

Electricity and Circuits

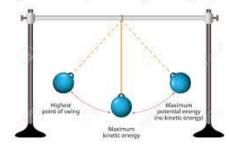
By Jocelyn Pern, Shakaani Nasankar, and Danielle Aguiar

Electricity

I don't get electricity jokes. Watts so funny about them?

"... the set of physical phenomena associated with the presence and motion of electric charge" (Wikipedia)

In other words...

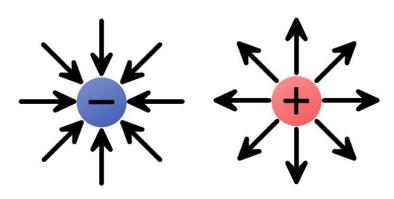

A form of energy caused by charged particles

What does a light bulb eat for fresh breath?

The Energy Theory

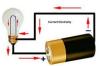
The Conservation of Energy states that energy cannot be created or destroyed, only altered from one form to another.

Conservation of energy



Positive vs. Negative Charge

Static vs. Dynamic


Positive charge = lose electrons

Negative charge = gain electrons

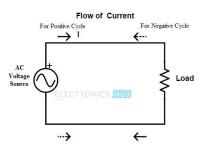
Static - particles stay together

Dynamic - particles move in same direction

Voltage

VS.

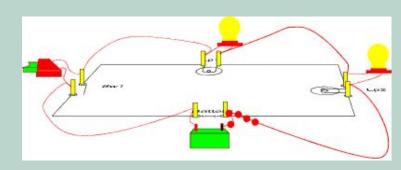
Current


voltage - measure of energy between two points

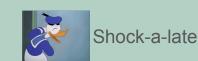
- supplied by a battery/power supply
- measured in Volts (V)
- can be measured using a voltmeter


VOLTAGE

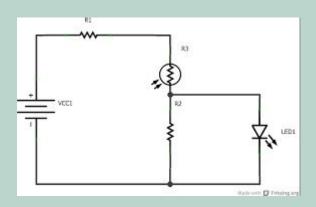
current - direction of the flow of charged particles


- flows from positive to negative potentials
- measured in Ampere (amp)

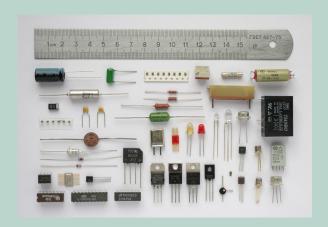
Direct and Alternating Currents



What's an electrician's favorite ice cream flavor?

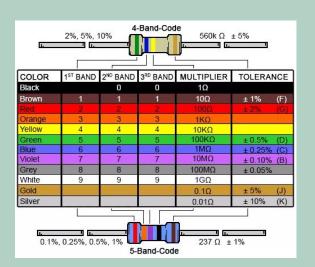

Circuits

circuit- a closed path where electricity flows where a battery is energy source

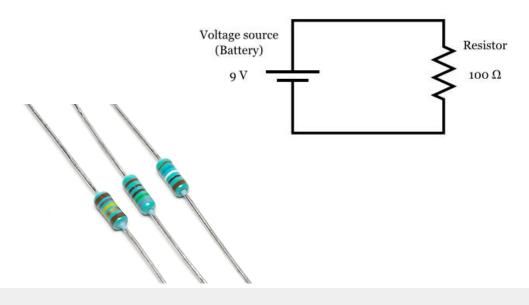


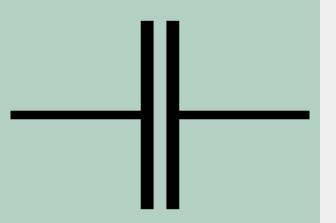
Schematic Diagram

- shows the layout of a circuit
- uses symbols for the electrical components instead of realistic pictures
- shows current, voltage, and resistance
 - ☐ I = current
 - ☐ V = voltage
 - R = resistance


Circuit Components

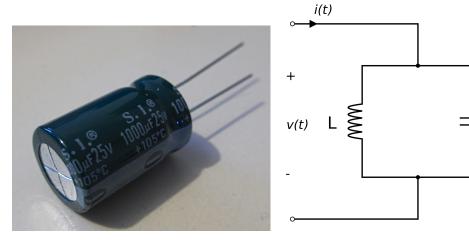
- parts of a circuit
- loads (such as resistors, capacitors, and inductors)


Resistors

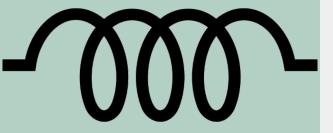


resistors - controls the current flowing through a circuit

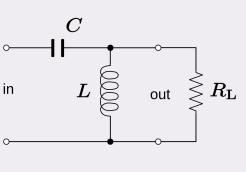
- ☐ less resistance = more current
- \Box measured in Ohms (Ω)
- ☐ Related to Ohm's Law (V=IR)
- color strips around resistor tell the amount of resistance



Capacitors

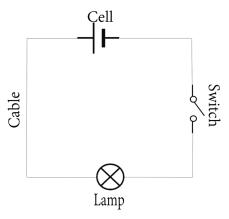

capacitors - two charged plates (positive and negative) that resist sudden shifts in the Voltage

- when fully charged, the current stops because it becomes an open circuit
- stores energy in an electric field



Inductors

inductors - a coil that stores energy in the form of a magnetic field and resists sudden changes in the current


Switches

switch- a component that opens and closes

- can be used to open and close a circuit
- light switch- when you turn the light on, you close the circuit, vice versa

What kind of car does a electrician drive?

Circuit Properties

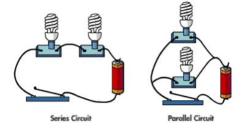


Open Circuit

VS.

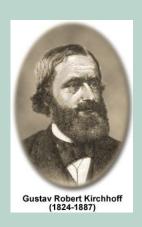
Closed Circuit

- Open circuits do not allow an electrical current to flow through the circuit.
 - Air is not a good conductor, therefore the electricity cannot flow through to the next component or wire.

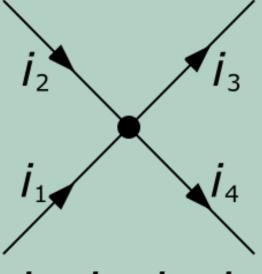

 Closed circuits are complete and allows electricity to flow through.

Series

VS.

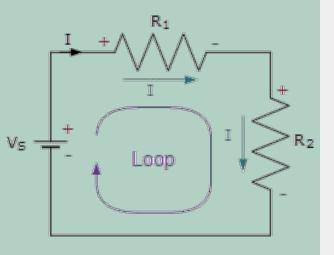

Parallel

 In a series circuit, the electrical components share a current flow and have common nodes.


 In a parallel circuit, the electrical current splits paths and comes back to the negative terminal of the power source.

Kirchhoff's Laws

- German physicist who created laws to calculate currents, voltages, and more
- also extended the theory of Georg Ohm

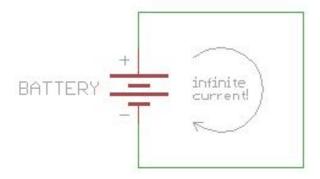

Kirchhoff's Current Law (KCL)

 $i_1 + i_2 = i_3 + i_4$

- the sum of all currents entering a node is equal to the sum of those leaving
- based on conservation of charge
- also referred to as the junction rule
- can be used to solve for I, V, and R in a circuit with unknown quantities

Kirchhoff's Voltage Law (KVL)

- the sum of all voltage changes around a complete path is equal to 0
- based on the conservation of energy
- similar to displacement
- can be used to solve for I, V, and R in a circuit with unknown quantities
- also referred to as the loop rule


What do you call a detective electrician?

Mere About Circuits

What is a Short Circuit?

A short circuit is when you connect a wire directly from the positive end to the negative end of the power supply. **DO NOT DO THIS!** This can cause explosions.

Circuits and Our Lives

Circuits are incorporated into our lives in many ways. They are used in nearly every type of item that uses electricity, from a phone to a lamp.

Example of a Circuit

```
#include<stdio.h>
       #include<comio.h>
       void main()
     □ {
       int num, i, j;
       printf("Enter a number below 100\n");
       scanf ("%d", &num);
      for(j=1;j<=2;j++)
10
     for(i=1;i<100;i++)
11
12
           printf("%d\n",i);
13
           if(i==num)
14
           break;
15
16
17
       getch();
18
19
```


Another Example of a Circuit

Another example of a circuit is a device I built with a few of my classmates at school for a competition. It will alert the guardian of an child if it is too hot inside the car for the child via a buzzer and LED lights. This device uses a pressure sensor, a temperature sensor, and the alert system. It uses a battery as the power source.

Thank You!

Shoutout to Aixa, Catherine, Cynthia, and Dora for being wonderful coordinators and teachers, teaching us about computer science and engineering!