Scatter

Programming Support for an Integrated Multi-Party Computation and MapReduce Infrastructure
Scatter

Programming Support for an Integrated Multi-Party Computation and MapReduce Infrastructure
Scatter

Programming Support for an Integrated Multi-Party Computation and MapReduce Infrastructure
Scatter

Programming Support for an Integrated Multi-Party Computation and MapReduce Infrastructure
Scatter

Programming Support for an Integrated Multi-Party Computation and MapReduce Infrastructure
Scatter

Programming Support for an Integrated Multi-Party Computation and MapReduce Infrastructure
So what’s MapReduce?

Programming paradigm to specify data analytics tasks.

Backend infrastructure as a highly-distributed, parallel execution environment for those tasks.
It’s a really big deal!

Programming paradigm to specify data analytics tasks.

Backend infrastructure as a highly-distributed execution environment for those tasks.

Largest Apache Spark cluster is **8000 nodes**.

200 node Spark cluster sorted **100TB** of data in **23 minutes**.
Word count in five lines

text_file = spark.textFile("hdfs://...")

counts = text_file.flatMap(lambda line: line.split(" "))
 .map(lambda word: (word, 1))
 .reduceByKey(lambda a, b: a + b)

counts.saveAsTextFile("hdfs://...")
Programmer doesn’t have to worry about

How the data is distributed across the cluster

Managing data operations performed by each machine

Fault tolerance

The distributed nature of the platform
MapReduce is a great example of separation of concerns.
Scatter

Programming Support for an Integrated Multi-Party Computation and MapReduce Infrastructure
What does multi-party computation give us?

Given multiple parties p_1, p_2, \ldots, p_n with private inputs x_1, x_2, \ldots, x_n

Need to compute $f(x_1, x_2, \ldots, x_n)$

Without revealing more than the outputs of f

Sounds a bit like a magic trick…
Quick example: the sum of secrets
Split secrets into “shares”
Distribute shares
Add shares, (this results in more shares)
Recombine shares
Lo and behold
MPC is magic!

MapReduce is pretty cool!
So what?
Let’s think about pay (in)equality for a moment

Each company can use MapReduce to find the salary differences in their own data.

The companies can use MPC to find the collective difference without revealing their data.
Let’s think about pay (in)equity for a moment

Each company can use MapReduce to find the salary differences in their own data.

→ Lots of computation

The companies can use MPC to find the collective difference without revealing their data.

→ Just one addition
Why bother splitting tasks up like that?
Performance!

Practical MPC frameworks are slow.

MPC frameworks optimize MPC, they don’t optimize local computation.
Usability

Practical MPC frameworks are slow.

MPC frameworks optimize MPC, they don’t optimize local computation.

Data analysts don’t know about MPC (or think they do).

MPC frameworks require a steep learning curve (trust me...).

Direct disconnect between user expertise and available tools.

What about separation of concerns?
Let’s put MapReduce and MPC together!
Scatter

Programming Support for an Integrated Multi-Party Computation and MapReduce Infrastructure
The main components of Scatter

Programming language to specify MapReduce and MPC operations.

Compiler to convert Scatter programs to tasks that are executable in existing MapReduce and MPC frameworks.

Backend platform running those MapReduce and MPC frameworks to act as an execution environment for a compiled Scatter program.
Let’s explore Scatter top-down

Programming language to specify MapReduce and MPC operations.

Compiler to convert Scatter programs to tasks that are executable in existing MapReduce and MPC frameworks.

Backend platform running those MapReduce and MPC frameworks to act as an execution environment for a compiled Scatter program.
MapReduce primer coming up!
MapReduce is all about **key-value** stores
MR operations are functions on key-value stores

- `filter(bear)`
 - `bear, 1`
 - `bear, 2`
 - `wolf, 2`
 - `bear, 1`
 - `bear, 2`

- `reduce(+)`
 - `bear, 1`
 - `bear, 2`
 - `wolf, 2`
 - `bear, 3`
 - `wolf, 2`
Pay equity in Scatter

5: m := \texttt{reduce}(+, \texttt{filter}("m", \texttt{data}))
6: f := \texttt{reduce}(+, \texttt{filter}("f", \texttt{data}))
7: d := m - f
Declaring the key-value store

1: type gender = str
2: type salary = int
3: data := store(gender, salary)

5: m := reduce(+, filter("m", data))
6: f := reduce(+, filter("f", data))
7: d := m - f
What about MPC?
What about MPC?

Two main constructs **Scatter**, and **Gather**.

(Finally, the mystery is lifted.)
Scatter: make secret and share

bear, 1

bear, 2

deer, 2
Split* values into shares

* using the MPC backend secret sharing implementation
Send and receive shares

bear, 1
bear, s1
bear, t1
deer, u1

bear, 2
bear, s2
bear, t2
deer, u2

deer, 2
bear, s3
bear, t3
deer, u3
Now let’s say we want to *reduce(+)***
Now let’s say we want to reduce (+)

bear, 1
bear, s1+t1
deer, u1
bear, 2
bear, s2+t2
deer, u2
deer, 2
bear, s3+t3
deer, u3
Gather: collect and reveal
Send shares to specified participant

bear, 1
bear, 2
deer, 2

bear, $s_1 + t_1$
bear, $s_2 + t_2$
bear, $s_3 + t_3$
deer, u_1
deer, u_2
deer, u_3
Recombine shares

bear, 1

bear, 2

deer, 2

bear, 3

deer, 2
Complete pay equity Scatter program

1: type gender = str
2: type salary = int
3: data := store(gender, salary)
4:
5: m := reduce(x, y, +, filter("m", data))
6: f := reduce(x, y, +, filter("f", data))
7: d := m - f
8:
9: s := gather(reduce(lambda x,y: x+y, scatter(d)))
Each company will execute this locally

1: type gender = str
2: type salary = int
3: data := store(gender, salary)
4:
5: m := reduce(lambda x,y: x+y, filter("m", data))
6: f := reduce(lambda x,y: x+y, filter("f", data))
7: d := m - f
8:
9: s := gather(reduce(lambda x,y: x+y, scatter(d))))
The companies will need to perform an MPC

1: type gender = str
2: type salary = int
3: data := store(gender, salary)
4:
5: m := reduce(lambda x,y: x+y, filter("m", data))
6: f := reduce(lambda x,y: x+y, filter("f", data))
7: d := m - f
8:
9: s := gather(reduce(lambda x,y: x+y, scatter(d))))
What to do with a Scatter program?

Programming language to specify MapReduce and MPC operations.

Compiler to convert Scatter programs to tasks that are executable in existing MapReduce and MPC frameworks.

Backend platform running those MapReduce and MPC frameworks to act as an execution environment for a compiled Scatter program.
Our current target frameworks

“a fast and general engine for large-scale data processing”

MPC framework that allows for Shamir secret sharing, arithmetic, and comparison over secret shares
Let’s compile Scatter code to PySpark*

5: own m := reduce(lambda x,y: x+y, filter("m", data))
6: own f := reduce(lambda x,y: x+y, filter("f", data))
7: own d := m - f

m = data.filter(lambda x: x[0] == 'm')\n .reduceByKey(lambda x, y: x + y)\n .collect()
f = data.filter(lambda x: x[0] == 'f')\n .reduceByKey(lambda x, y: x + y)\n .collect()
d = ('d', m[0][1] - f[0][1])

* Apache Spark’s Python API
Let’s compile Scatter code to Viff

9: own s := gather(reduce(lambda x,y: x+y, scatter(d))))

def input(in_handle):
 return in_handle.read()
def output(result, out_handle):
 out_handle.write(result)
def reduceByKey(lmbd, kv_store):
 distinct_keys = set(map(lambda x: x[0], kv_store))
 res = []
 for k in distinct_keys:
 pairs_for_key = filter(lambda x: x[0] == k, kv_store)
 values_for_key = map(lambda x: x[1], pairs_for_key)
 v = reduce(lmbd, values_for_key)
 res.append((k, v))
 return res
def run(id, players, in_handle, out_handle):
 Zp = GF(104729)
 kv_store = input(in_handle)
 filtered = filter(lambda x: x[0] == 'diff', kv_store)
 mapped = map(lambda x: x[1], filtered)
 private_kv_store = sorted(mapped, key=lambda x: x[0])
def protocol(rt):
 def exchange_key_stores(rt):
 def create_shared_key_stores(keys, player_mask):
 keys_to_sharers = zip(
 [chr(k) for k in keys], player_mask)
 return keys_to_sharers
Let’s compile Scatter code to Viff

9: own s := gather(reduce(lambda x,y: x+y, scatter(d)))

```python
def key_store_sizes_ready(key_store_sizes):
    return [int(ks) for ks in key_store_sizes]
def share_keys(key_store_sizes, rt, Zp):
    sorted_keys = []
    player_mask = []
    for player in rt.players:
        key_store_size = key_store_sizes[player - 1]
        for i in xrange(key_store_size):
            if rt.id == player:
                key = ord(private_kv_store[i][0])
            else:
                key = None
            sorted_keys.append(rt.shamir_share([player], Zp, key, threshold=0))
            player_mask.append(player)
gathered_keys = gather_shares([rt.open(k) for k in sorted_keys])
    return gathered_keys.addCallback(create_shared_key_stores, player_mask)

shared_key_store_sizes = rt.shamir_share(players, Zp, len(private_kv_store), threshold=0)
onopened_key_store_sizes = map(rt.open, shared_key_store_sizes)
key_store_sizes = gather_shares([opened_key_store_sizes]).addCallback(key_store_sizes_ready)
```
Let’s compile Scatter code to Viff

9: own s := gather(reduce(lambda x,y: x+y, scatter(d)))
Let’s compile Scatter code to Viff

9: own s := gather(reduce(lambda x,y: x+y, scatter(d)))
Phew, we have executable code!

Programming language to (unified) specify MapReduce and MPC operations.

Support for actual MapReduce and MPC frameworks that can execute those operations.

Backend platform running those MapReduce and MPC frameworks to act as an execution environment for a Scatter program.
Executable where?

Programming language to (unified) specify MapReduce and MPC operations.

Support for actual MapReduce and MPC frameworks that can execute those operations.

Backend platform running those MapReduce and MPC frameworks to act as an execution environment for a Scatter program.
Let’s build our backend.

Give each client the computational resources to:

- run local MapReduce tasks on their data
- participate in MPC rounds to process data across companies
- coordinate those two actions

Let’s build a **worker node**.
What does each company start with?

Worker node

Worker node

Worker node

Storage

Storage

Storage
What do companies need to run MapReduce code?

- MR cluster
- Storage
- MR API

Worker node

MR cluster Storage MR API
What do companies need to run MPC code?

- MR cluster
- Storage
- MR API
- MPC Client
- Worker node
What about coordinating program execution?
Bundle up the software, we have our worker nodes!
Almost done...

We have a distributed system.

We need to coordinate task execution not only within worker nodes but also across worker nodes. (Why?)

Let’s build a controller node.
What goes inside a controller node?

Controller node

- Storage
- MR cluster
- Worker software
 - MR API
 - MPC Client
- MPC Client
- MR API
- Worker software
 - MR API
 - MPC Client
- MR cluster
- Storage
- MR cluster
- Storage
- MR cluster
- Storage
Software to orchestrate task execution + worker configuration
Workers connect to Controller over HTTPS
Use controller to configure and connect MPC clients
Who controls the controller?
And there we have it

Programming language to specify MapReduce and MPC operations.

Compiler to convert Scatter programs to tasks that are executable in existing MapReduce and MPC frameworks.

Backend platform running those MapReduce and MPC frameworks to act as an execution environment for a compiled Scatter program.
Open future

Extend compiler with static analysis tools.

And more!