

protool exeutions where the �rst message of e

1

was sent before the �rst message of e

2

. Then, one

the �rst e

2

-message is sent, no e

1

-messages are sent until the last e

2

message is delivered. Then we

have:

Theorem 5 ([00℄) Let � and � be protools suh that � emulates � as in De�nition 3. Then, �

emulates � with �-omposable seurity for any non-onurrent protool �.

Proof idea. We very briey sketh the main idea behind the proof. For simpliity we onentrate

on the ase where � uses only a single instane of �. Sine no two instanes of � run onurrently,

it is straightforward to extend the proof to the ase where � uses multiple instanes of �.

Let A be an adversary that interats with parties running �

�

. We need to onstrut an adversary

A

�

, suh that no environment E will be able to tell whether it is interating with �

�=phi

and A or
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with � and A

�

. The idea is to onstrut A

�

in two steps: First \ut out" of A a real-life adversary,

denoted A

�

, that operates against protool � as a stand-alone protool. The fat that � emulates

� guarantees that there exist an adversary (\simulator") A

�

, suh that no environment an tell

whether it is interating with � and A

�

or with � and A

�

. Next, onstrut A

�

out of A and A

�

.

We sketh the above steps. Essentially, A

�

represents the \segment" of A that interats with

protool �. That is, A

�

expets to reeive in its input (oming from the environment E) a on�gu-

ration of A, and simulates a run of A starting from this on�guration. One the exeution of this

instane of � has ompleted, A

�

outputs the urrent on�guration of the simulated A.

Adversary A

�

is essentially the adversary A, where the segment that interats with � is replaed

by the simulator A

�

. That is, A

�

starts by invoking a opy of A and following A's instrutions, up

to the point where the �rst message of � is sent. At this point, A expets to interat with �, whereas

A

�

interats with �. To ontinue running A, adversary A

�

runs A

�

, with input that desribes the

urrent state of A. The interation between A

�

and � is emulated by A

�

, using A

�

's own aess to

�. Reall that the output of A

�

is a (simulated) internal state of A at the ompletion of protool �.

One protool � ompletes its exeution and the parties return to running �, adversary A

�

returns

to running A (starting from the state in A

�

's output) and follows the instrutions of A.

The validity of the onstrution is demonstrated by redution: Assume that there is an envi-

ronment E that distinguishes between an interation with � and A

�

, and an interation with �

�=�

and A. Then one onstruts an environment, E

�

, that distinguishes between an interation with �

and A

�

, and an interation with � and A

�

. Essentially, E

�

runs E , where the interation between

E , �, and the segment of A that does not interat with the subroutine, is simulated internally. The

interation with the subroutine (either � or �) and its adversary (either A

�

or A

�

) is taken to be

the interation with the atual external protool and adversary.

Finally, it is shown that the view of E , when simulated by environment E

�

that interats with

adversary A

�

and parties running �, is distributed identially to the view of E that interats with

adversary A and parties running �

�=�

. Similarly, the view of E , when simulated by environment

E

�

that interats with adversary A

�

and parties running �, is distributed identially to the view of

E that interats with adversary A and parties running �. (These two equivalenes are essentially

standard bisimulation arguments from the distributed systems ommunity.) It is stressed that the

bisimulation is exat and the distributions over the views are idential. Consequently, the \loss in

seurity" inurred by the theorem is zero.

Basi seurity under onurrent omposition. Can these omposability results be extended

to onurrent protool omposition? It turns out that the answer is strongly negative. In fat, we

have already seen a ounter-example: As argued in Setion 3.3, the set of protools that realize

f

R

zk

, the zero-knowledge funtion with relation R, roughly orresponds to a lass of zero-knowledge

protools for the language L

R

. Furthermore, as seen in setion 5.1, it is possible to onstrut zero-

knowledge protools (for any given language) where running even two instanes of the protool in

parallel allows the veri�er to extrat the entire witness. Indeed, this example an be easily extended

to ome up with a protool � and a relation R suh that � realizes f

R

zk

, but �

�=�

does not emulate

�

f

R

zk

where � is the protool that runs two instanes of its subroutine onurrently, on the same

input. Similarly, it an be demonstrated that basi seurity does not guarantee non-malleability.

Further disussion on why this is the ase appears in the next setion.
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7 Universally Composable Seurity

In spite of the intuitive appeal and expressive power of the basi notion of seurity developed in

Setions 3 and 4, we have seen in Setion 6 that this notion provides only limited ompositionality

guarantees: As soon as protools are allowed to run onurrently | as they often do in atual

omposed systems | no seurity guarantees are given. Furthermore, we have seen examples where

seurity breaks down ompletely.

Universally Composable (UC) seurity is a strengthening of the basi notion of seurity, that

omes to address the issue of preserving seurity under onurrent omposition. The goal is to have

a notion of seurity that guarantees seurity under all ommonplae types of protool omposition,

and in partiular the ones desribed in Setion 5.2. This should be done without losing on the

intuitive appeal and expressive power, and with as mild as possible additional requirements from

protools.

4

This setion is organized as follows. Setion 7.1 presents and motivates the notion of

UC seurity and its relation to the basi notion from previous setions. Setion 7.3 very briey

presents the known results regarding the realizability of this notion. Finally, Setion 7.3.2 touhes

upon diretions for relaxing UC seurity while retaining some of its seurity and omposability

guarantees.

7.1 The de�nition

Why does the basi de�nition of seurity from Setions 3 and 4 fail to guarantee seurity under

onurrent omposition? When reviewing the de�nition in an attempt to answer this question, one

noties that the model of protool exeution as de�ned there allows the environment, whih models

the \external world", to exhange information with the adversary, whih models a oordinated

attak against a single protool exeution, only one at the beginning of the exeution, where

the environment provides information to the adversary, and one at the end, where the adversary

provides output to the environment. In a way, this modeling treats an exeution of a protool

as an \atomi step," where there is no \information ow" between the protool exeution and

the external environment during the protool exeution. (Some protools may indeed allow the

adversary and environment to exhange additional information via the inputs and outputs to the

parties, but suh exhanges are protool-dependent and annot be used in general arguments on

the model.)

This modeling is indeed appropriate in a system where only a single protool exeution is

ative at any given point in time. However, it seems insuÆient for apturing the often \irular"

information ow among protool exeutions that run onurrently. In partiular, it fails to apture

situations suh as the ones desribed in Setion 5.1, where an attaker uses information gathered

in one exeution in order to extrat information in another exeution, and then uses the extrated

information bak in the �rst exeution.

UC seurity is aimed at orreting this shortoming of the basi de�nition. The idea is to modify

the model of protool exeution so as to allow the environment and the adversary to interat freely

throughout the ourse of the omputation. That is, whenever the environment is ativated, it is

allowed to provide input not only to the parties running the protool, but also to the adversary.

4

The term universally omposable seurity might be somewhat onfusing, given that the term universal omposition

was used to denote a spei� omposition operation. In partiular, several di�erent de�nitions of seurity are known

to be \universally omposable", in the sense that they support a universal omposition theorem suh as Theorem

7 below. We thus use the aronym \UC seurity" to refer to the spei� notion disussed here. (The dupliate

terminology an be somewhat justi�ed by Proposition 8 below, whih implies that UC seurity is in a sense a

minimal extension of basi seurity that is preserved under universal omposition.)
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Similarly, whenever the adversary is ativated, it an provide output to the environment. This

means that the environment and the adversary an ommuniate before and after eah ativation

of a party running the protool; in other words, the \atomi unit" of uninterrupted exeution is

now a single ativation of a party, rather than an entire exeution of a protool. As seen below,

this hange to the model turns out to suÆe for proving general omposability. It also hanges the

set of aeptable protools in a radial way.

Another, more tehnial modi�ation of the model from Setion 4 is to add more struture

to the ommuniation model in order to failitate the distintion between protool instanes in a

omposite system. A more detailed desription follows.

The system model. We use the system model from Setion 4.1, with one hange. To failitate

the distintion among di�erent protool exeutions in a system, we assume that the identity of

eah party (i.e., the ontents of the identity tape) onsists of two �elds: a session ID (SID) and a

party ID (PID). The SID is used to speify the \session", or \protool instane" to whih the ITI

\belongs", and is joint to all the ITIs in a session. The PID distinguishes the ITI from other ITIs

in that protool instane. It an also be used to assoiate an ITI with a \luster" of ITIs, suh as

the luster of proedures running on a single physial omputer. An instane of a protool � with

SID s in a ertain on�guration of a system is now de�ned to be the set of ITIs that have ode �

and SID s.

Remark: The above modeling of the SID is only one out of many possible ways for representing

and distinguishing among protool instanes in a omposite system. Still, the fat that all ITIs in a

protool instane have the same SID, whih is determined by the invoking ITI, seems like a natural

hoie. In partiular, it is easy to realize (say, by letting the party whih initiates an instane to

determine the SID and ommuniate it to all other partiipants). It also often failitates the design

and analysis of protools, by providing to the partiipants a ommon value that is unique to the

instane.

The protool exeution experiment. The protool exeution experiment is the same as the

one in Setion 4.2, with the following two modi�ations. First, as mentioned above, we allow the

environment to provide inputs to the adversary at any time. Similarly, we allow the adversary to

provide outputs to the environment at any time.

Seond, reall that in the model of Setion 4.2 all parties (ITIs) invoked by the environment

must run the same protool (ITM). Furthermore, all the parties were treated as partiipating in

a single protool instane. In the present model, unless expliitly restrited, the environment an

in priniple invoke multiple protool instanes, by giving di�erent SIDs to di�erent parties. To

keep in the spirit of a single instane, we require that all the parties invoked by the environment

partiipate in the same protool instane, namely they all have the same SID. (The value of the

SID is of ourse hosen by the environment.)

Analogously to the notation exe

�;A;E

from Setion 4.2, let u-exe

�;A;E

(x) denote the random

variable desribing the output of environment E when interating with adversary A and protool �

on input x (for E) in the present model. u-exe

�;A;E

denotes the ensemble fu-exe

�;A;E

(x)g

x2f0;1g

� .

Restriting the environment to run only a single protool instane signi�antly simpli�es the

model and the analysis of protools. On the down side, it omes at the prie of some restritions

on the lass of protools whih an be omposed in a seure way. See more disussion in Setion

7.2.
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The ideal proess. The ideal proess remains the same as the one in Setion 4.2, with the

following exeption: We restrit attention to ideal funtionalities F where an instane ignores

inputs that do not speify its SID. (Reall that the SID of an instane is determined by the ITI

that alled this instane for the �rst time.) Similarly, we assume that F inludes its SID in all of

its outputs. We note that this restrition is not essential; its purpose is to simplify the modeling

and analysis of protools.

Protool emulation. The notion of protool emulation and realizing funtionalities is the same

as in Setion 4.2, exept that it relates to the present exeution experiments:

De�nition 6 UC protool emulation and realization A protool � UC-emulates protool � if for any

PT adversary A there exists a PT adversary S suh that for all PT environments E that output

only one bit:

u-exe

�;S;E

� u-exe

�;A;E

A protool � UC-realizes an ideal funtionality F if � UC-emulates the ideal protool for F .

7.2 Composability

The main attration in UC seurity is that it guarantees omposable seurity with respet to

almost any PT alling protool. That is, we restrit the way a protool reeives inputs from and

provides output to the surrounding system in the following natural way: We assume that the only

omponent of the \subroutine protool" that reeives inputs from the outside and provides outputs

to the outside is the \top-level program". More preisely, reall that an ITI P is alled a subroutine

of an ITI P

0

if P takes input from P

0

or provides output to P

0

; P is a subsidiary of P

0

if it a

subroutine of P

0

or of a subsidiary of P

0

. Say that an ITM � is subroutine respeting if any ITI

P running the ode � has the property that all subsidiaries of P are subroutines only of P or of

subsidiaries of P . A protool is subroutine respeting if it is subroutine respeting as an ITM. We

have:

Theorem 7 Let � and � be subroutine-respeting PT protools suh that � UC-emulates �. Then

�

�=�

UC-emulates � for any PT protool �.

Historial note. Theorem 7 was �rst proven in [pw00, pw01℄ for the ase where � invokes

a single instane of the subroutine protool �. (These proofs are set in their formalism, whih

has several tehnial di�erenes from the one presented here.) The ase where � may invoke

an unbounded number of instanes of � was �rst proven in [01℄ in a model similar to the one

presented here, and subsequently re-proven in a number of di�erent models, e.g. [bpw04, dkmr05,

k06, klp06℄.

Proof idea. At high level, the proof of Theorem 7 follows the same steps as the proof of Theorem

5, with the exeption that here protool �may all multiple instanes of �, where these instanes run

onurrently. Consequently, the adversary A

�

that interats with protool � onurrently invokes

multiple instanes of the simulator A

�

, where eah instane of A

�

interats with a single instane of

�. In order to be able to arry out the overall interation with � and the environment in a globally

onsistent manner, A

�

uses the fat that eah instane of A

�

outputs the neessary information

after eah ativation. This allows A

�

to use information generated in one instane of A

�

as input
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to another instane of A

�

. (Reall that in the ase of basi seurity A

�

is required to generate

output only at the end of the exeution; suh a guarantee would not suÆe for the present ase.)

As in the proof of Theorem 5, the proof of validity of A

�

proeeds by redution to the validity of

A

�

. The main di�erene from Theorem 5 is that here there are multiple instanes of a subroutine

protool (either � or �), running onurrently. Thus, we need to demonstrate that no environment

an tell the di�erene between the ase where all instanes of � are replaed by � and the ase

where none of the instanes of � are replaed by �. This is done via a standard hybrid argument,

namely by onsidering multiple hybrid exeutions where in eah exeution one more instane of

� is replaed by �. An environment that distinguishes between two onseutive instanes is now

translated into an environment that ontradits the validity of A

�

. We omit further details.

7.2.1 Disussion

To interpret Theorem 7 reall that, for any given alling protool �, the fat that �

�=�

UC-emulates

� implies that replaing the instanes of � by instanes of � does not hange the behavior of �

with respet to PT adversaries in a notieable way; in partiular, it does not introdue any new

vulnerabilities to �

�=�

. Furthermore, reall that any of the omposition senarios mentioned in

Setion 5.2 (with the exeption of joint-state omposition, disussed below) an be aptured as

universal omposition with some set of alling protools. Thus, Theorem 7 guarantees seurity-

preserving omposition in any of these senarios. Some additional aspets of the theorem are

disussed next.

Modular protool analysis. The fat that Theorem 7 puts very few restritions on the alling

protool � makes it onduive to arrying out the plan from the preamble of Setion 4.3 in a way

that meshes naturally with the struture of ommon protools. That is, the theorem allows de-

omposing protools to many simple subroutines, analyzing eah subroutine separately, and then

deduing the seurity of the overall protool from the seurity of the subroutines. In partiular,

the partitioning to subroutines an be nested in an arbitrary way. This is a powerful methodology,

espeially given the fat that rigorous analysis of even simple ryptographi protools tends to be

dauntingly omplex.

Enabling sound symboli and automated analysis. Another advantage of Theorem 7 is

that it allows to \abstrat away" ryptographi imperfetions suh as omputational bounds and

error probabilities, while maintaining soundness of the abstrations. This enables applying auto-

mated proof tools that require symboli representations of protools (as in, say, [dy83℄) and annot

diretly handle asymptoti modeling and ryptographi imperfetions. To do that, �rst devise

funtionalities that apture in an ideal way the seurity properties of the ryptographi primitives

(say, enryption in the ase of [dy83℄) used in the analyzed system. Next, re-write the protools to

be analyzed in a symboli, non-asymptoti model that orresponds to having aess to the devised

ideal funtionalities. Now, one an apply an automated tool to the symboli representation of the

protool. Finally, use the UC theorem to dedue that, if the ryptographi protools in use UC-

realize the devised ideal funtionalities, then the overall system enjoys the same properties proven

for the abstrat version. Some works that take this approah inlude [bjp02, bpw03, h04, sb+06℄.

Two things should be kept in mind, however, when taking this approah. First, for the analysis

to be of value, one has to make sure that the asserted abstrat seurity properties have meaningful

translations to onrete seurity properties of onrete protools. Seond, the omplexity of auto-

mated analysis tools grows very rapidly as a funtion of the number of messages and sessions in
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the analyzed system (see e.g. the undeidability and NP-ompleteness results in [eg82, dlms99℄).

Consequently, a viable instantiation of the above approah would need to break down protools

to simple subroutines and analyze eah subroutine separately as a single session. Here the UC

theorem is one again a ruial enabler.

Representing ommuniation models. Another use of Theorem 7 is for modular representa-

tion of various ommuniation models within the basi model of omputation desribed above. That

is, to apture a given ommuniation model, simply devise an ideal funtionality F that guarantees

the abstrations provided by that model. Now, designing protools in that model is translated to

designing protools that run in the basi model and make alls to F . In order to further simplify

the ode of F , one an allow for multiple instanes of F to run onurrently, where eah instane

deals with a single use of the underlying model (say, a single sending of a message in the ase of

an authentiated ommuniation abstration). Here we do not neessarily intend to realize F in

an algorithmi way; rather, F merely serves as a funtional desription of the desired abstration.

Still, in some ases the same ideal funtionality an be used both as the basis for a ommuniation

model and as a target to be realized by ryptographi protools. Some ommuniation models that

have been aptured this way inlude authentiated ommuniation, seure ommuniation, and

synhronous ommuniation (see e.g. [01, 2005 revision℄).

Composition with joint state. The restrition to subroutine-respeting protools, made in

Theorem 7, exludes the ase of omposition with joint state, namely in the ase where parties in

two or more protool instanes have aess to the same instane of some subroutine program. We

urrently have two alternative methods to deal with this situation. A �rst method is to expliitly

model the subroutine as an entity that interats with multiple protool instanes (even arbitrary

ones). This in turn requires working with a strong variant of UC seurity, alled generalized UC,

whih allows apturing suh subroutines and the protools that use them. See details in [dpw07℄.

A seond option is to demonstrate that all the protools that use the joint subroutine do so via

an interfae that satis�es a ertain ondition. Essentially, this ondition requires that the interfae

looks like the interfae of multiple independent instanes of a simpler proedure. In this ase, one

an again demonstrate a seurity-preserving omposition result similar to Theorem 7. See details

in [r03℄.

Some equivalent variants. Finally, we note that several variants of De�nition 6 turn out to be

equivalent to the present formulation. First, allowing the environment to output an arbitrarily long

string, or alternatively restriting the environment to deterministi omputation do not hange the

de�nition. Also, restriting the adversary A to only forward messages from the environment to

the parties and bak results in a de�nition that is equivalent to the present formulation. Similarly,

restriting the adversary S to have only blak-box aess to A results in an equivalent de�nition.

Finally, letting the simulator depend on the environment results in an equivalent de�nition. We

remark that most equivalenes hold also in other formalisms (see e.g. [psw00℄). However, the last

equivalene does not hold in other formalisms, where entities are required to be polynomial in a

global seurity parameter rather than in the length of loal inputs [hu05℄.

7.3 Feasibility and relaxations

We very briey survey the feasibility results regarding UC-realizing ideal funtionalities. As we'll

see, in spite of the apparent syntati similarity with basi seurity (Setion 4.4), UC seurity is
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in general a onsiderably more restritive notion. In partiular, some far-reahing impossibility

results exist. Consequently, several relaxations and work-arounds have been proposed. We will

briey survey these as well.

Enryption, signing, and seure ommuniation. We start with some positive results. It

turns out that for the basi tasks of enryption, digital signatures, and other tasks assoiated

with seure ommuniation, there are universally omposable formulations that are realizable by

known and natural protools. In fat, in some ases the UC de�nitions are losely related, or even

equivalent, to standard de�nitions (whih use some speial-purpose formulations).

Two salient examples are the ideal publi-key enryption funtionality, F

pke

, and the ideal sig-

nature funtionality, F

sig

, whih apture the basi requirements of enryption and signature in an

abstrat and unonditional way. UC-realizing F

pke

(for non-adaptive party orruptions) is essen-

tially equivalent to the standard notion of seurity against hosen iphertext attaks [ddn00, rs91℄.

UC-realizing F

sig

is essentially equivalent to the standard notion of existential unforgeability against

hosen message attaks [gmri88℄.

Another lass of examples are funtionalities related to the task of obtaining seure ommunia-

tion. These inlude the key-exhange funtionality from Setion 4.3, as well as ideal funtionalities

apturing authentiated and seure ommuniation sessions, entity authentiation, and related

tasks. All of these funtionalities an be UC-realized by simple and known protools. For instane,

see the modeling of erti�ed mail in [psw00a℄ or seure hannels in [pw01, k02℄. In addition,

both the ISO 9798-3 key-exhange protool and IKEv2 (the revised key exhange protool of the

IPSEC standard) UC-realize the ideal key-exhange funtionality [k02, k02a℄.

General feasibility. Can the general feasibility results for basi seurity assuming authentiated

ommuniation (see Setion 4.4) be arried over to UC seurity? When the majority of the parties

are honest (i.e., they are guaranteed to follow the protool), the answer is positive. In fat, some

known protools for general seure funtion evaluation turn out to be universally omposable. For

instane, the [bgw88℄ protool (both with and without the simpli�ation of [grr98℄), together

with enrypting eah message using non-ommitting enryption [fgn96℄, is universally ompos-

able as long as less than a third of the parties are orrupted, and authentiated and synhronous

ommuniation is available. Using [rb89℄, any orrupted minority is tolerable. Asynhronous om-

muniation an be handled using the tehniques of [bg93, bkr94℄. Note that here some of the

partiipants may be \helpers" (e.g., dediated servers) that have no loal inputs or outputs; they

only partiipate in order to let other parties obtain their outputs in a seure way.

However, things are di�erent when honest majority of the parties is not guaranteed, and in

partiular in the ase where only two parties partiipate in the protool and either one of the

parties may be orrupted. First, one of the most ommon proof-tehniques for ryptographi

protools, namely blak-box simulation with rewinding of the adversary, does not in general work

in the present framework. The reason for that is that in the present framework the ideal adversary

has to interat diretly with the environment whih annot be \rewound". (Indeed, it an be argued

that the meaningfulness of blak-box simulation with rewinding in a onurrent exeution setting

is questionable.)

Furthermore, in the UC framework many interesting funtionalities annot be realized at all

by plain protools. (A plain protool uses no ideal funtionality other than the authentiated

ommuniation funtionality.) For one, the ideal ommitment funtionality from Setion 4.3 annot

be UC-realized by plain two-party protools [f01℄. Similar impossibility results hold for the ideal
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oin tossing funtionality, the ideal Zero-Knowledge funtionality, and the ideal Oblivious Transfer

funtionality [01℄. These results extend to unrealizability by plain protools of almost all \non-

trivial" deterministi two-party funtions and many probabilisti two-party funtions [kl03℄, and

to impossibility of realizing any \ideal ommitment funtionality", namely any funtionality that

satis�es the basi orretness, binding and serey properties of ommitment in a perfet way

[ddmrs06℄. These results apply also to multi-party extensions of these primitives, whenever the

honest parties are not in majority.

Three main approahes for irumventing these impossibility results have been onsidered in

the literature. The �rst approah is simply to try to formulate more relaxed ideal funtionalities,

that will be easier to realize, but will still apture the seurity requirements of the desired task.

This is a task-spei� and deliate endeavor. Some works that take this approah are [k02, ps05℄;

a salient harateristi of these relaxations are that seurity is guaranteed only in a omputational

sense even in the ideal proess.

A seond approah is to assume that the parties have aess to some trusted set-up. A third

approah is to relax the UC-emulation requirement. These approahes are desribed in Setions

7.3.1 and 7.3.2, respetively.

7.3.1 Adding set-up assumptions

It turns out that general feasibility an be regained when some trusted set-up is assumed. One suh

trusted set-up assumption, alled the key registration (KR) model, assumes that there exists a trusted

\registration authority" where parties an register publi keys assoiated with their identities, while

demonstrating that they have aess to the orresponding seret keys. (Alternatively, parties an let

the authority hoose publi keys for them; here the orresponding seret keys need not be revealed,

even to the \owners" of the publi keys.) Then, parties an query the authority for a party identity

and obtain the registered publi key for that identity. Pratially any ideal funtionality an be

UC-realized by interative protools in the key registration model, under standard omputational

hardness assumptions. Furthermore, the protools remain seure even in the presene of arbitrary

other protools that use the same publi keys.

Taking a short detour, it is interesting to ompare this set-up assumption to the set-up assump-

tions needed for guaranteeing authentiated ommuniation. To obtain authentiated ommunia-

tion (namely, to UC-realize an ideal funtionality that provides an authentiated ommuniation

servie), it is neessary and suÆient to have aess to an ideal funtionality that allows parties

to register publi keys that will be assoiated with their identities, without having to dislose the

seret keys to the registration authority. This set-up is struturally similar to the key registration

set-up, exept that the trust put in the registration authority is onsiderably milder.

An alternative set-up assumption, alled the ommon random string (CRS) model, is that all

parties have aess to a string that is guaranteed to be taken from a predetermined distribution,

typially the uniform distribution. Furthermore, it is assumed that the string was \ideally gener-

ated" in the sense that no set of partiipants have any \side information" on the ommon string

(suh as the preimage of the string aording to some one-way funtion). This assumption is at-

trative in that it an be realized by physial proesses that minimize the trust that partiipants

need to put in external authorities. Also, it does not require parties to expliitly register before

partiipating in the omputation. However, here the general feasibility results are weaker, in the

sense that the protools are not (and, in fat, provably annot be) shown seure in the presene of

arbitrary other protools that use the same ommon string. Instead, seurity is shown only when

all protools that use the ommon string do so using a very spei� interfae.
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Yet another alternative set-up assumption, alled the timing model, is of a somewhat di�erent

avor: It assumes that there is a bound on the delay of messages delivered in the network, as

well as on the mutual disrepany in loal time measurements, and that these bounds are known

to all parties. Here too it is possible to realize any ideal funtionality, under standard hardness

assumptions [lpt04℄.

Historially, general feasibility results were �rst demonstrated in the CRS model [los02℄. The

overall struture of that protool is the same as in [gmw87℄, as skethed in Setion 4.4. The

main di�erene is in the zero-knowledge and oin-tossing omponents, whih are very di�erent. In

partiular, the new omponents (based partly on the UC ommitment protool in [f01℄) allow for

simulation \without rewinding", using the CRS set-up. Protools in the KR model again use the

same struture. For non-adaptive party orruptions, it was observed that the [los02℄ protools

an be modi�ed to work in the KR model [bnp04℄. For adaptive party orruptions some new

protools have been developed [dpw07℄.

Can we haraterize whih funtionalities are realizable without set-up? or only given authen-

tiated ommuniation? Alternatively, an we haraterize the set-up funtionalities that suÆe

for realizing a given task? Some limited answers to the former question, for the ase of evaluating

a pre-determined funtion of the parties' inputs, and for the ase of funtionalities aimed at guar-

anteeing seure ommitment, are known [kl03, ddmrs06℄. Otherwise, these are interesting open

questions.

7.3.2 Relaxing UC seurity

In light of the restritiveness of UC-emulation, and in partiular given the above impossibility

results regarding realizing UC-realizing funtionalities without initial set-up, it is natural to look

for alternative notions of seurity, that will still provide some general seurity and omposability

guarantees while being easier to realize.

This question is highlighted by the fat that UC-emulation appears to be overly strong with

respet to the notion of omposable seurity (De�nition 4). That is, Theorem 7 states that �

�=�

UC-emulates �, where De�nition 4 only requires that �

�=�

emulates � aording to the basi notion

of emulation, namely De�nition 2. On the one hand, this extra strength is useful, in that it

guarantees that seurity is preserved even after multiple appliations of the universal omposition

operation. On the other hand, though, this extra strength raises the question of whether there is

a less demanding variant of UC-emulation that would still satisfy De�nition 4.

It turns out, however, that the answer to this question is negative. That is, it an be seen that

any notion of emulation that satis�es De�nition 4 with respet to any alling protool � implies

UC-emulation. That is:

Proposition 8 Assume that protool � emulates protool � with �-omposable seurity for any

subroutine-respeting protool �. Then � UC-emulates �.

The idea here is that an arbitrary alling protool � an essentially mimi any interative

environment E , even in the basi setting where the external environment annot interat with

the adversary during the exeution. This holds even though �

�

is only required to emulate �

�

aording to the basi notion, sine the instrutions of � an require the adversary to provide \on-

line" information in the same way that E expets to have in the UC modeling. We omit further

details.

Proposition 8 an be interpreted as stating that UC-seurity is in some sense a \minimal"

requirement that guarantees both omposability and basi seurity. It also means that the extra
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strength in the onlusion of Theorem 7 omes without any additional requirements from the

protool. (Some losely related results appear in [l03, l04℄.)

Still, some relaxed variants of UC-emulation have been proposed and shown to be preserved

under universal omposition with arbitrary protools [ps04, bs05, mmy06℄. By Proposition 8,

these variants neessarily provide seurity guarantees that are weaker than basi seurity. Still,

the provided guarantees are often meaningful. In addition, it was demonstrated that these notions

allow realizing any ideal funtionality given only authentiated ommuniation, under general (but

stronger than usual) hardness assumptions.

Essentially, the way in whih these notions weaken the seurity requirement is by allowing the

\simulator" to run in super-polynomial time T . This means that meaningful seurity is guaranteed

only when the following two onditions are met. First, the ideal funtionality should be suh that

seurity is guaranteed even against adversaries running in time T . This ondition is met by most

ommon formulations of ideal funtionalities; in fat, most ommon formulations provide \perfet"

seurity, even against omputationally unbounded ideal-model adversaries.

The seond ondition is a bit more subtle: Reall that the de�nition only guarantees that

the environment, or the alling protool, annot tell whether it is interating with the emulating

protool � and adversary A (whih may be PT), or with the emulated protool and adversary S,

whih may run in time T . Thus, seurity is meaningful only when the the alling protool itself

withstands adversaries that run in time T . To exemplify this point, we note that it is possible

to onstrut protools that are seure aording to this notion, and yet ompletely \break down"

under self-omposition of only two instanes.

8 Conlusion

This tutorial addressed the hallenges assoiated with rigorously modeling ryptographi proto-

ols and apturing their seurity properties. Partiular stress was put on guaranteeing seurity in

settings where protools are omposed with eah other in a number of ways. We have reviewed

a general de�nitional approah, the trusted party paradigm. We saw two formalizations of this

approah: A basi formalization, that is easier to satisfy but provides only limited seure om-

posability guarantees, and a more advaned formalization that is onsiderably more restritive in

general, but provides very strong seure omposability guarantees.

When looking bak at the overed material, one thing beomes very lear: It is far from obvious

what is \the right" way to apture and formalize seurity properties of ryptographi protools.

In fat, there probably is no single good way to do so, and di�erent formalisms have inomparable

strengths. Furthermore, seemingly small di�erenes in the formalisms result in drasti di�erenes

| both in the meaningfulness (e.g. in the behavior under protool omposition), and also in the

restritiveness, namely in the ability to assert seurity of natural protools.

One onsequene of this fat is that �nding viable notions of seurity for ryptographi pro-

tools remains an intriguing and lively researh area. Another onsequene is that appropriately

formulating the seurity requirements of a given ryptographi task an be a deliate hallenge in

itself. In fat, this is often the \hard part" of the seurity analysis, more so than atually asserting

that a given protool satis�es the formulated property in the devised model.
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A Trusted-party based seurity: A mini survey

This setion briey surveys some works that are diretly relevant to the development of the trusted-

party paradigm as a method for de�ning seurity of protools. (Indeed, this is only a fration of

the body of work on modeling ryptographi protools and asserting seurity properties.) More

detailed surveys on this topi an be found in [00, 01℄. Also, some of these works have already

been mentioned earlier and are not re-addressed here.

Two works that essentially \laid out the �eld" of general seurity de�nitions for ryptographi

protools are the work of Yao [y82a℄, whih expressed for the �rst time the need for a general \uni-

�ed" framework for expressing the seurity requirements of ryptographi tasks and for analyzing

ryptographi protools; and the work of Goldreih, Miali and Wigderson [gmw87℄, whih put

forth the approah of de�ning seurity via omparison with an ideal proess involving a trusted

party (albeit in a very informal way).

The �rst rigorous de�nitional framework is that of Goldwasser and Levin [gl90℄. It was followed

shortly by the frameworks of Miali and Rogaway [mr91℄ and Beaver [b91℄. In partiular, the notion

of \reduibility" in [mr91℄ diretly underlies the notion of protool omposition in many subsequent

works, inluding the notion of universal omposition as desried here. Beaver's framework is the

�rst to diretly formalize the idea of omparing a run of a protool to an ideal proess. Still, the

[mr91, b91℄ formalisms only address seurity in restrited settings; in partiular, they do not deal

with omputational issues.

All the work mentioned above onentrate on synhronous ommuniation and the task of

seure funtion evaluation. An extension to asynhronous ommuniation networks is formulated

in [bg93℄. A system model and notion of seurity for reative funtionalities is skethed in

P�tzmann and Waidner [pw94℄.
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Canetti [95℄ provides the �rst ideal-proess based de�nition of omputational seurity against

resoure bounded adversaries. [00℄ strengthens the framework of [95℄ to handle seure om-

position. In partiular, seurity of protools in that framework is shown to be preserved under

non-onurrent universal omposition. This work also ontains skethes on how to strengthen the

de�nition to support onurrent omposition. A losely related formulation appears in [g04℄.

The framework of Hirt and Maurer [hm00℄ give a rigorous treatment of the ase of reative

funtionalities. Dodis and Miali [dm00℄ build on the de�nition of Miali and Rogaway [mr91℄

for unonditionally seure funtion evaluation, and prove that their notion of seurity is preserved

under a general onurrent omposition operation similar to universal omposition. However, their

de�nition involve notions that make sense only in settings where the ommuniation is ideally

private; thus this de�nition does not apply to the ommon setting where the adversary has aess

to the ommuniation between honest parties.

The framework of P�tzmann, Shunter and Waidner [psw00, pw00℄ is the �rst to rigorously

address onurrent universal omposition in a omputational setting. They de�ne seurity for re-

ative funtionalities in a synhronous setting and prove that seurity is preserved when a single

instane of a subroutine protool is omposed onurrently with the alling protool. An exten-

sion of the [psw00, pw00℄ framework and notion (alled reative simulatability) to asynhronous

networks appears in [pw01℄.

Universal omposability in its full generality was �rst onsidered in [01℄, whih addressed the

ase of unbounded number of onurrently omposed protools. This work also demonstrated how

the seurity requirements of a number of ommonplae and seemingly unrelated ryptographi tasks

an be aptured via the trusted-party paradigm in the devised model.

A proess alulus for representing probabilisti polynomial time interating proesses is de-

veloped in [lmms98, mrst06℄. In [mms03℄ the notion of protool emulation and realizing an

ideal funtionality is formalized in this model, and shown to be preserved under universal om-

position with any alling protool. Other models that de�ne emulation-based seurity inlude

[dkmr05, k06, +06a℄.

At very high level, the notions of seurity in [pw01, 01, mms03, dkmr05, k06℄ are similar.

However, the underlying system models di�er in a number of respets, whih signi�antly a�et

the expressibility and generality of the respetive models, namely the range of real-life situations

and onerns that an be aptured by the respetive formalisms. They also di�er in their simpliity

and ease of use. In addition, the models provide di�erent degrees of abstration and di�erent tools

for arguing about seurity properties. We leave a more detailed omparison out of sope.

Finally, we note that the above notions of seurity leave little room for non-determinism in pro-

tool desription and run-time sheduling. This is a natural hoie, sine non-determinism that is

resolved arbitrarily at run-time seems inherently inompatible with seurity against omputation-

ally bounded adversaries. However, suh modeling does not allow utilizing the traditional analytial

advantages of non-determinism in modeling of distributed protools. First steps towards inorpo-

rating in the model non-determinism that's resolved at runtime are taken in [+06, +06a℄; the

main idea here is to allow some parts of the protool exeution to be determined arbitrarily after

all the algorithmi omponents are �xed.
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