
Simple Sorting Algorithms



Review of Quick Sort

2

Pick a pivot, arrange other 

elements based on if they’re 

greater or less than the pivot

Repeat for each smaller group 

until the whole thing is sorted 

Usually O(nlogn), absolute worst 

case is O(n2)



3

Bubble Sort

Compare each element (except the last one) with its 
neighbor to the right

If they are out of order, swap them
This puts the largest element at the very end
The last element is now in the correct and final place

Compare each element (except the last two) with its 
neighbor to the right

If they are out of order, swap them
This puts the second largest element next to last
The last two elements are now in their correct and final places

Compare each element (except the last three) with its 
neighbor to the right

Continue as above until you have no unsorted elements on the left



4

Example of Bubble Sort

7 2 8 5 4

2 7 8 5 4

2 7 8 5 4

2 7 5 8 4

2 7 5 4 8

2 7 5 4 8

2 5 7 4 8

2 5 4 7 8

2 7 5 4 8

2 5 4 7 8

2 4 5 7 8

2 5 4 7 8

2 4 5 7 8

2 4 5 7 8

(done)



5

Can you guess its Big-O notation?

O(n2)



6

Selection sort

Given a list of length n,

Search elements 0 through n-1 and select the smallest

Swap it with the element in location 0

Search elements 1 through n-1 and select the smallest

Swap it with the element in location 1

Search elements 2 through n-1 and select the smallest

Swap it with the element in location 2

Search elements 3 through n-1 and select the smallest

Swap it with the element in location 3

Continue in this fashion until there’s nothing left to search



7

Analysis of Selection Sort

7 2 8 5 4

2 7 8 5 4

2 4 8 5 7

2 4 5 8 7

2 4 5 7 8

Analysis:

The outer loop executes n-1 times

The inner loop executes about n/2 times 

on average (from n to 2 times)

Work done in the inner loop is constant 

(swap two array elements)

Time required is roughly (n-1)*(n/2)

You should recognize this as O(n2)



8

Invariants for Selection Sort

For the inner loop:
This loop searches through the array, incrementing inner from its 

initial value of outer+1 up to a.length-1

As the loop proceeds, min is set to the index of the smallest number 

found so far

Our invariant is:
for all i such that outer <= i <= inner, a[min] <= a[i]

For the outer (enclosing) loop:
The loop counts up from outer = 0

Each time through the loop, the minimum remaining value is put in 

a[outer]

Our invariant is:
for all i <= outer, if i < j then a[i] <= a[j]



9

Insertion sort

From left to right, go through each element in the list.

If it is smaller than the element to its left, check all the 

elements you’ve already done to see where it belongs. 

When you find the right place, insert it between the element 

that is bigger than it and the element that is smaller. 



10



11

Analysis of insertion sort

We have to check each of the n elements 

On average, there are n/2 elements already sorted

The inner loop looks at (and moves) half of these

This gives a second factor of n/4

Hence, the time required for an insertion sort of an array of n 

elements is proportional to n2/4

Discarding constants, we find that insertion sort is O(n2)



Mergesort

A L G O R I T H M S

divideA L G O R I T H M S

Divide array into two halves.



Mergesort

sort

A L G O R I T H M S

divideA L G O R I T H M S

A G L O R H I M S T

Divide array into two halves.

Recursively sort each half.



Mergesort

merge

sort

A L G O R I T H M S

divideA L G O R I T H M S

A G L O R H I M S T

A G H I L M O R S T

Divide array into two halves.

Recursively sort each half.

Merge two halves to make sorted 

whole.



auxiliary array

smallest smallest

A G L O R H I M S T

Merging

A

Keep track of smallest element in each sorted half.

Insert smallest of two elements into auxiliary array.

Repeat until done.



auxiliary array

smallest smallest

A G L O R H I M S T

A

Merging

G

Keep track of smallest element in each sorted half.

Insert smallest of two elements into auxiliary array.

Repeat until done.



auxiliary array

smallest smallest

A G L O R H I M S T

A G

Merging

H

Keep track of smallest element in each sorted half.

Insert smallest of two elements into auxiliary array.

Repeat until done.



auxiliary array

smallest smallest

A G L O R H I M S T

A G H

Merging

I

Keep track of smallest element in each sorted half.

Insert smallest of two elements into auxiliary array.

Repeat until done.



auxiliary array

smallest smallest

A G L O R H I M S T

A G H I

Merging

L

Keep track of smallest element in each sorted half.

Insert smallest of two elements into auxiliary array.

Repeat until done.



auxiliary array

smallest smallest

A G L O R H I M S T

A G H I L

Merging

M

Keep track of smallest element in each sorted half.

Insert smallest of two elements into auxiliary array.

Repeat until done.



auxiliary array

smallest smallest

A G L O R H I M S T

A G H I L M

Merging

O

Keep track of smallest element in each sorted half.

Insert smallest of two elements into auxiliary array.

Repeat until done.



auxiliary array

smallest smallest

A G L O R H I M S T

A G H I L M O

Merging

R

Keep track of smallest element in each sorted half.

Insert smallest of two elements into auxiliary array.

Repeat until done.



auxiliary array

first half

exhausted smallest

A G L O R H I M S T

A G H I L M O R

Merging

S

Keep track of smallest element in each sorted half.

Insert smallest of two elements into auxiliary array.

Repeat until done.



auxiliary array

first half

exhausted smallest

A G L O R H I M S T

A G H I L M O R S

Merging

T

Keep track of smallest element in each sorted half.

Insert smallest of two elements into auxiliary array.

Repeat until done.


