THE PENGUIN PARADOX: HOW THE SCOPE OF
DERIVATIVE WORKS IN COPYRIGHT
AFFECTS THE EFFECTIVENESS
OF THE GNU GPL

Mitchell L. Stoltz"

INTRODUCTION ...ttt ettt e ettt sn s e b e snenenenas 1440
I. WHAT THE GPL CLAIMS TO DO ..ot 1444
A, The GPL’S GOAIS ..ot 1444
B. The Legal Mechanism of the GPLcccccvevviveveiveieece e 1446
Il. THE PROBLEM: COMBINING PARTIAL PROGRAMS........ccooveuenerernennnes 1447
A, Modules and LinKingccooererriieiienineneeiese e 1447
B. Why Dynamic Linking Presents a Problem for the GPL........... 1450
C. The FOSS Community’s Interpretation of Derivative Works 1452
II. THE COPYRIGHT LAW OF LINKINGccoiitieieieniiniieie e 1453
A. The Early Cases on Linking.........ccccevevevvnineiencsn s 1453
B. The Linking Exemption to the Derivative Work Right............... 1456
1. Development of the EXemption.........cccoocvvvvieerenenesceenennn, 1456
2. Policy Rationales for the Exemption...........cccccceveieiveennane. 1459
IV. BASIC RULES FOR LINKING WITH GPL SOFTWARE: A FIRST
APPROXIMATION ..iuiitiaiieiieeestesiee e stesbesteessestesse e enesbesbesneessessesseas 1462
A. Static Linking and the Pre-1992 Casescccccocevveverieresnannas 1462
B. The Linking Exception Presents a Paradox for the GPL........... 1463
1. Expressive Audiovisual Programs..........ccccoeveveiiinienvaeennnn 1465
2. Creative or Arbitrary Interface Code..........cccceevvevvevieerrennane. 1466
3. Working Only with a Single Program...........cccceeeevvivnennnne. 1467
4. THhe ParadoX.......ccociiiiiiieieeseies e 1468
V. AN ARGUMENT FOR STRONGER DERIVATIVE WORKS PROTECTION
FOR GPL CODEuiiiieiiieieieieie et 1469
A. An Alternate Balance for Copyright.........ccccovevivniiiiicniinenns 1469
B. Limiting Fair Use for Linking to GPL Codeccocceveevenenne. 1471
1. Fair Use and FOSS Have Parallel Goalscccccovrvruenee 1471
2. “Exploitation” and Custom: Specific Fair Use Factors....... 1473
a. FOSS Industry CUStOMcccvevieririieieie e eesee e 1474
b. Effect on Reputation..........cccccoovevviiieieneincieee s, 1474
c. Beneficial Network Externalities............ccccooeveiiiinenns 1475
C. Broadening the Definition of a Derivative Work for GPL
COB....i ettt 1476
D. Potential Difficulties with this Approachccccoeevevieviennnnne. 1476
CONCLUSION ...ttt sttt ettt ettt ettt b e bt e e e b e sbe b e e e e nbesbeans 1477

* J.D. Candidate, Boston University, 2006.
1439

1440 BOSTON UNIVERSITY LAW REVIEW [Vol. 85:1439

INTRODUCTION

When computer companies began to use copyright law to prevent others
from modifying software, MIT computer scientist Richard Stallman used
copyright for the opposite purpose — to guarantee a right to study, tinker,
improve, and redistribute.® The result was the GNU General Public License, or
the GPL.> Part legal document and part manifesto, the GPL establishes the
terms of distribution for a growing collection of free and open source software
(FOSS)® and helps to preserve a cooperative ethic among its developers and
users.* Stallman wrote the GPL as a response to what he saw as the harmful
effects of proprietary software — produced by companies like IBM — on
software development.® Ironically, the GPL is now the legal framework for

! Free Software Foundation, GNU General Public License Version 2, at Preamble (June
1991), http://www.gnu.org/licenses/gpl.txt [hereinafter GPL] (stating that “[this] License is
intended to guarantee . .. [the] freedom to share and change free software”). The Free
Software Foundation (the FSF) is currently drafting a revision to the GPL, to be called
Version 3. The FSF’s press release strongly suggests that the basic legal mechanism of the
GPL will remain the same in Version 3. See Press Release, Free Software Foundation, GPL
Version 3: Background to Adoption (June 9, 2005), http://www.fsf.org/news/gpl3.html
(mentioning several new issues that GPL version 3 will address but suggesting that Stallman
intends to “preserve its integrity™).

2 GNU is a recursive acronym for Gnu’s Not Unix. Free Software Foundation, The GNU
Manifesto, http://www.gnu.org/gnu/manifesto.html (last modified July 13, 2005) (discussing
the goal of developing a free, UNIX-compatible operating system in order to facilitate
software development). The GNU Project began with the goal of writing a complete “free
software” operating system, similar to — but independent of — the Unix operating system.
Free Software Foundation, Overview of the GNU Project, http://www.gnu.org/gnu/gnu-
history.html (last modified Sept. 27, 2005) [hereinafter GNU Overview] (defining the “free”
in free software as the freedom to copy a program and give it away, to change the program
through access to the source code, and to distribute this new and improved version).

% The Free Software Foundation uses the term “free software” to emphasize the freedom
to distribute and modify. Free Software Foundation, Why “Free Software” Is Better
Than “Open Source”, http://www.gnu.org/philosophy/free-software-for-freedom.html (last
modified May 5, 2005) (stating that “[f]or the Open Source movement, non-free software is
a suboptimal solution,” but “[f]or the Free Software movement, non-free software is a social
problem and free software is the solution”). Another group, the Open Source Initiative,
coined the term “open source” as a politically neutral term for open, collaborative software
development. Open Source, Open Source Initiative, http://www.opensource.org (last visited
Nov. 17, 2005) (stating that the basic idea behind the Open Source Initiative was to facilitate
the improvement of software development by allowing programmers to read, distribute, and
modify software). The “penguin” in the title of this Note refers to the mascot of the
GNU/Linux operating system, probably the best-known FOSS program. See Linux Online
Home Page, http://www.linux.org.

4 See discussion infra Part I.A (explaining that the GPL preserves collaborative software
development by guaranteeing access to a program’s source code and granting permission to
modify it to a widespread community of programmers).

> GNU Overview, supra note 2 (describing the GNU Project as a way to bring back “the
cooperative spirit that prevailed in the computing community in earlier days”).

http://www.linux.org/

2005] THE PENGUIN PARADOX 1441

billion-dollar software businesses at some of the same companies, including
IBM.® Where business goes, lawsuits inevitably follow.

The GPL allows anyone to copy, modify, and redistribute any program to
which it applies, and requires that all distributions include source code, the
program’s recipe.” It also sets a second condition on redistributions: any
program derived from a GPL-covered program must itself be distributed under
the GPL, or else not distributed at all.® This condition, known as “copyleft,” is
a key legal innovation of the GPL. It preserves and perpetuates the public’s
right to copy and modify both current and future versions of programs.™
Copyleft is an application of copyright law, but one where the copyright owner
has used her power to keep software effectively in the public domain, not out
of it The limitations and exceptions of copyright also limit copyleft.** In
particular, the boundaries of copyright law’s definition of a derivative work
determine to which versions and revisions the GPL applies.*®* For software, the
definition of a derivative work is uncertain, because the boundaries separating
one distinct “work of authorship” from another are hard to fix in a computer

® IBM claimed to have invested $1 billion in development and marketing for the GPL-
licensed GNU/Linux operating system, and earned about the same amount in revenue from
the project in 2002 alone. Stephen Shankland, IBM: Linux Investment Nearly
Recouped, CNET NEwWS.coM, Jan. 29, 2002, http://news.com.com/2100-1001_3-825723.html
(discussing IBM’s strategy to take advantage of the open-source movement to get ahead of
competitors).

7 See GPL, supra note 1, at §§ 1-3 (permitting user to copy, modify, redistribute, and
have access to the source code of licensed software).

8 GPL, supra note 1, at § 2(b) (requiring that derivatives of GPL software be
distributed only under the terms of the GPL); id. at § 7 (prohibiting any distribution if the
developer is unable to comply with the GPL).

® Free Software Foundation, What Is Copyleft?,
http://lwww.gnu.org/copyleft/copyleft.html#WhatlsCopyleft (last modified May 5, 2005)
(defining “copyleft” as “a general method for making a program or other work free, and
requiring all modified and extended versions of the program to be free as well”).

10 See GPL, supra note 1, at § 2(b) (stipulating that “[the licensee] must cause any
work that [the licensee] distribute[s] or publish[es], that in whole or in part contains or
is derived from the Program or any part thereof, to be licensed as a whole at no charge to all
third parties under the terms of this License”).

1 See GPL, supra note 1, at § 5 (granting rights to distribute and modify the program to
those who accept the license, but warning that copyright law will otherwise prohibit these
actions for those who do not accept).

12 See, e.g., Free Software Foundation, Frequently Asked Questions about the GNU
GPL, http://lwww.gnu.org/licenses/gpl-fag.html#GPLFairUse (last modified Aug. 19, 2005)
(responding affirmatively to the question “[d]o | have ‘fair use’ rights in using the source
code of a GPL-covered program?”). Fair use is one of the most basic limitations or
exceptions to copyright in the United States, avoiding rigid application of the copyright
statute when to do so would “stifle the very creativity which that law is designed to foster.”
Campbell v. Acuff-Rose Music, 510 U.S. 569, 577 (1994).

13 See discussion infra Part 11.B (discussing issues raised by dynamically linked software
when defining derivative works).

1442 BOSTON UNIVERSITY LAW REVIEW [Vol. 85:1439

system of many tightly interwoven components.** Under what circumstances
can two programs be said to combine into one, instead of simply being two
programs that interact with each other?*® When two programs interact closely
enough to be considered a new, hybrid program (a derivative work of both
programs), the GPL’s terms dictate that it must apply to the whole.'®

The legal question of when two interacting programs form a derivative work
will determine how broadly the GPL applies,”” and whether it can help
preserve the cooperative values of FOSS development. If copyright law does
not recognize a derivative work where two programs interact in common ways,
the GPL copg/left regime may contain an enormous loophole for proprietary
exploitation.'® Ultimately, the effectiveness of the GPL may depend on
whether courts are willing to apply copyright law to GPL software in an
outcome-oriented way, acknowledging that the “freedoms” the GPL promotes
are aligned with the economic and social policy behind U.S. copyright law.

Despite its popularity, the GPL has attracted criticism from legal scholars
and practitioners. Professor Margaret Jane Radin has questioned whether a
conditional copyright license like the GPL can bind anyone who uses the
licensed software, whether they have voluntarily entered a contract with the
copyright owner or not'® Others point to the inconsistent language of the

¥ The Copyright Act defines a derivative work as “consisting of editorial revisions,
annotations, elaborations, or other modifications which, as a whole, represent an original
work of authorship.” 17 U.S.C. § 101 (2000 & Supp. 2004).

5 For example, a protocol called CORBA allows programs running on different
computers — potentially separated by great distances — to interact in complex ways. Object
Management Group, CORBA Basics, http://www.omg.org/gettingstarted/corbafag.htm (last

modified May 26, 2005) (describing CORBA as an “open, vendor-independent
architecture and infrastructure that computer applications use to work together over
networks”).

16 See GPL, supra note 1, at § 2 (requiring that the GPL apply to any software
distributed as “part of a whole” when the whole is a derivative work).

17 See Free Software Foundation, Frequently Asked Questions about the GNU GPL,
http://lwww.gnu.org/licenses/gpl-fag.html#LinkingOverControlledinterface (last modified
Aug. 19, 2005) (explaining how copyright law determines whether the GPL applies to
combinations of programs).

18 See infra Part 1V.B (concluding that most dynamically linked modules can be released
under proprietary licenses and without disclosure of corresponding source code).

19 Margaret Jane Radin, Incomplete Commodification in the Computerized World, in THE
COMMODIFICATION OF INFORMATION 3, 15 (Niva Elkin-Koren & Neil Weinstock Netanel
eds., 2000) (describing the idea of contractual terms that apply to a program no matter who
uses it as “legally dubious™); see also Robert P. Merges, The End Of Friction? Property
Rights and Contract in the “Newtonian” World of On-Line Commerce, 12 BERKELEY TECH.
L.J. 115, 129 (1997) (arguing that the GPL is unenforceable against many users because of a
lack of privity); Margaret Jane Radin, Humans, Computers, and Binding Commitment, 75
IND. L.J. 1125, 1132 (2000) (expressing doubt as to whether the GPL’s terms can “run with
the product”). Software licenses, in general, are legally uncertain. See Michael J. Madison,
Reconstructing the Software License, 35 Loy. U. CHI. L.J. 275, 278 (2003) (concluding that
many aspects of software licensing have weak legal support, and that licensing may be

2005] THE PENGUIN PARADOX 1443

license — it contains at least three different definitions of a derivative work — to
illustrate the problems that may arise in any GPL litigation.?

To date, the GPL has not been litigated in a U.S. court. A well-established
informal enforcement process combined with a strong norm within the FOSS
community against violating the GPL have upheld the license so far.?* As a
result, no U.S. case has yet addressed the merits of a copyright claim involving
the GPL.** However, this could soon change. With FOSS-related business
generating billions of dollars®® and major corporations aligning to either
embrace or oppose the GPL,* high-stakes litigation looks more likely. In
2003, the SCO Group, a company selling the proprietary Unix operating
system, launched a legal assault on the GPL-licensed GNU/Linux operating
system, and by extension on the GPL itself.* Although the SCO Group

closer to a social norm than a legal regime).

20 phil Albert, Sticks, Stones and the GPL, ECT News.com, Nov. 27, 2004,
http://www.ectnews.com/story/38089.html (acknowledging three possible definitions of
“derivative work” within the GPL); Phil Albert, A Consumer’s Review of the General Public
License, LINUXINSIDER, July 20, 2004, http://www.linuxinsider.com/story/35193.html
(indicating that the legal definition of “derivative work” within the GPL has been the subject
of much case law).

2l Eben Moglen, Free Software Matters: Enforcing the GPL, I, LINUXUSER, Oct. 2001,
at 66, available at http://emoglen.law.columbia.edu/publications/lu-13.html (describing the
FSF’s informal enforcement practices).

22 A German court upheld the GPL as a license under German copyright law. Welte v.
Sitecom Deutschland GmbH, No. 21 O 6123/04 (Dist. Ct. of Munich 2004), available at
http://iwww.jbb.de/judgment_dc_munich_gpl.pdf. The same court later granted a
preliminary injunction against a different software vendor for alleged violation of the GPL.
Press Release, GPL-Violations.org, GPL-Violations.org Project Was Granted a Preliminary
Injunction Against Fortinet UK Ltd. (Apr. 14, 2005), available at http://www.gpl-
violations.org (follow “Fortinet Injunction” hyperlink under “News”). In a much publicized
United States case, MySQL AB alleged a violation of the GPL, but the parties settled out of
court. ComputerWire, MySQL, NuSphere Settle GPL Contract Dispute, THE REGISTER,
Nov. 21, 2002, http://www.theregister.co.uk/2002/11/21 (follow hyperlink to title of article
under “Software”).

28 See Shankland, supra note 6 (“IBM nearly recouped the $1 billion it said it invested in
the Linux operating system in 2001”).

2 In addition to I1BM, companies such as Novell, Apple, and Hewlett-Packard, among
others, have made significant investments in GPL-covered software and other FOSS. Open
Source Initiative, Products, http://www.opensource.org/docs/products.php (last visited Nov.
17, 2005) (listing companies that sell open-source based solutions). Microsoft, the world’s
largest mass-market software vendor, has criticized the GPL on policy grounds. Matthew
Szulik, On the Wrong Side of History, WReDp, Feb. 26, 2001,
http://lwww.wired.com/news/business/0,1367,42008,00.htmI?tw=wn_story_related (quoting
Microsoft CEO Steve Ballmer’s description of open source as an “intellectual property
destroyer™).

% 5C0’s Answer to IBM’s Amended Counterclaims, Eighth Affirmative Defense, The
SCO Group, Inc. v. Int’l Bus. Machs. Corp., No. 03-CV-0294 (D. Utah Oct. 24, 2003),
available at http://www.groklaw.net/pdf/AnswerAmendCC.10-24-03.pdf (alleging that the

1444 BOSTON UNIVERSITY LAW REVIEW [Vol. 85:1439

ultimately dropped its GPL-related claims,? the suits convinced many FOSS
developers of the vital need to resolve legal uncertainties in their licensing
schemes.?’

This Note focuses on one ambiguity that affects the GPL: the scope of what
constitutes a derivative work. Part | describes the goals of the GPL and how it
uses copyright law. Part Il explores software linking, including the common
methods FOSS developers use to combine programs, and why linking presents
a thorny problem for copyright law. Part Il discusses courts’ attempts to
determine when unauthorized linking is permitted. These efforts have led to a
broad but not unlimited permission to copy the elements of a program that are
necessary to make linking work. Part IV applies the case law on linking to the
issues of FOSS development discussed in Part 1l, concluding that the current
pro-compatibility trend in software copyright law severely limits the
effectiveness of the GPL in achieving its stated goals. Finally, Part V proposes
that courts apply both a narrower application of fair use and a broader
definition of derivative works in cases involving the GPL, in order to promote
the goals of both the GPL and the copyright system as a whole. The Note
compares the policy rationales of existing copyright law with the goals of the
GPL and the practices of FOSS developers, and concludes that this solution
can preserve copyright’s effectiveness while avoiding the monopolistic
practices the GPL was written to oppose.

I. WHAT THE GPL CLAIMS TO DO

A. The GPL’s Goals

The GPL uses a legal mechanism to preserve the values of FOSS
development that Stallman felt were threatened by the rise of proprietary
software.?® To its authors, free software involves reusing software components
to solve common problems in a collaborative, academic-like effort. FOSS

GPL is preempted by federal copyright law).

% Compare id. (claiming that the GPL is preempted by federal copyright law) with
SCO’s Answer to IBM’s Second Amended Counterclaims, SCO Group, Inc. v. Int’l Bus.
Machs. Corp., No. 03-CV-0294 (D. Utah Apr. 28, 2004), http://www.groklaw.net/pdf/IBM-
141-1.pdf (omitting preemption claim against the GPL).

27 See Matt Loney, Open Source Leader: SCO Suits a Boon to Linux, CNET NEWS.COM,
Mar. 10, 2005, http://news.com.com/2100-7344_3-5608563.html (reporting that the SCO
litigation resulted in due diligence and scrutiny directed at Linux code base).

% See Richard Stallman, The GNU Operating System and the Free Software Movement,
in OPEN SOURCES: VOICES FROM THE OPEN SOURCE REVOLUTION (Chris DiBona et al. eds.,
1999), available at http://www.oreilly.com/catalog/opensources/book/stallman.html
(recalling the origins of the GNU Project and the GPL); STEVEN WEBER, THE SUCCESS OF
OPEN SOURCE 179-80 (2004) (theorizing that FOSS licenses play a large role in shaping the
social structure of FOSS development projects).

2 Stallman likens programmers’ freedom to share code with other programmers to chefs
sharing recipes. Stallman, supra note 28 (“Sharing of software was not limited to our

2005] THE PENGUIN PARADOX 1445

development generally involves distributing frequent revisions to a widespread
group of programmers and users, who can then test and improve the
software.® For the FOSS development system to work, developers must have
access to a program’s source code, the human-readable list of instructions to a
computer that tell the computer how to perform a task. ** Modification is
nearly impossible without source code, similar to modifying a cake recipe
while having only the cake and not the recipe. The would-be software
tinkerer also needs legal permission to modify the source code, to avoid a
copyright violation. The GPL both guarantees access to source code and
grants permission to modify it.** In addition, because only GPL-covered
software can be combined with other GPL-covered software,** the license may
provide an incentive for more software developers to release their software
under the GPL.*® By releasing her programs under the GPL, a programmer

particular community; it is as old as computers, just as sharing of recipes is as old as
cooking.”). Reusing code for common functions reduces errors and increases programmers’
efficiency. Mark A. Lemley & David W. O’Brien, Encouraging Software Reuse, 49 STAN.
L. Rev. 255, 265 (1997) (discussing how systematic software reuse can improve the quality
of components and increase the productivity of creators). FOSS programmers have a
particularly strong incentive to reuse code and avoid reinventing existing functions, because
they are often not paid for their work. WEBER, supra note 28, at 75.

30 See ERIC S. RAYMOND, Release Early, Release Often, in THE CATHEDRAL AND THE
BAzAAR (2000), available at http://www.cath.org/~esr/writings/cathedral-bazaar/cathedral-
bazaar/ar01s04.html (theorizing how frequent releases and distributed development create
robust software).

® See Free Software Foundation, The Free Software Definition,
http://www.gnu.org/philosophy/free-sw.html (last modified July 22, 2005) (explaining that
access to source code is required for any examination and improvement of a program).

% WEBER, supra note 28, at 4 (explaining that modification is very difficult without
source code).

¥ GPL, supra note 1, at § 2 (permitting modifications to covered software); id. at § 3
(requiring subsequent developers to make source code available).

3 Because a program combining significant amounts of GPL-covered code may be
distributed only under the terms of the GPL, it follows that any code that must remain
proprietary cannot be combined with GPL code, or at least, the resulting mix cannot be
distributed. If distributed under a proprietary license, such a mix would violate the GPL and
therefore infringe the copyright on the original GPL-covered code. If distributed under the
GPL, the proprietary code would be unprotected from copying because the GPL authorizes
anyone to make copies. The only lawful action in this case is to refrain from distribution.
See GPL, supra note 1, at § 2 (establishing the GPL’s intent to exercise a right of control
over the distribution of derivative or collective works).

% Richard Stallman, Why You Shouldn’t Use the Library GPL for Your Next Library,
http://lwww.gnu.org/licenses/why-not-lgpl.html (last modified May 5, 2005) [hereinafter
Why You Shouldn’t Use the Library GPL] (“If we amass a collection of powerful GPL-
covered libraries that have no [proprietary equivalent] . . . some projects will decide to make
software free in order to use these libraries.”); see also Matthias Strasser, A New Paradigm
in Intellectual Property Law? The Case Against Open Sources, 2001 STAN. TECH. L. REV. 4,
62 (questioning the philosophy of the open source movement, but admitting that “[t]here are

1446 BOSTON UNIVERSITY LAW REVIEW [Vol. 85:1439

gains legal access to a large collection of useful GPL code that she can use
within her own programs.®® Thus, the terms of the GPL help to define and
perpetuate a particular method of software development, one which has given
rise to some of the most important and fundamental software available today.*’

B. The Legal Mechanism of the GPL

1. You may copy and distribute verbatim copies of the Program’s
source code as you receive it, in any medium

2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and distribute
such modifications or work

(b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any part
thereof, to be licensed as a whole at no charge to all third parties under
the terms of this License.®

Copyright gives the author of a work the exclusive right to copy, distribute,
and prepare derivatives of that work.*® The GPL, as a copyright license, is a
statement by the copyright holder that anyone may exercise some of these
rights under specified conditions.*® Specifically, the GPL gives anyone who
uses a licensed program the copyright owner’s permission to copy, modify, and
redistribute the program. As with a license to use physical property, a
copyright license can be conditional.”* The GPL contains two important
conditions on its grant of rights: the user must include the program’s source
code with any distribution of the program® and must distribute any derivative
works, if at all, under the terms of the GPL.*

indeed various situations in which access to the source code of a piece of software benefits
[other software developers]”).

% See Why You Shouldn’t Use the Library GPL, supra note 35.

%" The basic functions of the Internet, including Web servers, e-mail transport, and
domain name lookup, are predominantly handled by FOSS. Open Source Initiative,
Products, supra note 24 (boasting that “[n]ot surprisingly, most of the software on top of the
operating system that keeps the internet humming is also open source”).

% GPL, supra note 1, at §§ 1-2.

¥ See 17 U.S.C. § 106 (2004).

4 GPL, supra note 1, at §§ 1-3; see Eben Moglen, Free Software Matters: Enforcing the
GPL, 1, LINUXUSER, Sept. 2001, at 66, available at
http://femoglen.law.columbia.edu/publications/lu-12.html [hereinafter Moglen, Enforcing 1]
(explaining that the GPL relaxes almost all the restrictions of the copyright system).

4l See 3 MELVILLE B. NIMMER & DAVID NIMMER, NIMMER ON COPYRIGHT § 10.15[A]
(2005) [hereinafter NIMMER] (explaining that failure to satisfy a condition of a copyright
license creates a cause of action for copyright infringement).

42 GPL, supra note 1, at § 3 (requiring the distribution of the corresponding machine-
readable source code of a program).

4 1d. at § 2 (requiring that derivative works carry prominent notices informing others of

2005] THE PENGUIN PARADOX 1447

Proprietary software licenses, which supply the terms of distribution for
most mass-market software, typically include restrictions entirely separate
from the exclusive rights of the copyright owner, such as prohibitions on
disassembling or reselling a program.** Because copyright law allows the
disassembly of programs and the resale of a lawful copy,*® the only legal basis
for prohibiting those activities is contract law.“® In contrast, the GPL governs
only copying, modification, and distribution, all of which have their source in
the Copyright Act.*” This means that the GPL can derive its legal force
exclusively from the Copyright Act, with no resort to contract law.*®

Il. THE PROBLEM: COMBINING PARTIAL PROGRAMS

A. Modules and Linking
Software subcomponents that combine into larger programs are a common

changes in the files). The GPL also contains some other conditions not relevant to this
discussion, such as attribution and patent licensing requirements. Id. at 8§ 2(a), 2(c)
(mandating the preservation of that the author’s name, date of changes, and copyright notice
across modifications); id. at § 7 (requiring patent holders to license their patents royalty-free
when including patented code in a GPL-covered program).

4 See Moglen, Enforcing |, supra note 40 (describing the FSF’s informal enforcement
practices).

45 Sega Enters. Ltd. v. Accolade, Inc., 977 F.2d 1510, 1520 (9th Cir. 1992) (holding that
copyright law’s doctrine of “fair use” permits disassembly to study the operation of a
program); 17 U.S.C. § 109(a) (2000) (permitting the owner of an authorized copy of a
copyrighted work to sell or otherwise dispose of that copy).

% See Moglen, Enforcing 1, supra note 40 (explaining that the prohibition against
decompilation of software is governed by contract law, not copyright). Other common
terms in proprietary software licenses, such as permission to make archival copies, can be
understood as a license of some of the exclusive rights of copyright (in the case of archival
copies, the right to reproduce). See 3 NIMMER, supra note 41, at § 10.1 (describing how the
exclusive rights of § 106 can be licensed piecemeal).

4717 U.S.C. § 106 (2000) (asserting that an owner of copyright has exclusive rights to
reproduce, prepare derivative works of, and distribute the copyrighted work); see Moglen,
Enforcing 1, supra note 40 (“The copyright holder is legally empowered to exclude all
others from copying, distributing, and making derivative works.”).

8 See 3 NIMMER, supra note 41, at § 10.15[A] (explaining that violating the terms of a
license is generally a copyright infringement rather than a breach of contract). This view of
the GPL as a conditional copyright license rather than a contract is the position taken by the
FSF’s general counsel, Eben Moglen. Moglen, Enforcing I, supra note 40 (“Licenses are
not contracts: the work’s user is obliged to remain within the bounds of the license not
because she voluntarily promised, but because she doesn’t have any right to act at all except
as the license permits.”). Others assume the GPL can only be enforced as a contract. See
Radin, supra note 19, at 1132-1133 (questioning whether what she dubs “viral contracts”
like the GPL are valid without the user’s consent to be bound). This Note focuses on the
limitations of the “pure copyright” view of the GPL; its contractual aspects have been
analyzed in detail by others. See, e.g., id.

1448 BOSTON UNIVERSITY LAW REVIEW [Vol. 85:1439

aspect of all software development, including FOSS development.*® Nearly all
programs running on the GNU/Linux operating system — which is covered be/
the GPL — make use of subcomponents called libraries and kernel modules.*
Libraries are collections of general-purpose code which perform tasks needed
by various programs.®* For example, a commonly used GNU/Linux library
includes utilities which sort collections of data, a task that almost every
program may need.”’ Libraries are vital for most programs, since it is
impractical for each program to contain all of the code needed for these
common functions.® Kernel modules, another kind of subcomponent, extend
the functionality of the Linux kernel, which is the basic program at the heart of
the operating system.>* The typical kernel module is a device driver, which
allows the computer to run a periéaheral device such as a disk drive.*®

Libraries and kernel modules™ simplify the reuse of code, and reuse is a key
part of FOSS development. They make adding functionality to a program
easier, since a module can add new features to a program without the need to
recompile the entire program.®” In addition, modules simplify fixing errors in
programs by isolating potential errors from the rest of the program.>®

49 gee Ashish Bansal, Shared Objects for the Object Disoriented, IBM
DEVELOPERWORKS, Apr. 1, 2001, http://www-128.ibm.com/developerworks/linux/library/I-
shobj/ (acknowledging that “[a]t different times in our coding lives, all of us have used some
sort of library, be it for a simple function like printf() in C or for a complex function like
sort() in the C++ generic function library”).

% See id. (extolling the virtues of shared libraries for Linux); Bryan Henderson, Linux
Loadable Kernel Module HOWTO, LINux DOCUMENTATION PROJECT, July 20, 2005,
http://www.tldp.org/HOWTO/Module-HOWTO/index.html (summarizing the creation and
use of Linux loadable kernel modules). The GNU/Linux operating system consists of the
Linux kernel program, which was originated by Finnish programmer Linus Torvalds in
1992, and numerous other programs created by the FSF’s GNU Project. Richard Stallman,
Linux and the GNU Project, June 27, 2005, http://www.gnu.org/gnu/linux-and-gnu.html
(providing background information on the development and components of the Linux kernel
program).

5! See Bansal, supra note 49 (listing common functions performed by libraries, such as
receiving input from the user).

52 FREE SOFTWARE FOUNDATION, THE GNU C LIBRARY REFERENCE MANUAL (July 6,
2001),
http://www.gnu.org/software/libc/manual/html_mono/libc.html#Searching%20and%20Sorti
ng (describing functions for sorting and searching arrays of arbitrary objects).

%% See Bansal, supra note 49 (mentioning the common use of libraries for receiving user
input).

* Henderson, supra note 50, at § 2.5 (describing typical uses of kernel modules).

% |d. at § 2 (listing device drivers as a common type of kernel module).

% This Note will refer to subcomponents collectively as modules.

*" Henderson, supra note 50, at § 2.3 (pointing out that kernel modules allow the addition
of new functionality to the kernel without restarting and/or rebuilding the system).

%8 |d. (remarking that modifying the kernel directly makes errors difficult to locate, while
extending the kernel using modules allows the programmer to isolate potential errors).

2005] THE PENGUIN PARADOX 1449

There are several different mechanisms for linking modules with the
programs that make use of them. Programs are written in source code, which
is readable by humans.>® To transform source code into a form that computers
can understand and run, programmers use a tool called a compiler, which
transforms source code into object code.®* Object code can be run on a
computer, but is very hard for a human to read and understand directly.” One
way to make use of a module is to combine its source code with the source
code for the program that will use the module and then compile the
combination as one, creating a single object code file that contains both the
original program and the module.®> This process is known as static linking.%®
In the other common method, dynamic linking, the original program and the
module occupy two separate object code files that can be sold and distributed
separately.®* When a user runs the program, her computer also loads the
necessary object-code version of the module, and the program and module
send commands and data to each other as they run.®® Static linking resembles a
gasoline-powered lawnmower since the tool (the lawnmower) and its power
source (a gasoline motor) are attached inseparably to each other at the factory.
Dynamic linking, on the other hand, is more like an electric lawnmower that
allows the user to connect to any power source. Like a program with a
dynamically linked module, the second lawnmower is sold separately from its
power source, such as a wall socket. The two pieces, lawnmower and socket,
are linked together only when they are used. Either part is interchangeable: the
user can buy a new lawnmower or a new power source, such as a solar panel,
and the system will continue to work as long as both parts are compatible.

Dynamic linking extends the benefits of modularity still further.®® Because
a dynamically linked module in object code form occupies a separate file from
the program that uses it, multiple programs can use a single module at the same
time, conserving memory.” Also, like the lawnmower’s power supply,
dynamically loaded modules can be replaced easily, sometimes even while a
program is running.®® Many widely-used modules on the GNU/Linux system

% See WEBER, supra note 28, at 4 (analogizing source code to a recipe for making the
object code).

8 See id. at 4 n.2 (describing use of compilers).

1 1d. at 4 (“Most commercial software is released in machine language or what are
called “binaries’ — a long string of ones and zeros that a computer can read and execute, but
a human cannot read.”)

82 See Bansal, supra note 49 (explaining the process of static linking).

83 See id. (describing how static linking works).

84 See id. (discussing how to write dynamically linked libraries).

8 See id. (elaborating on how dynamically linked libraries interact with the loader).

% See id. (describing how dynamically linked modules can reduce a program’s memory
footprint, and allow easy distribution, installation, and upgrading of a program).

87 See id. (indicating that without dynamic linking, “the size of [a program] would
become prohibitive”).

® Henderson, supra note 50, at § 2 (explaining how kernel modules can be added or

1450 BOSTON UNIVERSITY LAW REVIEW [Vol. 85:1439

are dynamically loaded.®®

The mechanism by which a program communicates with a module is called
an interface.”® Continuing the electric lawnmower example, the interface
between the mower and its power source is a simple power cord and socket.
Depending on what a module does and on the programmer’s engineering
decisions, an interface may be simple or complex. An interface might be
compared to the set of buttons on a pocket calculator and another interface to
the bewildering array of controls and switches in the cockpit of an airplane. To
use the functionality provided by a module, a program must communicate with
the module using an interface that both parts comprehend.” Depending on the
complexity of the interface, writing a program that uses a module may involve
copying a small part of the module’s source into the main program’s source
code, analogous to a pilot memorizing the location and function of the cockpit
switches. It is this copying that brings copyright law into the picture.

B. Why Dynamic Linking Presents a Problem for the GPL

As discussed in Part | above, the GPL applies to any program that is a
derivative work of another GPL-covered program.’® If a programmer writes a
new module and statically links it with an existing GPL-covered program, the
result is almost certainly a derivative work of the existing GPL program.” For
example, suppose a programmer writes a driver program to control a particular
kind of printer, and statically links her driver with the Linux kernel. The
resulting program would combine the Linux kernel and the new driver in one
object code file. Because it contains the entire Linux kernel, the new program
is a derivative work. According to the GPL, the programmer must distribute
the new program under the terms of the GPL or refrain from distributing it.”

Dynamic linking is more complex. Because a dynamically linked module

removed while the kernel is running).

% See David A. Wheeler, Program Library HOWTO § 3.2, LINUX ONLINE, Apr. 2003,
http://www.linux.org/docs/Idp/howto/Program-Library-HOWTO/shared-
libraries.htmI#AEN70.

™ wikipedia: Computer Science,
http://en.wikipedia.org/wiki/Interface_%28computer_science%29 (last visited Oct. 10,
2005) (“An interface defines the means of interaction between software components.”).

™ Seeid.

"2 See supra Part I.B (citing GPL, supra note 1, at § 2(b)).

"8 See Pickett v. Prince, 207 F.3d 402, 406-07 (7th Cir. 2000) (finding that a guitar that
incorporates a copyrighted symbol is an infringing derivative); Anderson v. Stallone,
1989 WL 206431, at *6 (C.D. Cal. Apr. 25, 1989) (holding that a script that incorporates
copyrighted characters and histories from a film is an infringing derivative); see also Free
Software Foundation, Frequently Asked Questions about the GNU GPL,
http://www.gnu.org/licenses/gpl-fag.htmI#GPLIncompatibleLibs (last modified Aug. 19,
2005) (claiming that all statically linked combinations of GPL-covered software are
derivative works to which the GPL must apply).

™ See GPL, supra note 1, at §§ 2, 5 (allowing modifications of the original program to be
distributed if they are distributed under the GPL as well).

2005] THE PENGUIN PARADOX 1451

doesn’t combine with a program until the user runs it, there is no reason to
think the module, standing alone, is automatically a derivative work. The
module might be a derivative by virtue of the small amount of interface
information it must copy from the program in order to be compatible.”® It
might also be a derivative because the module’s only possible use is to be
combined with a particular program; therefore, it would make sense to
consider the program and module to be a single work even before they are
actually combined.”

The exact factors that make a dynamically loaded module a derivative work
are unclear.”” Ultimately, whether a given module that enhances a GPL
program must itself be covered by the GPL will have to be decided in court.”
If a module is not a derivative work, it is considered a separate, independent
creation under copyright law,” and the module author is free to apply any
distribution terms she desires, including terms that oppose the GPL’s goals.
This creates an enormous potential problem for the GPL. Suppose a
programmer writes a dynamically linked module for the Linux kernel that
controls a new brand of printer. If the programmer can write her module in a
way that avoids being characterized as a derivative work, she can sell the
module as proprietary software with all of the usual prohibitions against
copying and distribution and, because the GPL will not apply, she can keep the
source code secret.®® Therefore, if many people can write improvements to
GPL software in the form of modules without contributing the improvements’
source code back to the GNU/Linux development community, the system of
cooperation and reputation-based incentives that first led to the creation of
GNU/Linux and other FOSS could begin to break down. As a result, the
ability to link with GPL software will no longer be a strong incentive to license
one’s own software with the GPL. Because almost any improvement to a

> Cf. Sega Enters. Ltd. v. Accolade, Inc., 977 F.2d 1510, 1524 n.7 (9th Cir. 1992)
(rejecting plaintiff’s claim that including four-letter compatibility code made defendant’s
program infringing). The opinion does not state whether Sega’s claim regarding the four-
letter compatibility code was for a violation of the reproduction right or the derivative work
right; presumably either one could apply. See id.

'® See Micro Star v. FormGen Inc., 154 F.3d 1107, 1112 n.5 (9th Cir. 1998) (reasoning
that a set of files that can be used with more than one video game may not be a derivative
work of that game).

" Free Software Foundation, Frequently Asked Questions about the GNU GPL,
http://iwww.gnu.org/licenses/gpl-fag.html#MereAggregation [hereinafter GPL Aggregation
FAQ] (last modified Aug. 19, 2005) (acknowledging that the legal definition of a derivative
work is not conclusively established with regard to software).

8 |d. (“This is a legal question, which ultimately judges will decide.”).

™ See 17 U.S.C. § 103(b) (2000) (establishing that the copyrights in separate parts of a
work, by different authors, are independent of each other if and when the parts are separated
from a compilation or derivative work).

8 See GPL § 2, supra note 1, at § 3 (“[I]t is not the intent of this section to claim rights
or contest your rights to work written entirely by you; rather, the intent is to exercise the
right to control the distribution of derivative or collective works based on the Program.”).

1452 BOSTON UNIVERSITY LAW REVIEW [Vol. 85:1439

program can be written in the form of a module, the loss of this incentive could
mean that many future improvements to GPL software will no longer be freely
modifiable by all.®* Thus, correctly defining the scope of the derivative work
as it applies to dynamically linked modules is crucial for the effectiveness of
the GPL, as the ordering force of the FOSS community.

C. The FOSS Community’s Interpretation of Derivative Works

Because the GPL is often enforced informally by the Free Software
Foundation, the FSF’s views on when a dynamically linked module should be
considered a derivative work are an important force in shaping FOSS
community norms. These informal rules also illustrate the technical elements
that a court might consider in evaluating the derivative works question. The
FSF and its founder, Richard Stallman, have expressed several views, some
contradictory, on the derivative work test. Officially, the FSF acknowledges
that the legal definition of a derivative work is not yet well defined as applied
to software.?® On the other hand, Stallman appears to believe that most or all
dynamically linked modules are derivatives of the program to which they
link.2* In addition, the Lesser General Public License (LGPL), a variation on
the GPL that is also published by the FSF, specifically allows dynamic linking
with covered modules under license terms of the user’s choice.®* By writing a
separate license that allows dynamic linking under any license terms, the FSF
implied that it did not intend the GPL to grant that permission. The FSF
website also gives its authors a more nuanced view of what the legal test
should be:

e Is the technical method for linking the module and the program one
that is ordinarily employed for communication between separate
programs, or for communication within a single program?

e Alternatively, do the program and the module exchange simple data
and commands, or do they share “complex internal data structures”
across an interface? In other words, is the module’s interface more
like a pocket calculator or an airplane cockpit?®

Linus Torvalds, author of the Linux kernel, proposed a different test: “there

8 See Henderson, supra note 50 (“These modules can do lots of things”).

82 See Free Software Foundation, GNU Lesser General Public License, at § 5 (Feb.
1999), http://www.fsf.org/licensing/licenses/Igpl.txt [hereinafter LGPL] (acknowledging
that whether a particular work in the context of the LGPL is derivative is “not precisely
defined by law”); GPL Aggregation FAQ, supra note 77 (describing the distinction between
derivative and independent works as a “legal question, which ultimately judges will
decide”).

8 E_mail from Richard Stallman to Steve Baur (June 15, 1998, 00:02:17 MST),
http://list-archive.xemacs.org/xemacs-beta/199806/msg00523.html (asserting that any non-
GPL, dynamically linked extension to the GPL-covered Xemacs program would be a
violation of the GPL).

8 | GPL § 6, supra note 82 (allowing linking “under terms of your choice”).

8 See GPL Aggregation FAQ, supra note 77 (responding to the question, “What is the
difference between ‘mere aggregation’ and ‘combining two modules into one program’?”)
(author’s paraphrase).

2005] THE PENGUIN PARADOX 1453

are cases where something would be so obviously Linux-specific that it simply
wouldn’t make sense without the Linux kernel. In those cases it would also
obviously be a derived work, and as such . . . it falls under the GPL license.”®®
The next part of this Note traces the courts’ development of analogous tests
for when to allow the unauthorized linking of modules. Part IV explores how
well the courts’ reasoning can be reconciled with the FSF and Torvalds tests.

1. THE COPYRIGHT LAW OF LINKING

The Copyright Act defines a derivative work as “a work based upon one or
more preexisting works, such as a translation, musical arrangement,
dramatization, fictionalization, motion picture version, sound recording, art
reproduction, abridgment, condensation, or any other form in which a work
may be recast, transformed, or adapted.”® Because unauthorized derivative
works infringe the copyright in the original work, the owner of the original
work gains effective control over copying and distribution of an unauthorized
derivative.®® Software makers have invoked the derivative work right to
prevent others from linking modules to their software.?® As discussed above,
the GPL purports to restrict which modules can be linked with GPL-covered
programs by asserting the copyright holder’s exclusive right to prepare
derivative works. However, the cases discussed in this section show a trend
toward limiting the use of copyright law to prevent linking,” a trend that has
ominous implications for the effectiveness of the GPL.

A. The Early Cases on Linking

Although it did not involve computer software, Worlds of Wonder, Inc. v.
Veritel Learning Systems, Inc. illustrates the early approach to linking.**
Worlds of Wonder created Teddy Ruxpin, a teddy bear that spoke and sang,
directed by a cassette tape that provided both Teddy’s voice and a signal that
animated his mouth and eyes.” Veritel created its own tapes for Teddgy
Ruxpin — essentially, new software that allowed Teddy to tell new stories.”
The U.S. District Court for the Northern District of Texas categorized Teddy

8 Alessandro Rubini, An Interview with Linus Torvalds, 32 LINUX GAZETTE, Sept. 1998,
http://lwww.linuxgazette.com/issue32/rubini.html.

¥ 17 U.S.C. § 101 (2000).

8 See Sean Hogle, Unauthorized Derivative Source Code, 18 No. 5 COMPUTER &
INTERNET LAw. 1, 6 (2001) (explaining that although 17 U.S.C. § 103(a) (2000) puts
unauthorized derivative works in the public domain, the owner of the original work can
prevent copying of any of the original material that appears in the derivative).

& See infra Part I11.B.

% See Hogle, supra note 88, at 6 (observing that courts “have been increasingly
solicitous of parties who copy only interfaces of copyrighted software... to achieve
interoperability”).

%1 658 F. Supp. 351 (N.D. Tex. 1986).

% 1d. at 352.

% 1d. at 353, 356.

1454 BOSTON UNIVERSITY LAW REVIEW [Vol. 85:1439

as an audiovisual work with a valid copyright.** Because Teddy performed a
similar act when playing Veritel’s tapes or Worlds of Wonder’s own tapes, the
court found Veritel’s tapes to be an infringing derivative work, and entered a
preliminary injunction ordering Veritel to stop selling its tapes.*®

In another case from the same period, Midway Manufacturing Co. v. Artic
International, Inc., the Seventh Circuit upheld a preliminarg injunction against
a maker of add-on circuit boards for video arcade games.”® The defendant’s
boards contained software that caused the plaintiff’s game to run faster.”” The
court indicated that the copyrighted work was the series of images and sounds
created by the game.”® Because the defendant’s add-on boards made this
display run faster, the boards themselves were unauthorized derivative works.*
Surprisingly, neither of the defendants’ infringing products contained any
copied material.!® The actual products were simply modules that were
compatible with plaintiffs’ systems and altered their operation. These holdings
seem to contradict the basic principle that “[a;! work is not derivative unless it
has substantially copied from a prior work.”*®* The cases assume that if the
products in combination form a derivative work, then the module standing
alone can be enjoined as a derivative. Acknowledging that their holdings
stretched the statutory definition of derivative works,'* the Worlds of Wonder
and Midway courts essentially defined the infringing work as the output
generated by the combined products.’® According to these cases, if the

% Id. at 355.

% See 1d. at 356.

% 704 F.2d 1009, 1011 (7th Cir. 1983) (upholding an injunction against further
infringement).

% |d. at 1010 (describing the effects of defendant’s add-on circuit boards on plaintiff’s
video games).

% |d. at 1011-12 (identifying the copyrighted work that was allegedly infringed).

% See id. at 1013 (holding that because the add-on circuit board modified the game’s
audiovisual display, the board was an infringing derivative).

100 \/eritel’s tapes for Teddy Ruxpin contained different songs and stories than Worlds of
Wonder’s own tapes. Worlds of Wonder, 658 F. Supp. at 353 (repeating the plaintiff’s
complaint that “the Veritel tapes alter Teddy Ruxpin’s character”). Artic’s video game add-
on boards contained some code copied from Midway’s own software, but the district court’s
infringement holding was focused on the modified visual display. See Midway Mfg. Co. v.
Artic Int’l, Inc., 547 F. Supp. 999, 1004, 1013-14 (N.D. Ill. 1982). The Seventh Circuit’s
affirmance did not mention the copied code at all. See Midway, 704 F.2d at 1010 (observing
only that the add-on board accelerates the game); see also Micro Star v. FormGen Inc., 154
F.3d 1107, 1112 (9th Cir. 1998) (finding that a collection of “MAP files,” which generate
new levels for the Duke Nukem video game, generated infringing derivative works because
they “describe” a substantially similar audiovisual display).

1011 NimMmER, supra note 41, at § 3.01 (defining a derivative work) (emphasis omitted).

102 See Midway, 704 F.2d at 1014 (admitting that “[i]t is not obvious” whether the
product in question is a derivative work).

103 Cf. id., 704 F.2d at 1011-12 (combination of speed-up cartridge and original game);
Worlds of Wonder, 658 F. Supp. at 355 (combination of new song-tapes and original bear).
Even if consumers actually combine the two products, the distributor of the add-on product
may be liable for contributory infringement for “helping consumers create derivative
works.” See Micro Star v. FormGen Inc., 154 F.3d 1107, 1113 (9th Cir. 1998)

2005] THE PENGUIN PARADOX 1455

combined output of an original program and an add-on module has the same
“total concept” as the output of the original program, then defendant’s add-on
module is a derivative work, even if the module itself incorporates little or no
material from the original.’® Of course, any compatible tape played in Teddy
Ruxpin or any add-on to Midway’s video game will almost certainly produce
output very similar to the original, since the original component (the bear or
the video game console) remains a major part of the combined system.'%®
Under this test, any add-on software, no matter how different from the original
software, will probably be an infringing derivative. Thus, these cases conclude
that nearly any unauthorized linking is infringin?, at least when the linked code
alters the original program’s audiovisual output.™®

Market effects played a strong role in Worlds of Wonder and Midway. The
district courts in both cases asserted that copyright should protect plaintiffs’
investment in their reputations, and that defendants’ add-on modules would
damage the reputations of the originals.'”’ More importantly, the courts
considered the right to create add-on modules a type of merchandising right
traditionally protected by copyright,'® and implied that the market value of
any add-on modules rightfully belonged to the developers of the original
product.’® Although the economic analysis in both cases technically pertained

(differentiating direct infringement from contributory infringement). Although the output of
the programs in these cases was often an audiovisual display on a computer or television
screen, the Federal Circuit has suggested that an arbitrary numerical data stream used
internally and never displayed to the user was copyrightable material. See Atari Games
Corp. v. Nintendo of Am., Inc. 975 F.2d 832, 840 (Fed. Cir. 1992) (finding that the “unique
and creative” arrangement of programming instructions in the infringed product involved a
creative element that merited copyright protection).

104 Worlds of Wonder, 658 F. Supp. at 355 (quoting Sid & Marty Krofft Television
Productions, Inc. v. McDonald’s Corp., 562 F.2d 1157, 1166-67 (9th Cir. 1977)).

105 See Christian H. Nadan, A Proposal To Recognize Component Works: How A Teddy
Bears On The Competing Ends of Copyright Law, 78 CAL. L. Rev. 1633, 1652-53 (1990)
(describing the reasoning in Worlds of Wonder as circular because the court “simply
watched one bear perform twice and declared the displays the same”); see also Micro Star,
154 F.3d at 1112 (observing that plaintiff would almost certainly succeed in proving that
defendant’s “map files,” which described additional levels of play for plaintiff’s Duke
Nukem video game, were infringing derivatives because the combined work of the game
and map files used audiovisual information that came entirely from the original game).

106 See Hogle, supra note 88, at 7 (concluding that despite the modern trend toward less
copyright protection for software interfaces, linked code that enhances a program’s visual
display will generally be found to infringe).

197 Worlds of Wonder, 658 F. Supp. at 357 (reasoning that “the popularity of the Teddy
Ruxpin product is jeopardized when tapes altering the image of Teddy Ruxpin are played”);
Midway, 547 F. Supp. at 1014 (“Plaintiff’s reputation for high quality and distinctive video
games is entitled to protection from copyright infringers, just as its potential sales are.”).

108 See Worlds of Wonder, 658 F. Supp. at 356.

109 See Midway Mfg. Co. v. Artic Int’l, Inc., 704 F.2d 1009, 1013 (7th Cir. 1983)
(“[Clopyright owners would undoubtedly like to lay their hands on some of that extra
revenue. . . .”); see also Micro Star, 154 F.3d at 1113 (“[O]nly [plaintiff] has the right to
enter that market; whether it chooses to do so is entirely its business.”).

1456 BOSTON UNIVERSITY LAW REVIEW [Vol. 85:1439

only to a preliminary injunction analysis,*'® the opinions suggest that the
copyright in a technical work includes the right to control linking with that
work to reap financial gain and to safeguard a commercial reputation.

Both courts explained their holdings by pointing out that the defendants’
products were designed specifically to be combined with plaintiffs’ products,
and were useful only when combined.™ This logic helps to justify the
surprising result that an add-on module that incorporates no protected
expression may still be a derivative work: if the module’s only possible
purpose is to link with and modify a specific product, it makes more sense to
consider the combined programs or their output as the infringing “work.” At
the same time, this justification limits the scope of the holdings, because a
module that can be used with even two different programs is more credibly a
freestanding work.**> This suggests that a module that is compatible with
multiple programs will not be considered a derivative.

In considering the public interest, the only factor identified in Worlds of
Wonder and Midway was copyright law’s basic purpose to provide economic
incentives for creative expression.*** The courts found no public interest in
encouraging the creation of add-on modules to plaintiffs’ products,™™* even
though the modules were arguably original creative works themselves.

B. The Linking Exemption to the Derivative Work Right

1. Development of the Exemption
By 1992, courts began to recognize that traditional copyright analysis did

119 worlds of Wonder, 658 F. Supp. at 357 (granting plaintiff’s motion for a preliminary
injunction); Midway, 704 F.2d at 1011 (describing the case as an appeal from a grant of
preliminary injunction).

111 worlds of Wonder, 658 F. Supp. at 356 (emphasizing that defendants’ infringing
“tapes were designed exclusively for [plaintiffs’] Teddy Ruxpin”); Midway, 547 F. Supp. at
1014 (pointing out that defendants’ “speed-up kit was designed solely to modify Midway’s
Galaxian game”); see also Micro Star, 154 F.3d at 1112 n.5 (indicating that infringing
“MAP files” could only be used with plaintiff’s video game, and suggesting that if another
game could use the same files, the files would not infringe).

112 See Micro Star, 154 F.3d at 1112 n.5 (limiting the holding by observing that if
another game could use the map files to tell a completely different story, then the files
would not infringe).

113 Worlds of Wonder, 658 F. Supp. at 357 (asserting that an “injunction would serve the
public interest by preserving the integrity of copyright laws which encourage individual
effort and creativity by granting valuable enforceable rights”); Midway, 547 F. Supp. at
1015 (recognizing that “[t]he Copyright Act evidences a public interest in creativity by
demonstrating an intent to provide an economic reward for creative expression,” and
contending that granting plaintiff’s injunction would further that interest); see also U.S.
ConsT. art. I, § 8, cl. 8 (empowering Congress to “promote the Progress of Science and
useful Arts” by granting “exclusive Right[s]” to “Authors and Inventors™).

14 Midway, 547 F. Supp. at 1015 (“The court can conceive of no public interest that is
furthered by allowing defendant to continue to distribute and sell its infringing material.”).

2005] THE PENGUIN PARADOX 1457

not apply well to computer software.**®> Although Congress has declared that
computer programs are “literary works” protected by copyright,*® programs
also have many of the attributes of a machine or process, which traditionally
have been protected by patent law.**” Because computer software is functional
and utilitarian rather than purely expressive, courts began to formulate
different copyright rules for software, often narrowing the scope of
protection.’® Instead of comparing the “total concept” of programs, for
example, courts began to compare programs at multiple levels of abstraction,
from the literal lines of program code to the overall structure and function of
the program.*® Applying the principle that pure ideas are not protected by
copyright,?® the courts began denying protection to specific features of
programs that are purely functional, dictated by efficiency, or necessary for
compatibility with other programs.*** Based on this change, courts became
increasingly unwilling to let software makers use copyright to control linking,
as discussed below.

A pair of video game cases from the Ninth Circuit illustrates the change and
its limits. In Sega Enterprises v. Accolade, the Ninth Circuit found that
“reverse engineering” Sega’s video game system to create games that ran on
the system was a permitted “fair use” even though it involved copying Sega’s
code.*?? Similarly, in Sony Computer Entertainment, Inc. v. Connectix Corp.,

15 | otus Dev. Corp. v. Borland Int’l, Inc., 49 F.3d 807, 820 (Boudin, J., concurring)
(“Applying copyright law to computer programs is like assembling a jigsaw puzzle whose
pieces do not quite fit.”); Computer Assocs. Int’l, Inc. v. Altai, Inc., 982 F.2d 693, 712 (2d
Cir. 1992) (describing earlier attempts to apply copyright to software as trying “to fit the
proverbial square peg in a round hole”).

116 See 17 U.S.C. § 106 (2000 & Supp. 2004) (including “literary works” among the
enumerated categories of protected works of authorship); Altai, 982 F.2d at 712
(acknowledging that “Congress has made clear that computer programs are literary works
entitled to copyright protection”).

17 See Patent Act, 35 U.S.C. § 101 (2000) (allowing patent protection for “any new and
useful process, machine, manufacture, or composition of matter”).

118 See Sega Enters. Ltd. v. Accolade, Inc., 977 F.2d 1510, 1527 (9th Cir. 1993) (“[T]o
those used to considering copyright issues in more traditional contexts, [denying copyright
protection against unauthorized linking] may seem incongruous at first blush.”); Altai, 982
F.2d at 712 (acknowledging that the court’s new test for nonliteral copyright infringement in
software may “narrow[] the scope of protection”).

119 See Altai, 982 F.2d at 707; see also Sega, 977 F.2d at 1525 (reasoning that because
“each subroutine [a subpart of a program] is itself a program,” determining infringement
based only on the overall function of the program is inaccurate).

120 17 U.S.C. § 102(b) (2000) (denying copyright protection to “any idea, procedure,
process, system, method of operation, concept, principle, or discovery”); see also Altai, 982
F.2d at 707-08 (“In order not to confer a monopoly of the idea upon the copyright owner,
such expression should not be protected.”).

2L Altai, 982 F.2d at 707-10.

122 977 F.2d at 1527-28; see also N.Y. Times Co. v. Roxbury Data Interface, Inc., 434 F.
Supp. 217, 2226-27 (D. N.J. 1977) (finding that defendants’ index to plaintiffs’ materials
enhances the usefulness of plaintiffs’ materials but is nonetheless a fair use). The Federal
Circuit, however, reached the opposite result in a case with facts similar to Connectix. See

1458 BOSTON UNIVERSITY LAW REVIEW [Vol. 85:1439

the court allowed Connectix to reverse engineer Sony’s game console in order
to write an “emulator” that allowed users to play Sony’s games on a personal
computer.’® Both Accolade’s new games and Connectix’s emulator that
played Sony’s original games could be considered add-on modules.

But Sega and Connectix do not follow the result from the earlier cases,
which held that an add-on module can be infringing even if it contains no
copied material.*** More recent cases seem to require some actual copying to
find infringement, and this is true even if a program is useful only as an add-on
module to another program.’”> A module that modifies the audiovisual output
of a program is not automatically a derivative when the module itself contains
no audiovisual information.*® Pushing their holdings further, the cases
strongly imply that any parts of a program that must necessarily be copied in
order to create a compatible module are not protected by copyright, denying
copyright holders one of their key tools for controlling unauthorized linking.*?
In addition, Sega gives software makers some affirmative right to create
unauthorized modules for a program — even if in the process of developing a
module they nominally infringe a copyright by making temporary copies of the
original code.*® This Note refers to this as the “linking exemption.” The

Atari Games Corp. v. Nintendo of Am., Inc., 975 F.2d 832, 845 (Fed. Cir. 1992) (upholding
an injunction barring Atari from selling its unauthorized, Nintendo-compatible games).

128 203 F.3d 596, 608 (9th Cir. 2000) (holding that reverse-engineering of a video game
system in order to write emulation software that plays games designed for the system is a
fair use).

124 see Lewis Galoob Toys, Inc. v. Nintendo of Am., Inc., 964 F.2d 965, 969 (9th Cir.
1992) (distinguishing Midway by pointing out that Galoob’s add-on module for the
Nintendo system, the Game Genie, “does not physically incorporate a portion of the
copyrighted work [such as the Nintendo console or games]” as the Midway defendant’s chip
had). But see Micro Star v. FormGen Inc., 154 F.3d 1107, 1112 (9th Cir. 1998) (declaring
“MAP files,” which extend a video game by adding on more levels, to be infringing
derivatives even though the files did not contain any of the game’s code or artwork). Micro
Star shows that the principle from Midway — that an add-on module containing no copied
material can be infringing — may still carry some weight when an unauthorized module’s
only possible use is with a particular copyrighted program. 1d.; see also infra Part 1\VV.B.3.

125 Galoob, 964 F.2d at 969 (acknowledging that the Game Genie worked only with the
Nintendo system, but finding no infringement because the Game Genie “[did] not contain or
produce a Nintendo game’s output in some concrete or permanent form”). Even a small
amount of copying may not be enough to find infringement. See Sega, 977 F.2d at 1515-16
(commenting that Accolade’s add-on games “contained the standard header file that
included the TMSS initialization code,” but still not finding infringement).

126 See Galoob, 964 F.2d at 968 (pointing out that the Game Genie could not produce an
audiovisual display on its own, and for that reason, “no independent work [was] created”).

127 See Sega Enters. Ltd. v. Accolade, Inc., 977 F.2d 1510, 1522 (9th Cir. 1993)
(determining that “functional requirements for compatibility with the Genesis console . . .
are not protected by copyright”). Functional requirements certainly include interface
specifications, see supra Part 11.A, but whether this holding encompasses actual copied code
of more than trivial length is an open question. See infra Part IV.B.2.

128 See Sega, 977 F.2d at 1527-28 (holding that otherwise infringing copies made during
the development of an add-on module are permitted when the copies are a necessary step
toward making the module compatible).

2005] THE PENGUIN PARADOX 1459

affirmative right of the module author takes a small bite out of the exclusive
rights of the original programmer, and the latter cannot “erect an artificial
hurdle” to the module writer’s own creative process.*”* The right to create
add-on modules free of the original software maker’s control seems to apply
even when the software maker is willing to license the right to link.**® Sega
had offered Accolade a license agreement that would permit Accolade to create
compatible games, on the condition that Accolade allow Sega to manufacture
all of its games.™®* Nonetheless, the court allowed Accolade to build games
without a license from Sega.™*

2. Policy Rationales for the Exemption

Sega and Connectix rejected Worlds of Wonder’s underlying assumption
that when a program contains an interface for add-on modules, the original
program’s copyright owner has the sole right to authorize the making and
selling of those modules and to profit from their sale.®® The Ninth Circuit
proffered both economic and natural rights justifications for this change.

Much of the reasoning in Sega emphasizes the right to understand and learn
from the ideas embedded in software.”** By using the terms “understanding”
and “learning,” the court drew an analogy between developing original add-on
modules and the sort of knowledge-increasing activities like scholarship that
are sometimes allowed even when they involve copying.’®*® Of course, the
makers of unauthorized video games and other add-on modules are generally
not in an academic setting, but the same rationale applies: unauthorized
copying is sometimes é)ermitted when the body of knowledge available to the
public will increase.**® In addition to spreading knowledge, another goal of
copyright law is giving economic incentives to create new works by building

129 Sony Computer Entm’t, Inc. v. Connectix Corp., 203 F.3d 596, 605 (9th Cir. 2000)
(declining to require defendants to minimize intermediate copying during development of
their module, a requirement that would cause “wasted effort” in the use of unprotected
ideas) (internal citation omitted).

130 See Sega, 977 F.2d at 1514 (describing Sega’s licensing of its copyrighted code to
indg?endent developers of computer game software).

Id.

132 1. at 1527-28 (finding no copyright infringement).

133 See Connectix, 203 F.3d at 602 (holding that fair use doctrine excuses the copying
necessary to create a compatible module); Sega, 977 F.2d at 1522 (finding linking interface
an unprotectable idea).

1% Sega, 977 F.2d at 1514 (framing the issue around the ability to “gain an
understanding” of functional elements of a program); id. at 1522 (allowing defendant
Accolade to write software “based on what it had learned” from disassembling Sega’s
console); accord Atari Games Corp. v. Nintendo of Am. Inc., 975 F.2d 832, 843 (Fed. Cir.
1992) (finding that “understand[ing] the ideas and processes in a copyrighted work™ may be
permitted).

135 See 17 U.S.C. § 107 (2000) (listing “scholarship, or research” as some of the uses
typically subject to the fair use defense).

1% See Connectix, 203 F.3d at 4605 (finding no support for distinction between
“studying” and “use” for fair use purposes).

1460 BOSTON UNIVERSITY LAW REVIEW [Vol. 85:1439

on the ideas in existing works."®" Software, like traditional literary works, is
written using an iterative process that almost always builds on the work of
others.’®® Allowing programmers to link their modules with other programs,
without permission, creates a stronger incentive to write modules in the first
place. Thus, because the Public benefits from the existence of a greater
selection of add-on modules,*** module writers have a limited right both to link
to existing programs and to profit from selling the linked modules.**°

The courts use a variety of formulas in determining how to divide economic
rewards between the original software maker and the maker of add-on
modules. While an add-on module may legitimately compete in the market
with the original software,*** “diminishing potential sales, interfering with
marketability, or usurping the market” for the original supports a finding of
infringement.*? These tests are nothing if not vague: at what point does
competing in a market become “usurping” the original product?* When is
using the information in a program to build a compatible program
“misappropriat[ion]?”*** The courts seem to resolve these uncertainties with
implicit references to the law of unfair competition.**> Unfair competition law
gives content to the vague tests of “misappropriat[ion],” “exploitation,” and

37 Sega, 977 F.2d at 1523 (“It is precisely this growth in creative expression, based on
the dissemination of other creative works and the unprotected ideas contained in those
works, that the Copyright Act was intended to promote.”).

138 See Leeds Music, Ltd. v. Robin, 358 F. Supp. 650, 659 (S.D. Ohio 1973) (asserting
that every copyrighted work builds on an earlier work in some way); WEBER, supra note 28,
at 75 (explaining that programmers, especially but not exclusively in the FOSS paradigm,
prefer to build on existing code instead of rewriting).

139 Sega, 977 F.2d at 1523 (“[P]ublic benefit ... may arise because the challenged use
serves a public interest”); cf. Midway Mfg. Co. v. Artic Int’l, Inc., 547 F. Supp. 999, 1015
(N.D. 1ll. 1982) (finding that permitting defendant’s add-on modules would serve no public
interest).

140 See Connectix, 203 F.3d at 606 n.10 (rejecting argument that commercial use raises a
“presumption of unfairness” that defeats a fair use defense); Sega, 977 F.2d at 1523 (holding
that competing in the same market as a copyrighted work does not defeat fair use).

141 See Connectix, 203 F.3d at 607 (stating that defendant’s emulator for Sony’s games
“does not merely supplant” Sony’s console); Sega, 977 F.2d at 1522 (commenting that
defendant “did not seek to avoid paying a customarily charged fee for use of [Sega’s
interface]”); id. at 1523 (calling defendant’s product a “legitimate competitor” in plaintiff’s
market even though defendant’s product “undoubtedly affected” that market).

142 Sega, 977 F.2d at 1523 (citing Hustler Magazine, Inc. v. Moral Majority, Inc., 796
F.2d 1148, 1155-56 (9th Cir. 1986)); see also Atari Games Corp. v. Nintendo of Am. Inc.,
975 F.2d 832, 843 (Fed. Cir. 1992) (stating that “extensive efforts to profit” from linking are
not protected by fair use); id. at 844 (observing that fair use does not cover attempts to
“exploit commercially or otherwise misappropriate protected expression”).

%3 See Sega, 977 F.2d at 1523 (inquiring whether defendant’s use would “usurp” the
market for the copyrighted work).

144 See Atari, 975 F.2d at 843 (warning that fair use is a “limited exception” and “not an
invitation to misappropriate protectable expression”).

%5 See Int’l News Serv. v. Associated Press, 248 U.S. 215, 236 (1918) (recognizing
uncopyrightable news items as “quasi property” under “unfair competition” theory, because
current news was the “stock in trade” for both of the competing parties).

2005] THE PENGUIN PARADOX 1461

avoiding “a customarily charged fee”*® by looking to the standards of fair
conduct in a given industry.**" The holding in Sega was based not solely on
copyright doctrine but at least partially on the court’s conclusion that creating
compatible, unauthorized video games is an acceptable practice in the software
industry.**®

In addition to an unfair competition rationale, the concept of network
externalities seems to have informed the courts’ opinions on linking. Network
externalities cause a product to increase in value when it is compatible with
other widely used products."*® Customers will often choose a software product
not simply because it is technically superior, but because it is compatible with
software they already own.'*® Thus, network externalities increase the
economic value of the right to link, potentially magnifying the reward that
software makers can extract from their copyrights. When combined with
control over the right to link, network externalities can allow a software maker
to Ievera%e legal control over one product into control over compatible
products.’*

Sega indicates that copyright does not allow software makers to capture the
value derived from network externalities, because doing so is a form of
monopoly control that the law disfavors.">* The courts allow developers to
copy code whenever copying is the only way to create compatible modules.**®

146 Sega, 977 F.2d at 1523 (characterizing defendant’s “exploitation” as “indirect” and
finding that defendant “did not seek to avoid paying a customarily charged fee”); Atari, 975
F.2d at 843 (“Atari could not . . . misappropriate protected expression.”).

147 See Int’l News, 248 U.S. at 236 (“[U]nfair competition in business must be
determined with particular reference to the character and circumstances of the business.”).
Focusing on the customs of the particular market gives guidance in cases where copyright
law does not clearly provide a remedy. See Leo J. Raskind, The Misappropriation Doctrine
as a Competitive Norm of Intellectual Property Law, 75 MINN. L. REv. 875, 876-77 (1991)
(arguing that where copyright protection is not clearly available, but conduct at issue seems
like “piracy,” courts should look to the “competitive market context”).

148 Sega, 977 F.2d at 1523 (describing defendant Accolade’s activities as “legitimate™).

149 See Timothy S. Teter, Merger and the Machines: An Analysis of the Pro-
Compatibility Trend In Computer Software Copyright Cases, 45 STAN. L. Rev. 1061, 1066-
67 (1993) (describing how the “satisfaction” a software user enjoys increases with the
number of others who use the software).

150 see id.

151 See id. at 1067 (explaining that network externalities allow software producers to
extend monopoly control).

152 Sega, 977 F.2d at 1523-24 (holding that plaintiff’s attempt to extend legal control by
asserting copyright against module writers shifted equities in defendant’s favor); see also
Lotus Dev. Corp. v. Borland Int’l, Inc., 49 F.3d 807, 820 (1st Cir. 1995) (Boudin, J.,
concurring) (acknowledging that widespread use of a particular interface for add-on
modules raised the economic value of the interface, but denying control over that interface
under copyright principles).

153 Sony Computer Entm’t, Inc. v. Connectix Corp., 203 F.3d 596, 608 (9th Cir. 2000)
(permitting intermediate copying that is necessary to the process of writing a compatible
module); Sega, 977 F.2d at 1527-28 (concluding that disassembly is a fair use of
copyrighted work where it is the only means of access to ideas embedded in copyrighted
software).

1462 BOSTON UNIVERSITY LAW REVIEW [Vol. 85:1439

This test effectively separates the value created by network externalities — the
value of compatibility — from the intrinsic value or technical merit of a
program.***

Network externalities also give rise to a natural rights argument for
affording protection to linking. As noted above, software users buy a program,
in part, because it is compatible with other software they have invested in, not
because it is technically superior or innovative.’*® Because the market value of
software is derived in part from customers’ prior investments in other
compatible software rather than the software makers’ technical or creative
efforts, the linking cases imply that the commercial value of compatibility does
not rightfully belong to the maker of the original software.™

IVV. BASIC RULES FOR LINKING WITH GPL SOFTWARE: A FIRST
APPROXIMATION

A. Static Linking and the Pre-1992 Cases

What do the cases on linking mean to the programmer from Part 1l, who
wants to add an important feature to the Linux kernel program by writing a
kernel module? Recall that she would prefer to release her module under a
standard proprietary license rather than the GPL. To do so, she must establish
that the module is not a derivative work of the Linux kernel.*’

Under either the older or newer cases, a statically linked module is a
derivative work once it is linked. After linking, the object code file contains
both the GPL-covered Linux kernel and the module code, blended together and
very difficult to separate. Like adding a chapter to a copyrighted novel and
republishing it, this situation fits the canonical definition of a derivative
work.®® The only way our programmer could distribute such a work in object
code form without infringing copyright is by adhering to the GPL.**®

Dynamic linking can occur through many different technical mechanisms,
either within a single computer or between multiple computers on a

154 See Sega, 977 F.2d at 1523 (finding that copied material was not a part of the
plaintiff’s software that “determine[d] the program’s commercial success”).

155 See Teter, supra note 149, at 1067 (attributing economic value of disputed command
structure to users’ investment in training, rather than the structure’s inherent usefulness).

1% See id. (“Standardization of user interfaces prevents user ‘lock-in’ because users do
not have to learn a new user interface in order to switch application programs.”); Lotus, 49
F.3d at 819 (“A new [interface] may be a creative work, but over time its importance may
come to reside more in the investment that has been made by users in learning the
[interface].”).

57 See supra Part 11.B.

158 See Anderson v. Stallone, No. 87-0592, 1989 U.S. Dist. LEXIS 11109, at **31-32
(C.D. Cal Apr. 25, 1989) (finding that original portions of a movie screenplay were not
“severable” from the characters and plots taken from an earlier work, so the screenplay was
an infringing derivative in its entirety).

159 See GPL, supra note 1, at § 2(b).

2005] THE PENGUIN PARADOX 1463

network,™® and the choice of linking method does not definitively determine
whether the module is a derivative."®" That said, nearly all dynamically linked
modules are derivative works under the logic of Worlds of Wonder and
Midway. Those cases are congruent with the first prong of the FSF’s proposed
derivative works test, which looks at whether the method of linking is one
commonly used between separate programs or one employed between
subcomponents of a single program.*®? Writing a new subcomponent linked to
an existing program would appear to be part of the valuable “merchandising
rights” reserved to the original program’s copyright owner.*®® The strength of
this prong of the test would make the FSF test’s second prong — the type and
complexity of data exchanged across the interface — superfluous.***

The Worlds of Wonder approach promotes the FSF’s goals particularly well
in one sense: subjecting nearly all add-on modules to the GPL would expand
the body of available FOSS quickly and create a serious impediment to any
proprietary (non-FOSS) extensions. This maintains the incentive for new
FOSS development. Of course, Worlds of Wonder, Midway, and similar cases
based in copyright presumably apply to any software regardless of license. As
Midway and Atari illustrate, an expansive definition of derivative works gives
proprietary software makers the ability to prevent others from extending their
software with modules. Due to network externalities, this ability is especially
powerful for a maker of popular and fundamental “platform” software such as
an operating system, web browser, or networking protocol.*®® Many important
and valuable programs are essentially “modules” of these fundamental
programs. When applied to these programs, the Worlds of Wonder approach
would severely limit programmers’ freedom to write other software that links
with proprietary software. This result is contrary to the FSF’s goal of
maximizing the “freedom to share and change” software.'®® Thus, an
expansive definition of derivative works helps the FOSS community by
strengthening the GPL, while at the same time strengthening proprietary
licenses at the expense of the cooperative FOSS ethic. The next section
explores this apparent paradox in more detail.

B. The Linking Exception Presents a Paradox for the GPL
Sega and other more recent cases suggest that a compatible module is not

160 See supra Part I1.A.

181 The boundaries of a “work” under copyright law do not map cleanly onto the different
mechanisms of linking. See GPL Aggregation FAQ, supra note 77.

162 See supra Part I1.C.

163 See Worlds of Wonder, 658 F. Supp. 351, 356 (N.D. Tex. 1986) (stressing that
“merchandise licenses are commercially valuable” and that defendant’s derivative works
“undermine the carefully tailored image of Teddy Ruxpin”); Midway Mfg. Co. v. Artic
Int’l, Inc., 547 F. Supp. 999, 1014 (N.D. Ill. 1982) (giving the original copyright owners the
sole merchandising right to prepare add-on products).

164 See supra Part I1.C.

165 See supra note 149 and accompanying text (describing network externalities).

168 GPL, supra note 1, at Preamble.

1464 BOSTON UNIVERSITY LAW REVIEW [Vol. 85:1439

automatically a derivative work of the program with which it links.®” Literal
copying of interface information is not infringing, either because it is de
minimis®® or an unprotectable “idea.”*®® A module that complements but does
not replace a co%yrighted program is outside the control of the original
copyright owner.>”® This result applies even if the owner is willing to license
the right to create modules subject to conditions.*™

If the Sega line of cases applies in the same way to GPL-licensed software,
then most dynamically linked modules, such as Linux kernel modules, will not
be derivative works. These modules can be released under proprietary licenses
and without disclosing the corresponding source code. For the reasons
described above, this creates a substantial loophole in the GPL. Though the
GPL will continue to ensure that the existing core of programs like Linux
remain freely modifiable, the ability to add proprietary extensions on which
users may come to defend makes the “openness” of the core program
increasingly irrelevant.’* If the proprietary extensions become widely used,
the portions of GNU/Linux that are still GPL-covered may become obsolete
when used without the proprietary modules.”® Users would have to buy the
modules and agree to their licensing terms, in order to have a useful and
relevant GNU/Linux installation.*™

Of course, the courts will not give a free pass to any kind of copying simply
because it is done to create a compatible module.!”® The influence of
traditional copyright principles is still strong, even for software. A few recent
cases show how the linking exemption might correspond to the FOSS
proponents’ own derivative works tests, and also highlight the ambiguities that
remain in the test.

167 Sega Enters. Ltd. v. Accolade, Inc., 977 F.2d 1510, 1528 (9th Cir. 1992) (allowing
copying necessary to create compatible modules).

188 1d. at 1524 n.7 (finding no infringement in use of short data sequence comprised of
the letters S-E-G-A).

169 Sony Computer Entm’t, Inc. v. Connectix Corp., 203 F.3d 596, 603 (9th Cir. 2000)
(applying fair use defense in order to protect access to “idea” embodied in compatibility
code).

17017 U.S.C. § 103(b) (2000) (granting independent copyright interest in portions of
derivative work that can be separated from original work).

71 Sega, 977 F.2d at 1514 (observing that defendant declined a license from Sega for the
allegedly infringing activity, but finding defendant’s activity a fair use regardless).

172 Free Software Foundation, supra note 9, (last modified May 5, 2005).

17 See Richard Stallman, The X Window’s Trap, http:/iwww.gnu.org/philosophy/x.html
(last modified Apr. 26, 2004) (concluding that if the GPL does not apply, “anyone [can]
make a non-free version dominant, if he . . . invest[s] sufficient resources to add
significantly important features using proprietary code”).

174 See id. (“People who receive the program in that modified form do not have the
freedom that the original author gave them; the middleman has stripped it away.”).

175 See Atari Games Corp. v. Nintendo of Am. Inc., 975 F.2d 832, 4843 (Fed. Cir. 1992)
(refusing to excuse defendant’s copying, even though it was done to create compatible video
game modules).

2005] THE PENGUIN PARADOX 1465

1. Expressive Audiovisual Programs

Because many cases on derivative software have involved video games, the
law in this area has undoubtedly been shaped by the customs and strategies of
that industry. Although video games are software, their most important aspect
is the visual experience they create for the user. The Copyright Office
recognized this fact by allowing two copyright registrations on a game: for the
program code as a “literary work” and for the output as “visual artwork.”"®
Besides being primarily visual, and unlike most software, video games are
highly creative. In many respects, they are similar to movies."’” Because
movie-like audiovisual works lie “closer to the core of intended copyright
protection” than other software, courts afford stronger protection to video
games.’”® In contrast, graphical elements created by functional programs, like
the familiar windows and menus used by most application software, receive
only weak copyright protection.'”® The layout of these elements is a form of
interface, and anyone may write modules making use of that interface without
permission.™® The deciding factor seems to be whether that output is a work
of pure creativity, not whether the program creates audiovisual output.
Currently, most FOSS is highly functional software such as operating systems,
server programs, and application programs.’®* The courts’ tendency toward
strong protection for creative audiovisual output may not apply to highly

76 y.s. Copyright Office, Literary Works Registration,
http://www.copyright.gov/register/literary.html (last visited Sept. 30, 2005) (including
“computer programs” as a type of literary work); U.S. Copyright Office, Visual Art Works
Registration, http://www.copyright.gov/register/visual.html (last visited Sept. 30, 2005)
(follow “examples” hyperlink) (including “games” in the list of visual artwork).

77 See Micro Star v. FormGen Inc., 154 F.3d 1107, 1112 (9th Cir. 1998) (referring to
defendant’s modules for plaintiff’s video game as a “sequel” to the game); Matt Krantz,
Video Game College Is ‘Boot Camp’ for Designers, USA TobAY, Dec. 3, 2002, available at
http://www.usatoday.com/money/media/2002-12-03-video_x.htm (comparing movie and
video game industries and describing visual experience of some games as similar to
television).

178 See Micro Star, 154 F.3d at 1113 (“The fair use defense will be much less likely to
succeed when it is applied to fiction or fantasy creations, as opposed to factual works such
as telephone listings.”).

179 See Lotus Dev. Corp. v. Borland Int’l, Inc., 49 F.3d 807, 819 (1st Cir. 1995) (Boudin,
J., concurring) (finding menu layout of spreadsheet program to be uncopyrightable, and that
the “present case is an unattractive one for copyright protection of the menu”); Apple
Computer, Inc. v. Microsoft Corp., 799 F. Supp. 1006, 1025-26 (N.D. Cal. 1992) (finding
no infringement in Microsoft’s use of menus, windows, and icons with a “look and feel”
similar to Apple’s user interface).

180 The interface, in this case, is an interface between the human user and the software.
See Lotus, 49 F.3d at 819 (Boudin, J., concurring) (offering no copyright protection to
macro interface for add-on modules which automate common tasks).

181 A search of the popular FOSS development site SourceForge.net shows that of the ten
most active development projects, two are networking tools, two are graphics manipulation
programs, three are network server programs, and three are utilities for manipulating text
files. SourceFORGE.net, Statistics: Most Active, http://www.sourceforge.net (last visited
Oct. 3, 2005).

1466 BOSTON UNIVERSITY LAW REVIEW [Vol. 85:1439

functional software.

2. Creative or Arbitrary Interface Code

Although courts have recognized that allowing copyright law to control the
linking of modules may stifle innovation, they are still wary of excusing
significant literal copying, even where such copying is necessary to link a
module to a program. In Sega, while the Ninth Circuit implied that interface
information was not protected by copyright, the court explicitly did not rule on
that question.'®® Instead, the court left open the possibility that a substantial,
complicated, or creative interface specification might be protected by
copyright.

As described above, to write a compatible module, a programmer often
needs to copy a small amount of code from the original program.’®® In
addressing Accolade’s use of Sega’s compatibility code (a file containing the
letters S-E-G-A) in its games, the court emphasized that the file was trivially
small.’® In a similar situation, also in 1992, Atari Corporation copied the
compatibility code from Nintendo’s video game console in order to write
games for that console.® The Federal Circuit, in holding Atari liable for
infringement, pointed out that Nintendo’s compatibility code used “creative
organization and sequencing” to create a “purely arbitrary data stream.”%® The
Sega court distinguished Atari by observing that Nintendo’s compatibility code
contained “creativity and originality” while Sega’s simple code did not.'*’
Neither court considered it significant that Nintendo’s compatibility code was
intentionally complex, creative, and arbitrary to deter any unauthorized use.*®
Its “creativity” was similar to the arbitrary shape of notches in a key. Both the
Ninth and Federal Circuits apparently considered creative programming for the
purpose of preventing compatibility to be copyrightable despite the courts’
policy that copyright should not restrict compatibility any more than
necessary.

182 See Sega Enters. Ltd. v. Accolade, Inc., 977 F.2d 1510, 1528 (9th Cir. 1992) (leaving
open the issue of infringement in defendant Accolade’s final products).

183 1d. at 1515-16 (describing Accolade’s need to put a small amount of data copied from
Sega’s console into its games in order for the games to run).

84 1d. at 1524 n.7 (concluding that any infringement by use of the Sega compatibility
code was de minimis).

185 Atari Games Corp. v. Nintendo of Am. Inc., 975 F.2d 832, 836-37 (Fed. Cir. 1992)
(describing Atari’s use of Nintendo’s compatibility code).

18 1. at 840.

187 Sega, 977 F.2d at 1524 n.7 (distinguishing a complex, original compatibility code
from a short, simple one).

188 Atari, 975 F.2d at 836 (explaining that the compatibility code controls access to the
Nintendo console).

189 See Sega, 977 F.2d at 1524 n.7 (suggesting that a complex, original compatibility
code might be copyrightable); Atari, 975 F.2d at 840, 846 (holding that Nintendo’s “lock”
program, which Atari needed to copy to create unauthorized game cartridges, was
copyrightable, and determining that the record did “not demonstrate, as a matter of law, that

2005] THE PENGUIN PARADOX 1467

This conclusion fits the second element of FSF’s proposed derivative works
test: whether the communication between modules is “intimate” or involves
“exchanging complex internal data structures.”*® Where the compatibility
code is sufficiently complex, the policy of protecting the original copyright
owner’s creative investment may supersede the module writer’s interest in
creating a compatible module. Thus, one way FOSS programmers could
ensure application of the GPL to new modules is to make module interfaces
more complex or arbitrary. This would be an unfortunate result, as more
complex interfaces seem likely to be less efficient and more prone to errors.
Also, the degree of complexity necessary to overcome the module writer’s fair
use defense is unclear — the cases tell us only that it must be more than de
minimis.**

3. Working Only with a Single Program

Another case decided long after Altai and Sega lends support to Linus
Torvalds’ proposal that a module is derivative when it can link only with one
particular program.*> In Micro Star v. FormGen Inc., the Ninth Circuit used
exactly that rationale (and others) to enjoin Micro Star’s “map files,” modules
that described new levels for FormGen’s Duke Nukem video game.®® Micro
Star shows that the Worlds of Wonder principle is still viable: a module that
modifies the output of a program can be infringing even if the module contains
no expression taken from the program.’®* The map files referred to and
invoked the artwork contained in the Duke Nukem game, much as Veritel’s
tapes invoked the motors that animated Teddy Ruxpin.’®® The files, according
to the court, were “sequels” to the game,™® and thus derivative works. If the
files could be used with any other game, however, they would not be
infringing.*®’

Arguably, the logic of Micro Star could apply equally well to the facts of

such restrictions restrain the creativity of Nintendo licensees and thereby thwart the intent of
the patent and copyright laws”).

1% GPL Aggregation FAQ, supra note 77 (explaining that intimate communication, in
which complex internal data structures are exchanged, may serve as a basis for considering
two modules a single program).

191 See Sega, 977 F.2d at 1524 n.7 (classifying the letters S-E-G-A as de minimis for
copyright purposes).

1% See supra note 86 and accompanying text.

198 154 F.3d 1107, 1112 n.5 (9th Cir. 1998) (finding that Micro Star’s files incorporated
protected expression, and therefore constituted derivative works, because they could only be
used with FormGen’s video game). Micro Star did not create the map files, but merely
compiled them into a collection and sold them. Id. at 1109.

194 See supra notes 100-106 and accompanying text.

19 1d. at 1110 (explaining that codes in the map files cause artwork from the game to
appear at particular times and locations).

1% 1d. at 1112 (describing files as sequels because they used Duke Nukem to tell new
stories).

97 See id. at 1112 n.5 (explaining that if another game could use the files to tell a
different story, the files “would not incorporate the protected expression”).

1468 BOSTON UNIVERSITY LAW REVIEW [Vol. 85:1439

Sega. Accolade’s unauthorized game cartridges presumably worked only with
the Sega console. However, the game program contained in the cartridge
could run on other video game systems.’*® The cartridges, in effect, contained
the game itself and some Sega-specific compatibility code.**® In combination,
these two elements worked only with the Sega console, but the game itself
could be combined with different compatibility code and run on different
companies’ consoles. The map files in Micro Star, in contrast, could not be
separated into original creative material and compatibility code. This suggests
that separability plays a role in the derivative work analysis. In distinguishing
original material from added material in derivative works, the Copyright Act
supports this focus on separability.?® Where elements of the original work
“pervade” a derivative work and are inseparable, the derivative author can
claim no copyright protection at all.?**

Returning to the hypothetical raised in Part Il, the archetypal Linux kernel
module is a device driver, which allows a computer to connect to a particular
external device.?? Because a device driver written for a different operating
system can be made into a Linux kernel module by “wrapping” it in
compatibility code, it is a separable module and not Linux-exclusive —
analogous to the game cartridges in Sega.®®> Many modules and libraries for
FOSS programs are similarly separable, so they are probably not derivative
works under the logic of Micro Star and Sega.

4. The Paradox

The cases on linking point to two categories of programs for which modules
are most likely to be derivative works: programs whose main purpose is to
generate creative audiovisual experiences and programs with complex or

1% Sega Enters. Ltd. v. Accolade, Inc., 977 F.2d 1510, 1515 (9th Cir. 1992) (recounting
that Accolade adapted one game that it had previously released for personal computers so
that the game would run on the Sega console).

199 See id. at 1515-16 (describing how Accolade’s engineers used the knowledge they
had gained from reverse-engineering the Sega console to make the games they had already
written compatible with the Sega console).

20 gee 17 U.S.C. § 103(b) (2000) (extending copyright in a derivative work only to
“material contributed by the author” of the derivative).

01 gee Anderson v. Stallone, No. 87-0592, 1989 U.S. Dist. LEXIS 11109, at **28, 23-
26, 31-32 (C.D. Cal. Apr. 25, 1989) (finding that the author of an unauthorized sequel to the
Rocky films could claim no copyright protection at all because his work could not be
separated from the original characters and plots that he copied).

202 5ee Henderson, supra note 50, at § 2 (listing device drivers as a common type of
kernel module).

23 The court in Sega acknowledged that Accolade wrote its games originally for
personal computers, and created compatibility code to allow the computers to run on the
Sega console. Sega, 977 F.2d at 1515. By declaring the process of creating the
compatibility code to be a fair use, the court implied that the game itself, independent of the
compatibility code, was not a derivative work. See id. at 1520.

2005] THE PENGUIN PARADOX 1469

arbitrary module interfaces.®® The module is particularly likely to be
considered a derivative work if it can link only with one program.?®
Unfortunately for the defenders of FOSS, many if not most modules fall
outside these categories. As a first approximation, the GPL’s reliance on
copyright law alone does not prevent programmers from making significant
proprietary modifications to GPL software by adding proprietary libraries or
modules. To some extent this is already happening: several GNU/Linux
distributors derive substantial revenue from selling proprietary programs
integrated fairly tightly with (Zand possibly dynamically linked to) the GPL-
covered core operating system.?*

If courts continue the trend of allowing unauthorized linking, proprietary
software vendors will have less control of the market for modules that link to
their programs. At the same time, the GPL’s copyleft clause will apply to
fewer works, reducing the incentive for programmers to use the GPL for their
own works in return for permission to link. Conversely, in situations where
courts adhere to Midway-style copyright analysis and forbid most unauthorized
linking, the GPL becomes more effective, but proprietary software vendors
will be able to further restrict the uses of their work.

Because the GPL relies on copyright law, it brings the courts’ interpretations
of the Copyright Act as a policy for promoting progress into conflict with the
FOSS movement’s own scheme for promoting software innovation. The goals
are similar: both the Copyright Act and the FOSS movement seek to maximize
innovation, promote educational and critical uses of software, and limit
monopoly abuse. Yet strengthening one seems to weaken the other. The next
section proposes a solution to this paradox and analyzes the solution’s
effectiveness.

V. AN ARGUMENT FOR STRONGER DERIVATIVE WORKS PROTECTION FOR
GPL CoDE

A. An Alternate Balance for Copyright

The Constitution’s Intellectual Property Clause announces a goal
(promoting the progress of science and the arts) and a means of achieving it
(giving limited exclusive rights to authors and inventors).?”” The common

2% See Micro Star, 154 F.3d at 1113 (“The fair use defense will be much less likely to
succeed when it is applied to fiction or fantasy creations, as opposed to factual
works”); Atari Games Corp. v. Nintendo of Am., Inc., 975 F.2d 832, 840 (Fed. Cir.
1992) (calling Nintendo’s compatibility code, which contained “creative organization and
sequencing,” protectable expression).

205 gee Micro Star, 154 F.3d at 1112 n.5 (explaining that a module that works with only
one program is very likely to “incorporate the protected expression” and thus be a derivative
work).

WEBER, supra note 28, at 108, 195-196 (describing some businesses that package
GNU/Linux systems together with proprietary software, using the GPL-covered portion as a
“loss leader™).

27 U.S.ConsT. art. 1, § 8, cl. 8.

1470 BOSTON UNIVERSITY LAW REVIEW [Vol. 85:1439

understanding of this clause is that the right to control copying gives authors
and inventors the financial incentive they need. Rights that are too strong,
however, thwart the goal of progress by restricting the public’s access to
creative works and preventing others from building on them.?®® Courts seek a
balance between exclusive rights and public access that will best promote
progress. On many occasions, new technologies and new business models
have required courts to modify their interpretations of copyright law principles
in order to maintain this balance.?”

FOSS development is a new business model that challenges the assumptions
behind the Intellectual Property Clause. Proponents of FOSS maintain that
creative people want to create and that their limiting factor is not financial
incentives, but instead access to material on which to build.?° The Framers’
intuition that exclusive rights promote progress remains valid for FOSS, yet
the connection between the means and the goal differs. With FOSS, the
author’s exclusive rights are not licensed in return for financial reward, but for
a promise to keep the programmer’s stock of raw material (source code)
available for others to build on. The “right to distribute, [rather than] the right
to exclude,” promotes innovation.***

Because FOSS is a different method for using exclusive rights to promote
progress, the equilibrium point between exclusive rights for programmers and
access by others is also different. This is the paradox described in Part IV.
Declaring more loosely linked software modules to be derivative works makes
the GPL more effective, but also makes proprietary licenses more restrictive.
This suggests that courts should apply a broader derivative works test to GPL
software. Although using two different tests seems inconsistent, adjusting the
derivative works test for FOSS would allow the courts to preserve the policies
behind copyright law while accommodating FOSS’s alternate mechanism for
furthering the same policies. The linking cases discussed above present two
doctrinal hooks for accomplishing this goal. The first, denying a fair use
defense when proprietary software is linked with FOSS, would be a
straightforward and useful approach in some cases. The second approach,
actually broadening the definition of a derivative work when the original work
is FOSS, would be harder to justify doctrinally but applicable to far more

28 gee Sony Corp. of Am. v. Universal City Studios, Inc. 464 U.S. 417, 429 (1984)
(asserting the need to weigh the benefit of granting exclusive rights to individuals against
the harm to the public that would result).

2% gee jd. at 430 (observing that technological change is what drives the modification of
copyright law).

20 \WeBer, supra note 28, at 84 (“The only times when innovation will be
‘undersupplied’ is when creative people are prevented from accessing the raw materials and
tools that they need for work.”). Courts have acknowledged that no creation of the mind is
truly new; art, literature, and software are inevitably inspired by and grow out of earlier
work by others. See, e.g., Leeds Music Ltd. v. Robin, 358 F. Supp 650, 659 (arguing that
“there are no truly new ideas under the sun” and overbroad copyright protection could cause
“mankind’s precious few core ideas [to] be removed from the marketplace of thought”).

211 See WEBER, supra note 28, at 1 (describing open source as relying on “the right to
distribute, not the right to exclude”).

2005] THE PENGUIN PARADOX 1471

cases, making a more effective solution to the paradox.

B. Limiting Fair Use for Linking to GPL Code

Sega and Connectix base their holdings on fair use, an affirmative defense to
copyright infringement.*** Fair use involves a “case-by-case, equitable”
analysis,** taking into account any harm to the plaintiff’s market, the “nature
of the copyrighted work,” and other practical factors.?**

Because of its flexibility and focus on market factors, fair use has
historically been the method by which courts adapt copyright law to new
technologies, without the need for legislative changes.”*> For the same reason,
fair use is the most sensible way to implement a special copyright policy for
FOSS.

1. Fair Use and FOSS Have Parallel Goals

Fair use doctrine was originally created by judges in order to allow for uses
that society historically viewed as more important than commercial
exploitation.?!® The codification of the doctrine in § 107 of the Copyright Act
lists these traditionally favored uses: “criticism, comment, news reporting,
teaching . . . , scholarship, or research.”**" Because these uses are particularly
important aspects of the freedom of speech, courts consider fair use to be the
provision that harmonizes copyright law with the First Amendment.*® The list
of favored uses in the statute is not exclusive, and courts have recently allowed
fair use defenses in commercial situations, as in the Sega and Connectix
cases.’® Even though they discounted the importance of commercial
motivation in their fair use analysis, the courts in these cases justified their
conclusions with a subtle reference to the original goals of fair use; the
defendants’ aim was to “gain an understanding” of the ideas expressed in

212 17 U.S.C. § 107 (2000); Sega Enters. Ltd. v. Accolade, Inc., 977 F.2d 1510, 1520 (9th
Cir. 1992) (calling fair use the most “appropriate” way to resolve the case); Sony Computer
Entm’t, Inc. v. Connectix Corp., 203 F.3d 596, 602 (9th Cir. 2000) (invoking a fair use
analysis).

213 Connectix, 203 F.3d at 1520.

214 17 U.S.C. § 107 (listing the factors to be used in a fair use analysis).

215 gee Sega, 977 F.2d at 1520 (“[Clonsideration of the unique nature of computer object
code thus is more appropriate as part of the case-by-case, equitable ‘fair use’
analysis”).

218 Campbell v. Acuff-Rose Music, Inc., 510 U.S. 569, 569-70 (1994) (recognizing that
statutory fair use “continues [a] common-law tradition,” and that parody and criticism are
historically fair uses even if they are “commercial” uses).

2717 U.S.C. § 107.

218 Eldred v. Ashcroft, 537 U.S. 186, 220 (2003) (calling fair use one of the “traditional
First Amendment safeguards”).

219 gega, 977 F.2d at 1522 (observing that the commercial nature of the use does not
preclude a fair use defense); see also Sony Computer Entm’t, Inc. v. Connectix Corp., 203
F.3d 596, 605-07 (9th Cir. 2000) (finding that commercial purpose was only one factor to be
weighed against others in its analysis of the “purpose and character of use” factor of the fair
use defense).

1472 BOSTON UNIVERSITY LAW REVIEW [Vol. 85:1439

plaintiffs’ code.?® Thus, the courts drew an analogy between writing a

compatible module (i.e., a game cartridge) and studying code as an educational
endeavor.??

Education is a strong component of FOSS development, and one of the
FSF’s stated goals is to allow people to “understand” the software they use by
studying its source code.”? The collaborative methods of open source
software development grew out of the academic tradition of peer review.*®
Because the GPL requires free access to source code and grants general
permission to modify and experiment, GPL software is a natural teaching tool.
Linux, the best-known GPL software, began as a college student’s hobby and
was itself based on a kernel program written as a teaching tool for operating
system design.??* Safeguarding the availability of source code and the
protections of the GPL maintains this source of educational material for
students and also allows FOSS businesses such as Red Hat?® and IBM to use
students’ work in their products.

For proprietary software, a broad fair use defense for linking modules
promotes learning and “understanding” of the ideas embedded in software.?®
Because the GPL strongly promotes educational uses, and broad protection for
derivative works enhances the GPL, the equitable fair use analysis pulls in the
other direction for GPL software. For FOSS, the goal of promoting
scholarship, as well as criticism, commentary, and teaching, justify denying a
fair use defense to module writers who seek to add proprietary, “closed-

220 gega, 977 F.2d at 1522 (“[A]lthough Accolade’s ultimate purpose was the release of
Sega-compatible games for sale, its direct purpose in copying Sega’s code, and thus its
direct use of the copyrighted material, was simply to study the functional requirements for
Genesis compatibility”); see also Connectix, 203 F.3d at 604 (allowing defendants to
copy plaintiffs’ code to aid in “understanding” and to develop a compatible program, even if
less efficient development methods were available that could have reduced the amount of
copying and use).

221 See Sega, 977 F.2d at 1522-23 (stating that Accolade’s use of Sega’s code “to
discover the functional requirements for compatibility with the Genesis console” was
“legitimate” and “essentially non-exploitative™).

222 gee, e.g., Free Software Foundation, Frequently Asked Questions about the GNU
GPL, http://www.gnu.org/licenses/gpl-fag#GPLInProprietarySystem (last modified Aug. 19,
2005) (“The goal of the GPL is to grant everyone the freedom to copy, redistribute,
understand, and modify a program.”).

223 See WEBER, supra note 28, at 144-45 (explaining how many of the cultural norms of
the programmers at MIT’s Artificial Intelligence Lab — a research institution — were adopted
by the FOSS movement).

224 Andrew Tanenbaum, Some Notes on the “Who Wrote Linux” Kerfuffle, May 20,
2004, http://www.cs.vu.nl/~ast/brown (recalling that Linus Torvalds began writing the
Linux kernel while a student, having been inspired by Professor Tanenbaum’s model kernel
program, called MINIX).

2% Red Hat, Inc. is a major commercial distributor of the GNU/Linux operating system.
See Red Hat: The Open Source Leader, http://www.redhat.com (last visited Dec. 5, 2005).

226 See Sega, 977 F.2d at 1520 (“Where there is good reason for studying or examining
the unprotected aspects of a copyrighted computer program, disassembly for purposes of
such study or examination constitutes a fair use.”).

2005] THE PENGUIN PARADOX 1473

source” extensions.

A related public benefit of FOSS (some might call it a subset of “criticism™)
is independent security analysis of critical software. Computer security
researchers assert that widespread peer review is the most effective way to
secure software against viruses, malicious hackers, and similar threats.??’ The
ability to add proprietary modules to critical GPL-licensed software, such as
the server and domain name lookup software that runs the Internet, hinders the
public’s ability to evaluate the security of important infrastructure software. If
courts were to find that security is an important part of the “nature of the
copyrighted work” under the fair use factors,*® then security concerns may be
another factor that weighs against a finding of fair use.

2. “Exploitation” and Custom: Specific Fair Use Factors

In software cases, courts deny fair use when an alleged derivative work
“supplant[s]” the original, “usurp[s] the market,” or is “exploitative.”??* Other
statements the cases discussed above give more meaning to these terms. First,
industry custom is relevant. The defendant in Sega “did not seek to avoid
paying a customarily charged fee” to build its module, which could imply that
the existence of such a custom would weigh against fair use.”° This logic
parallels the focus on acceptable industry practice in trade secret law, in which
methods for discovering a competitor’s trade secrets are allowed when they are
customarily accepted as industry practice.®®* The second component of
“exploitation” is the public interest in encouraging the creation of more
software. A strong public interest can outweigh some degree of harm to the
original copyright owner.®* Finally, integrity concerns may still play a role.
A use that harms the reputation of the original copyright owner impacts that

227 See BRUCE SCHNEIER, SECRETS AND LIES: DIGITAL SECURITY IN A NETWORKED WORLD
344 (2004) (describing FOSS as the “best way to facilitate” widespread expert security
review of software).

228 17 U.S.C. § 107(2) (2000) (listing “the nature of the copyrighted work” as a factor in
fair use analysis).

229 gee Sega, 977 F.2d at 1523 (examining the fourth fair-use factor, the “effect on the
potential market™).

20 gee jd. at 1522 (justifying a fair use defense by reference to the absence of a
“customarily charged fee” paid by video game designers to console makers); William W.
Fisher I11, Reconstructing the Fair Use Doctrine, 101 HARV. L. Rev. 1661, 1680-81 (1988)
(acknowledging that “industry practice” may be a beneficial source of fair use standards so
long as both parties belong to a particular industry with well-defined customs).

21 Ronald L. Johnston & Allen R. Grogan, Trade Secret Protection for Mass Distributed
Software, 11 CoMPUTER Law. 1, 11 (Nov. 1994) (“Whether circumstances will give rise to a
duty to maintain secrecy or limit use of a trade secret may be supported by industry
custom.”). The use of industry custom in equitable legal analysis is also common in “many
areas of property law” and may be “readily applicable to disputes over intellectual
property.” Fisher, supra note 230, at 1680.

22 gee Sega, 977 F.2d at 1523 (finding that public benefit from the availability of
defendant’s product is sufficient to overcome the presumption of unfairness associated with
commercial exploitation).

1474 BOSTON UNIVERSITY LAW REVIEW [Vol. 85:1439

owner’s market, and this harm might weigh against fair use.?*

As with educational uses, a policy of avoiding “exploitation” in the GPL
context favors denying a fair use defense. An effective GPL promotes many of
the same policies that motivated the courts’ decisions on linking, including an
adherence to industry customs, protection of reputation and the promotion of
beneficial network effects.

a. FOSS Industry Custom

Unlike the video game market, GPL software developers have established a
“customary fee” for the use of their interfaces. The fee is not direct
compensation to the copyright owner, but a promise to release any
modifications under the GPL only. This tradition of reciprocity comes not
only from the terms of the GPL, but from customary practice among FOSS
developers. At its heart, the custom is a straightforward rationale of fairness:
FOSS developers give up their right to licensing royalties when they release
software under the GPL. In return, anyone using the software as a basis for
their own work by adding a module must license her module on the same
terms. To the extent that “exploitation” involves violating the norms of a
particular industry, the FOSS community’s “share alike” ethic should be an
important — although not decisive — factor in the fair use analysis.

The FOSS community also places a strong emphasis on programming as a
creative, expressive activity.”®* Programmers on GPL projects strive not only
for efficient solutions to problems, but also for a sort of artistry that displays
the programmer’s skill and distinctive style.”*® They seek an aesthetic
dimension that goes beyond making the software perform its function
correctly. A court could analogize this creative element to the creativity and
expressiveness that played such an important role in the video game cases.
Because the creativity in a work is closer to the “core of copyright protection”
than the work’s utilitarian aspects, the former receives stronger copyright
protection and a broader definition of derivative works.”® To the extent that
FOSS ‘programming as artistry’ is independent of the software’s utility and
efficiency, the courts may grant a higher level of protection to FOSS by
denying fair use.

b. Effect on Reputation

The “reputation” rationale of Worlds of Wonder and Midway may also
justify denying fair use for linking to GPL code. In those cases, the courts
used concern for damage to the plaintiffs’ commercial reputations to justify

233 gee Worlds of Wonder, Inc. v. Veritel Learning Sys., Inc., 658 F. Supp. 351, 356-57
(N.D. Tex. 1986) (considering damage to the image of the plaintiff’s product as part of the
harm that copyright law protects against).

2% See WEBER, supra note 28, at 145 (explaining how, for many FOSS programmers, a
program can have intrinsic expressive value apart from its function).

25 |d. (“Open source developers are certainly much like artists in the sense that they seek
fun, challenge, and beauty in their work.”).

2% gee supra notes 178-180 and accompanying text.

2005] THE PENGUIN PARADOX 1475
findings of infringement.”” The GPL guarantees that source code will be
perpetually available, and this guarantee is an important part of GPL
software’s commercial value.”®® Additionally, many people believe that
programs developed through FOSS processes are more secure and reliable than
proprietary software.®® If anyone can link a GPL program with non-GPL
modules, the presence of the GPL no longer serves to indicate the security and
“openness” of the whole, and the guarantee of continuing permission to modify
is lost. Just as permitting Veritel to produce technically inferior tapes for
Teddy Ruxpin or allowing Artic to add unlicensed boards to Midway’s video
games could damage the reputation of the original manufacturers, allowing
proprietary additions to GPL software could harm FOSS developers in a
similar way.

Although copyright law is not concerned with protecting commercial images
per se (that being the domain of trademark law), reputational harm may be a
form of “usurping the market” for the original product. This is especially true
for modules, such as Linux kernel modules, that become closely associated
with the product they modify. As Richard Stallman points out, an operating
system consists of many software components, which are often collectively
referred to as ‘Linux’ in the GNU/Linux system.?*® If the collection of
components that users know as ‘Linux’ comes to contain proprietary modules,
and those modules add vital functionality, then this partly proprietary
collection could replace the purely FOSS original in the market. This may be
“exploitation.”

c. Beneficial Network Externalities

One explanation for the courts’ trend toward allowing fair use for linking is
a recognition that network externalities increase copyright owners’ control
over their work and related works, to the detriment of later programmers.?*
The stronger the network externalities for a given program, the stronger the fair
use argument for allowing linking with that program. In contrast, the GPL is
an attempt to leverage network externalities to preserve later programmers’
ability to interoperate with earlier work. For FOSS, the amplifying effect of

237 gSee supra note 107.

%8 David Betz & Jon Edwards, Richard Stallman Discusses His Public-Domain UNIX-
compatible Software System with BYTE Editors, BYTE, July 1986,
http://www.gnu.org/gnu/byte-interview.html (commenting that a commercial advantage of
the GPL-covered EMACS text editor program is that, because the source code is available,
users can hire anyone they want to service the software, even if the original supplier goes
out of business).

2% Bryce Schneier, Open Source and Security, CRYPTO-GRAM NEWSLETTER, Sept. 15,
1999, http://www.schneier.com/crypto-gram-9909.html (explaining the widely held view
that software can be made more secure if its source code is available to the public, because
widespread testing and evaluation can occur); see also RAYMOND, supra note 30 (describing
how FOSS processes allow problems in code to be fixed quickly).

20 Stallman, supra note 50 (acknowledging that the GNU/Linux system as a whole is
often called simply Linux).

281 See supra notes 149-156 and accompanying text.

1476 BOSTON UNIVERSITY LAW REVIEW [Vol. 85:1439

network externalities promotes rather than inhibits the public interest identified
in Sega.** Denying fair use for otherwise infringing linking with GPL code
would extend this beneficial network effect to more software.

In summary, several factors that led courts to grant a fair use defense in
software cases actually support denying the defense in cases where the GPL
applies. This approach resolves the GPL’s paradox in cases that turn on fair
use — in other words, cases such as Micro Star where linking creates a prima
facie infringing derivative and the defendant raises fair use as a defense.””® Of
course, Galoob and other precedents remove many types of linking from this
category. Where there is no prima facie infringement, fair use is irrelevant.
For these cases, solving the paradox requires a more difficult doctrinal shift.

C. Broadening the Definition of a Derivative Work for GPL Code

If the hypothesis presented in this Note proves true — that is, if the courts’
permissive stance toward unauthorized linking severely weakens the GPL —
then preserving the license’s potential will mean convincing a court to apply a
broader definition of derivative works to GPL programs than is applied to
other programs. This approach would close the proprietary module loophole in
the GPL for cases where the fair use defense is never raised, cases where an
unauthorized module is prima facie not a derivative work. Asking for a
different derivative works test for FOSS would be much more difficult than
asking for a denial of fair use, because the “equitable” doctrine of fair use
leaves more discretion to judges than does the basic definition of a derivative
work.*** Arguing that the license applied to a particular piece of software
should affect which other programs can be called derivative works of that
software seems like a stretch. However, courts may be willing to apply the
same policy arguments discussed above for denying fair use to the question of
defining a derivative work.

D. Potential Difficulties with this Approach

While the approach laid out in this section would resolve the paradox caused
by the GPL’s unusual use of copyright law, it may encounter some obstacles in
practice. From a practical perspective, many companies have built their
businesses around a mixture of linked GPL and proprietary software.?** The
revenue these companies derive from selling the proprietary components may
be an important source of funds for future FOSS development. FOSS-based
businesses make money from ancillary products and services, such as software
support, customization, documentation, and hardware tie-ins, but linked
proprietary software remains an important part of the business model for many

222 gee supra Part 111.A.2 (discussing how courts have considered network effects).

23 gee Micro Star v. FormGen Inc., 154 F.3d 1107, 1112 (9th Cir. 1998).

244 See Sega Enters. Ltd. v. Accolade, Inc., 977 F.2d 1510, 1520 (9th Cir. 1992)
(describing fair use as a “case-by-case” inquiry).

25 \WEBER, supra note 28, at 108 (describing some businesses that packaged GNU/Linux
systems together with proprietary software).

2005] THE PENGUIN PARADOX 1477

firms.*® To the extent that the GPL’s terms are grounded in ideology rather
than an alternate economic paradigm, courts may allow more linking of GPL
and proprietary work in deference to market realities.

Network externalities also cause a different problem under the GPL. When
a GPL-based business such as Red Hat has invested heavily in marketing and
distribution, it can appropriate and reap a large share of the rewards from an)/
GPL-covered additions to its software, no matter who writes those additions.?*’
The more a strong GPL compels smaller competitors to release their own
software under the GPL, the more a larger outfit with a head start in marketing
and distribution can appropriate the value of that work.?*® For FOSS, as for
proprietary software, there is still a balance to be struck.

CONCLUSION

The GPL has been called “a hack on the copyright system” because it uses
the exclusive rights of authors to 9uarantee rather than restrict public access to
the inner workings of software.** Unfortunately, because it uses copyright
law for such a radically different purpose, any change in the law that
strengthens the GPL also promotes abuses in the proprietary system, and any
change that directly addresses those abuses tends to weaken the GPL.
Specifically, the current law on whether copyright can prevent unauthorized
add-on modules in software represents the courts’ solution to a problem of
abusing copyright’s statutory monopoly, yet it creates a serious obstacle to the
FSF’s efforts to combat the same abuse by different means. The solution
proposed by this Note is that courts could broaden the definition of a derivative
work in GPL-related cases in light of the GPL’s purpose. This approach could
help the courts remain true to the goals of the Copyright Act while allowing
the FOSS community — an experiment in achieving the same goals — to thrive.

26 gee Shankland, supra note 6.

24T \WEBER, supra note 28, at 222 (describing how the GPL can give an advantage to
established FOSS businesses that are better able to market and monetize new GPL-covered
code regardless of who developed the program).

28 See id.

29 |j-Cheng Tai, The History of the GPL, July 4, 2001, http://www.free-
soft.org/gpl_history (proclaiming that the GPL enables the development of “software by the
people, of the people and for the people™).

