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Synthetic gene networks: what have we learned and what do 
we need?
The engineering of mechanical, electrical and chemical systems is 
enabled by well-established frameworks for handling complexity, reli-
able means of probing and manipulating system states and the use of 
testing platforms—tools that are largely lacking in the engineering of 
biology. Developing properly functioning biological circuits can involve 
complicated protocols for DNA construction, rudimentary model-
guided and rational design, and repeated rounds of trial and error fol-
lowed by fine-tuning. Limitations in characterizing kinetic processes 
and interactions between synthetic components and other unknown 
constituents in vivo make troubleshooting and modeling frustrating 
and prohibitively time consuming. As a result, the design cycle for engi-
neering synthetic gene networks remains slow and error prone.

Fortunately, advances are being made in streamlining the physical 
construction of artificial biological systems, in the form of resources 
and methods for building larger engineered DNA systems from smaller 
defined parts22,30–32. Additionally, large-scale DNA sequencing and 
synthesis technologies are gradually enabling researchers to directly 
program whole genes, genetic circuits and even genomes, as well as to 
re-encode DNA sequences with optimal codons and minimal restric-
tion sites (see review33).

Despite these advances in molecular construction, the task of build-
ing synthetic gene networks that function as desired remains extremely 
challenging. Accelerated, large-scale diversification34 and the use of 
characterized component libraries in conjunction with in silico mod-
els for a priori design22 are proving useful in helping to fine-tune net-
work performance toward desired outputs. Even so, in general, synthetic 
biologists are often fundamentally limited by a dearth of interoper-
able and modular biological parts, predictive computational modeling 
capabilities, reliable means of characterizing information flow through 
engineered gene networks and test platforms for rapidly designing and 
constructing synthetic circuits.

In the following subsections, we discuss four important research 
efforts that will improve and accelerate the design cycle for next-gener-
ation synthetic gene networks: first, advancing and expanding the tool-
kit of available parts and modules; second, modeling and fine-tuning 

Ten years since the introduction of the field’s inaugural devices—the 
genetic toggle switch (J.J.C. and colleagues)1 and repressilator2—
synthetic biologists have successfully engineered a wide range of 
functionality into artificial gene circuits, creating switches1,3–9, oscil-
lators2,10–12, digital logic evaluators13,14, filters15–17, sensors18–20 and 
cell-cell communicators15,19. Some of these engineered gene networks 
have been applied to perform useful tasks such as population con-
trol21, decision making for whole-cell biosensors19, genetic timing for 
fermentation processes (J.J.C. and colleagues)22 and image process-
ing23–25. Synthetic biologists have even begun to address important 
medical and industrial problems with engineered organisms, such 
as bacteria that invade cancer cells26, bacteriophages with enhanced 
abilities to treat infectious diseases (T.K.L. and J.J.C.)27,28, and yeast 
with synthetic microbial pathways that enable the production of 
antimalarial drug precursors29. However, in most application-driven 
cases, engineered organisms contain only simple gene circuits that 
do not fully exploit the potential of synthetic biology. There remains 
a fundamental disconnect between low-level genetic circuitry and 
the promise of assembling these circuits into more complex gene 
networks that exhibit robust, predictable behaviors.

Thus, despite all of its successes, many more challenges remain in 
advancing synthetic biology to the realm of higher-order networks 
with programmable functionality and real-world applicability. Here, 
instead of reviewing the progress that has been made in synthetic 
biology, we present challenges and goals for next-generation syn-
thetic gene networks, and describe some of the more compelling 
circuits to be developed and application areas to be considered.
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rationally programmed based on sequence specificity7,40,41. Novel 
circuit interconnections could be established using small interfering 
RNAs (siRNAs) to control the expression of specific components. 
Recombinases, which target specific DNA recombinase-recognition 
sites, also represent a fruitful, underutilized source of interoperable 
parts. Recombinases have been used in the context of synthetic biol-
ogy to create memory elements and genetic counters9. However, more 
than 100 natural recombinases are known, and these can be engi-
neered by mutagenesis and directed evolution for greater diversity 
and sequence specificity42–45.

Libraries of well-characterized, interoperable parts, such as tran-
scription factors and recombinases, would vastly enhance the ability 
of synthetic biologists to build more complex gene networks with 
greater reliability and real-world applicability. In addition to libraries 
of individual parts, it would be of great value to have well-characterized 
and interoperable modules (e.g., switches, oscillators and interfaces) 
that could be used in a plug-and-play fashion to create higher-order 
networks and programmable cells. As the number of parts and mod-
ules expands, high-throughput, combinatorial efforts for quantifying 
the levels of interference and cross-talk between multiple components 
within cells will be increasingly important as guides for choosing the 
most appropriate components for network assembly.

Modeling and fine-tuning synthetic gene networks. Integrated efforts 
for modeling and fine-tuning synthetic gene circuits are useful for 
ensuring that assembled networks operate as intended. Such approaches 
will be increasingly important as more complex circuits are constructed 
along with the expanded development of interoperable parts. Although 
studies have shown that in some cases, component properties alone 
are sufficient for predicting network behavior22,31,46, others have dem-
onstrated the need for modeling and fine-tuning networks after their 
basic topologies have been established1,22. A multi-step design cycle that 
involves creating diverse component libraries, constructing, character-
izing and modeling representative network topologies, and assembling 
and fine-tuning desired circuits, followed by subsequent refinement 
cycles22, will be crucial for the successful design and construction of 
next-generation synthetic gene networks.

The fine-tuning of biomolecular parts and networks can be 
achieved by developing diverse component libraries through muta-
genesis followed by in-depth characterization and modeling22,47–51. 
Significant progress has been made in tuning gene expression by 
altering transcriptional, translational and degradation activities. For 
example, promoter libraries with a range of transcriptional activities 
can be created and characterized, plugged into in silico models and 
then used to develop synthetic gene networks with defined outputs, 
without significant post-hoc adjustments22,47–51. Alternatively, syn-
thetic ribosome binding site (RBS) sequences can be used to optimize 
protein expression levels. Recently, Salis et al.52 have developed a 
thermodynamic model for predicting the relative translational ini-
tiation rates for a protein with different upstream RBS sequences, 
a model that can also be used to rationally forward-engineer RBS 
sequences to give desired protein expression. In addition, protein 
degradation can be controlled by tagging proteins with degradation-
targeting peptides that impart different degradation dynamics53.

By automating the construction and characterization of biomo-
lecular components, extensive libraries could be created for the rapid 
design and construction of complex gene networks. These efforts, 
coupled with in silico modeling, would serve to fast-track synthetic 
biology (more detailed discussions of modeling techniques for syn-
thetic biology are found in refs. 22,31,54–57). However, to build 
reliable models of biomolecular parts and networks, new methods 

the behavior of synthetic circuits; third, developing probes for reliably 
quantifying state values for synthetic (and natural) biomolecular sys-
tems; and fourth, creating test platforms for characterizing component 
interactions within engineered gene networks, designing gene circuits 
with increasing complexity and developing complex circuits for use 
in higher organisms. These advances will allow synthetic biologists to 
realize higher-order networks with desired functionalities for satisfying 
real-world applications.

Interoperable parts and modules for synthetic gene networks. 
Although there has been no shortage of novel circuit topologies 
to construct, limitations in the number of interoperable and well-
characterized parts have constrained the development of more com-
plex biological systems22,31,35,36. The situation is complicated by 
the fact that many potential interactions between biological parts, 
which are derived from a variety of sources within different cellular 
backgrounds, are not well understood or characterized. As a result, 
the majority of synthetic circuits are still constructed ad hoc from a 
small number of commonly used components (e.g., LacI, TetR and 
lambda repressor proteins and regulated promoters) with a signifi-
cant amount of trial and error. There is a pressing need to expand 
the synthetic biology toolkit of available parts and modules. Because 
physical interconnections cannot be made in biological systems to 
the same extent as electrical and mechanical systems, interoperability 
must be derived from chemical specificity between parts and their 
desired targets. This limits our ability to construct truly modular parts 
and highlights the need for rigorous characterization of component 
interactions so that detrimental interactions can be minimized and 
factored into computational models.

Engineered zinc fingers constitute a flexible system for targeting spe-
cific DNA sequences, one which could significantly expand the available 
synthetic biology toolkit for performing targeted recombination, con-
trolling transcriptional activity and making circuit interconnections. 
Zinc-finger technology has primarily been used to design zinc-finger 
nucleases that generate targeted double-strand breaks for genomic 
modifications37. These engineered nucleases may be used to enhance 
recombination in large-scale genome engineering techniques34. A sec-
ond and potentially very promising use of engineered zinc fingers is 
as a source of interoperable transcription factors, which would greatly 
expand the current and limited repertoire of useful activators and 
repressors. In fact, zinc fingers have already been harnessed to create 
artificial transcription factors by fusing zinc-finger proteins with acti-
vation or repression domains38,39. Libraries of externally controllable 
transcriptional activators or repressors could be created by engineer-
ing protein or RNA ligand-responsive regulators, which control the 
transcription or translation of zinc finger–based artificial transcription 
factors themselves18. These libraries would enable the construction of 
basic circuits, such as genetic switches1, as well as more complex gene 
networks. In fact, several of the higher-order networks we describe 
below rely on having multiple reliable and interoperable transcriptional 
activators and repressors for proper functioning.

Even so, these engineered transcription factors have not yet been 
fully characterized, and if they are to be used as building blocks for 
complex gene networks, then knowledge of their in vivo kinetics and 
input-output transfer functions would be beneficial. In addition, much 
of the rich dynamics associated with small, synthetic gene networks is 
attributable to the cooperative binding or multimerization of transcrip-
tion factors, and it is not yet clear what further engineering is required 
to endow zinc-finger transcription factors with such features.

Nucleic acid–based parts, such as RNAs, are also promising can-
didates for libraries of interoperable parts because they can be 
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biologists. For instance, by coupling a synthetic gene network of inter-
est to a biological light/dark sensor as well as to fluorescent protein 
outputs, one could potentially measure the network’s input/output 
transfer function in a high-throughput fashion using spectrophoto-
metric microplate readers, without having to add varying concentra-
tions of chemical inducers. In essence, both control and monitoring of 
biomolecular systems would be accomplished using reliable and high-
speed optics that are typically associated with fluorescence readouts 
and microscopy. This is an exciting prospect, particularly in the context 
of microfluidic devices, which would facilitate the focusing of optical 
inputs and readouts to single cells.

Using electrical signals, in lieu of chemical or optical signals, for 
control and monitoring of biological systems would also present high-
speed advantages. Recently, advances have been made in integrating 
silicon electronics with lipid bilayers containing transmembrane pores 
to perform electronic signal conduction75. This technology may eventu-
ally allow direct communication and control between engineered cells 
and electronic circuits by means of ionic flow. The incorporation of 
these and other technologies to perturb and monitor the in vivo per-
formance of synthetic gene networks will enable us to achieve desired 
functionality faster and more reliably.

Test platforms for engineering complex gene circuits. Increasing 
complexity—whether assembling larger synthetic gene networks from 
smaller ones or engineering circuits into higher organisms—dramat-
ically increases the number of potential failure modes. In the former 
case, combining multiple individually functioning genetic circuits into 
a single cellular background can lead to unintended interactions among 
the synthetic components or with host factors, and these various failure 
modes are often difficult to pinpoint and isolate from one another. In 
the latter case, engineering synthetic networks for mammalian systems 
poses additional challenges beyond engineering circuits for bacterial 
and yeast strains, which have comparatively well-characterized genomes, 
transcriptomes, proteomes and metabolomes. Mammalian systems are 
much more complex and possess substantially less well-characterized 
components for engineering76, but for these and other reasons, consti-
tute fertile ground for new applications and genetic parts.

The development of test platforms where engineered gene circuits 
can be designed and validated before being deployed in other or more 
complex cellular backgrounds would mitigate failure-prone jumps in 
complexity. These platforms could be used to verify or debug circuit 
topology and basic functionality in well-controlled environments. For 
example, cells optimized for testing may be engineered to have mini-
mal genomes to decrease the risk of pleiotropic or uncharacterized 
interactions between the host and the synthetic networks77–81. The use 
of orthogonal parts that are decoupled from host cells may enable the 
dedication of defined cellular resources to engineered functions, which 
can simplify the construction and troubleshooting of gene circuits. For 
example, nucleic acid–based parts can be designed to function orthogo-
nally to the wild-type cellular machinery82–84. Artificial codons and 
unnatural amino acids, which have enabled new methods for studying 
existing proteins and the realization of proteins with novel functions, 
could also be used to produce synthetic circuits that function orthogo-
nally to host cells85. Simplifying backgrounds would additionally enable 
more accurate computational modeling of complex circuits before they 
are deployed into their ultimate environments. Furthermore, minimal 
cells could themselves contain synthetic circuits that provide useful 
testing functionalities, such as multiplexed transcriptional and trans-
lational controls and output probes.

Lower organisms can also be useful for the construction and 
characterization of synthetic gene networks before such systems are 

for probing and acquiring detailed in vitro and in vivo measurements 
are needed, which we discuss below.

Probes for characterizing synthetic gene networks. Significant advances 
have been made in the development of new technologies for manipulat-
ing biological systems and probing their internal states. At the single-mol-
ecule level, for instance, optical tweezers and atomic force microscopes 
provide new, direct ways to probe the biophysical states of single DNA, 
RNA and protein molecules as they undergo conformational changes and 
other dynamical processes58–62. However, we lack similar tools for track-
ing the in vivo operation of synthetic gene circuits in a high-throughput 
fashion. Ideally, making dynamical measurements of biological networks 
would involve placing sensors at multiple internal nodes, akin to how cur-
rent and voltage are measured in electrical systems. Furthermore, external 
manipulation of synthetic biomolecular systems is typically accomplished 
by the addition of chemical inducers, which can suffer from cross-talk63, 
be difficult to remove and be consumed over time. As a result, inputs are 
often troublesome to control dynamically.

Microfluidic devices have been coupled to single-cell microscopy and 
image processing techniques to enable increasingly precise manipula-
tion and measurement of cells, especially since inputs can be modulated 
over time64,65. These systems allow the rapid addition and removal of 
chemical inducers, enabling more sophisticated, time-dependent inputs 
than conventional step functions, while also enabling researchers to 
track and quantify single cells for long periods of time. These devel-
opments make possible the wider use of well-established engineering 
approaches for analyzing circuits and other systems in synthetic biology. 
For example, frequency-domain analysis, a technique used commonly 
in electrical engineering66,67, can be employed with microfluidics to 
characterize the transfer functions and noise behaviors of synthetic bio-
logical circuits66–68. Additionally, small-signal linearization of nonlinear 
gene circuits can be achieved by applying oscillatory perturbations with 
microfluidics and measuring responses at the single-cell level67,68.

Indeed, microfluidics provides a useful platform for perturbing syn-
thetic gene circuits with well-controlled inputs and observing the outputs 
in high-resolution fashion. Without the proper ‘sensors’ (that is, for quan-
titatively and simultaneously probing all the internal nodes of a given 
gene circuit), however, this technology alone is not sufficient to bring full, 
engineering-like characterization to synthetic gene networks.

Thus far, probes enabling quantitative measurements of synthetic 
gene circuits have primarily focused on the use of fluorescent proteins 
for in vivo quantification of promoter activity or protein expression. 
With the advent of novel mass spectrometry–based methods that pro-
vide global, absolute protein concentrations in cells69, quantitative 
transcriptome data can now be merged with proteome data, improv-
ing our ability to characterize and model the dynamics of synthetic 
gene networks. Global proteomic data may also assist synthetic biolo-
gists in understanding the metabolic burden that artificial circuits 
place on host cells. Further efforts to devise fluorescent-based and 
other types of reporters for the simultaneous monitoring of tran-
scriptome and proteome dynamics in vivo are needed to close the 
loop on full-circuit accounting. Some promising tools under devel-
opment include tracking protein function by incorporating unnatu-
ral amino acids that exhibit fluorescence70,71, quantum dots72 and 
radiofrequency-controlled nanoparticles73.

As the field awaits entire-circuit probes, there are, in the meantime, 
several potentially accessible technologies for increasing the throughput 
and pace of piecewise gene-circuit characterization. Recent advances 
in engineering light-inducible biological parts and systems23,24,74 
have unlocked the potential for optical-based circuit characterization, 
expanding the number and type of tunable knobs available to synthetic 
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cellular-based signal processing. Synthetic transcriptional cascades can 
exhibit low-pass filter characteristics16, and artificial gene circuits with 
negative autoregulation are capable of pushing the noise spectra of their 
outputs to higher frequencies, where it can be filtered by the low-pass 
characteristics of a downstream gene cascade88. Tunable genetic filters 
with respect to time could be implemented by tuning RNA and/or 
protein degradation in autoregulated negative-feedback circuits66,89–91 
(Fig. 1). Such circuits would be useful in studying and shaping noise 
spectra to optimize the performance of artificial gene networks.

Recently, an externally tunable, bacterial bandpass-filter has been 
described17 that uses low-pass and high-pass filters in series to derive 
bandpass activity with respect to enzymes and inducer molecules. 
These types of filters, when coupled to quorum-sensing modules, can 
be used for spatial patterning applications15,17. They could also be 
readily extended to complex multicellular pattern formation by engi-
neering a suite of different cells, each carrying filters that respond to 
different inputs. Synthetic gene circuits based on tunable filters may 
also make useful platforms for studying cellular differentiation and 
development, as artificial pattern generation is a model for how natural 
systems form complex structures15,17.

Along similar lines, recent developments in stem cell biology have 
unlocked important potential roles for synthetic gene networks92. 
For example, it has been shown that stochastic fluctuations in protein 
expression in embryonic stem cells are important for determining 
differentiation fates93. Indeed, stochasticity might be harnessed in 
differentiation to force population-wide heterogeneity and provide 
system robustness, though it may also be detrimental if it causes 
uncontrollable differentiation.

The effects of stochasticity in stem cell differentiation could be stud-
ied with synthetic gene circuits that act as tunable noise generators. 
Lu et al., for instance, considered two such designs for modulating the 
noise profile of an output protein94. This showed that the mean value 
and variance of the output can be effectively tuned with two external 
signals, one for regulating transcription and the other for regulating 
translation, and to a greater extent with three external signals, the 
third for regulating DNA copy number94. By varying noise levels while 
keeping mean expression levels constant, the thresholds at which gene 
expression noise yields beneficial versus detrimental effects on stem cell 
differentiation can be elucidated (J.J.C. and colleagues)95.

Furthermore, the discovery of induced pluripotent stem cells (iPSCs), 
based on the controlled expression of four transcription factors (OCT4, 
SOX2, KLF2 and MYC) in adult fibroblasts, has created a source of 
patient-specific progenitor cells for engineering92. Genetic noise gener-
ators and basic control circuits could be used to dissect the mechanism 
for inducing pluripotency in differentiated adult cells by controlling 
the expression levels of the four iPSC-dependent transcription fac-
tors. Ultimately, these efforts could lead to the development of timing 
circuits22 for higher-efficiency stem cell reprogramming.

Lineage commitment to trophectoderm, ectoderm, mesoderm and 
endoderm pathways are controlled by distinct sets of genes93, and many 
interacting factors, including growth factors, extracellular matrices and 
mechanical forces, play important roles in cellular differentiation96. 
As differentiation pathways become better understood, synthetic gene 
cascades may be used to program cellular commitment with increased 
fidelity for applications in biotechnology and regenerative medicine.

Analog-to-digital and digital-to-analog converters. Electrical engineers 
have used digital processing to achieve reliability and flexibility, even 
though the world in which digital circuits operate is inherently analog. 
Although synthetic biological circuits are unlikely to match the com-
puting power of digital electronics, simple circuits inspired by digital 

extended and deployed into higher organisms. In fact, several syn-
thetic circuits, such as clocks and switches, were initially developed 
in bacteria and later translated into mammalian counterparts using 
analogous design principles3,7,12. Additionally, lower-organism test 
platforms could be endowed with certain features of interest from 
desired higher-organism hosts. For example, RNA interference–
based circuits could be built first in Saccharomyces cerevisiae before 
being used in mammalian cells86. In one case, mitochondrial DNA 
was engineered into Escherichia coli before retransplantation into 
mammalian hosts87. Other biomolecular systems and components 
that are ripe for engineering in lower organisms include chromatin, 
ubiquitins and proteosomes.

The introduction of synthetic gene networks into higher organ-
isms also runs the risk of compromising natural networks, which 
have evolved to maintain cellular robustness. Accordingly, methods 
for simplifying organisms for designing and testing synthetic circuits 
could be extended to engineer final deployment hosts, making them 
more conducive to synthetic gene circuits. Ultimately, in vivo directed 
evolutionary methods, based on repeated rounds of mutagenesis and 
selection within final cellular backgrounds, could be used to identify the 
optimal performance conditions of synthetic gene networks after their 
basic functionalities have been validated in earlier test platforms34.

Next-generation gene networks
Advancing synthetic gene circuits into the realm of higher-order net-
works with programmable functionality is one of the ultimate goals of 
synthetic biology. Useful next-generation gene networks should attempt 
to satisfy at least one of the following criteria: first, yield insights into 
the principles that guide the operation of natural biological systems; 
second, highlight design principles and/or provide modules that can 
be applied to the construction of other useful synthetic circuits; third, 
advance the tools available for novel scientific experiments; and fourth, 
enable real-world applications in medicine, industry and/or agriculture. 
Below, we describe several next-generation gene circuits and discuss 
their potential utility in the context of the above criteria.

Tunable filters and noise generators. Fine-tuning the performance of a 
synthetic gene network typically means reengineering its components, 
be it by replacing or mutating its parts. Networks whose responses can 
be tuned without the reengineering of its parts, such as the biological 
version of a tunable electronic filter, would enable more sophisticated 

Repressor 1 Repressor 2

Tunable
protein

feedback

Tunable
RNA

feedback

P1 P1

Figure 1  Tunable genetic filter. Filter characteristics can be adjusted by 
tuning the degradation of RNA and protein effectors in negative-feedback 
loops. Examples of RNA effectors include siRNAs, riboregulators and 
ribozymes. Examples of protein effectors include transcriptional activators 
and repressors. In this example, the P1 promoter is suppressed by 
transcriptional repressor proteins expressed from the Repressor 1 gene.
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then digital combinations of inducers could be used to program defined 
levels of transcriptional activities (Fig. 2b). Such a circuit might be use-
ful in biotechnology applications, where reliable expression of different 
pathways is needed for programming different modes of operation in 
engineered cells. In addition, digital-to-analog converters may be useful 
in providing a multiplexed method for probing synthetic circuits. For 
example, because each analog level is associated with a distinct digital 
state, a single analog output can allow one to infer the internal digital 
state of a synthetic gene network (Fig. 2b).

Adaptive learning networks. Synthetic gene networks that can learn or 
adapt to exogenous conditions could provide insight into natural net-
works and be useful for applications where adaptation to external stimuli 
may be advantageous, such as autonomous whole-cell biosensors97,98. 
Endogenous biomolecular networks in bacteria can exhibit anticipatory 
behavior for related perturbations in environmental stimuli99,100. This 
type of behavior and the associated underlying design principles could, 
in principle, be harnessed to endow transcriptional networks with the 
ability to learn97, much like synaptic interconnections between neurons. 
A basic design that would enable this functionality involves two tran-
scriptional activators (Activator A and Activator B), each of which is 
expressed in the presence of a different stimulus (Fig. 3a). Suppose that 
both transcriptional activators drive the expression of effector proteins 
(Effector A and Effector B), which control distinct genetic pathways. 
When both transcriptional factors are active, indicating the simultaneous 
presence of the two stimuli, a toggle switch is flipped ON. This creates  

and analog electronics may significantly increase the reliability and 
programmability of biological behaviors.

For example, biological analog-to-digital converters could translate 
external analog inputs, such as inducer concentrations or exposure 
times, into internal digital representations for biological processing. 
Consider, for instance, a bank of genetic switches with adjustable 
thresholds (Fig. 2a). These switches could be made out of libraries of 
artificial transcription factors, as described above. This design would 
perform discretization of analog inputs into levels of digital output. 
Depending on the level of analog inputs, different genetic pathways 
could be activated. Cells possessing analog-to-digital converters would 
be useful as biosensors in medical and environmental settings. For 
example, whole-cell biosensors19, resident in the gut, may be engineered 
to generate different reporter molecules that could be measured in stool 
depending on the detected level of gastrointestinal bleeding. Expressing 
different reporter molecules rather than a continuous gradient of a 
single reporter molecule would yield more reliable and easily inter-
pretable outputs.

Digital-to-analog converters, on the other hand, would translate 
digital representations back into analog outputs (Fig. 2b); such sys-
tems could be used to reliably set internal system states. For example, 
instead of fine-tuning transcriptional activity with varying amounts of 
chemical inducers, a digital-to-analog converter, composed of a bank of 
genetic switches, each of which is sensitive to a different inducer, might 
provide better control. If each activated switch enabled transcription 
from promoters of varying strengths (Poutput,3 > Poutput,2 > Poutput,1), 
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Figure 2  Genetic signal converters.  
(a) Analog-to-digital converter circuit that 
enables the discretization of analog inputs. 
The circuit is composed of a bank of toggle 
switches that have increasing response 
thresholds so that sequential toggling is 
achieved as input levels increase. The 
design could enable different natural 
or synthetic pathways to be activated 
depending on distinct input ranges, which 
may be useful in cell-based biosensing 
applications. Inputs into promoters and 
logic operations are shown explicitly except 
when the promoter (P) name is italicized, 
which represents an inducible promoter. 
(b) Digital-to-analog converter circuit 
that enables the programming of defined 
promoter activity based on combinatorial 
inputs. The circuit is composed of a bank 
of recombinase-based switches, known 
as single-invertase memory modules 
(SIMMs)9. Each SIMM is composed of an 
inverted promoter and a recombinase gene 
located between its cognate recognition 
sites, indicated by the arrows. Upon 
the combinatorial addition of inducers 
that activate specific Pwrite promoters, 
different SIMMs will be flipped, enabling 
promoters of varying strength to drive 
green fluorescent protein (GFP) expression. 
This allows combinatorial programming of 
different levels of promoter activity.
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AND gates, which once again possess secondary inputs for detecting the 
presence of the different stimuli. If these gates drive different fluorescent 
reporters when activated, then the overall system will associate only a 
single type of stimuli with the learning trigger and respond with an 
output only in the presence of the single type of stimuli in the future. 
This system could potentially be adapted to create chemotactic bacteria 
that ‘remember’ a particular location or landmark and only respond to 
the gradient of one chemoattractant.

In more complicated instances of learning networks, it is conceivable 
that synthetic gene circuits could be designed to adapt on their own, 
that is, without external mutagenesis or exogenous nucleic acids. For 
example, transcription-based interconnections could be dynamically 
reconfigured based on the expression of DNA recombinases9. Another 
design could involve error-prone RNA polymerases, which create 
mutant RNAs that could be reverse-transcribed and joined back into 
the genome based on double-stranded breaks created by zinc-finger 
nucleases. Specificity for where the mutations would occur could be 
achieved by using promoters that are uniquely read by the error-prone 
RNA polymerases, such as T7 promoters with a T7 error-prone RNA 

an associative memory. Subsequently, if either of the transcription 
factors is activated, AND logic between the ON toggle switch and one 
transcriptional activator produces the effector protein that controls the 
pathways of the other activators. On the basis of this design, cells could 
be programmed to associate simultaneous inputs and exhibit anticipa-
tory behavior by activating the pathways of associated stimuli, even in 
the presence of only one of the stimuli.

In another example of a learning network, one could design bacte-
ria that could be taught ‘winner-take-all’ behavior in detecting stimuli, 
similar to cortical neural processing101. In this example, bacteria could 
be exposed to different types of chemical stimuli (Inducers A–C; Fig. 
3b). An exogenously added inducer (Inducer ‘Learn’) acts as a trigger 
for learning and serves as one input into multiple, independent tran-
scriptional AND gates, which possess secondary inputs for detecting the 
presence of each of the different chemical stimuli. Each gate drives an 
individual toggle switch that, when flipped, suppresses the flipping of the 
other switches. This creates a winner-take-all system in which the pres-
ence of the most abundant chemical stimuli is recorded. Furthermore, 
the toggle switch outputs could be fed as inputs into transcriptional 
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Figure 3  Adaptive learning networks. (a) Associative memory circuit enables association between two simultaneous inputs (‘Activator A’ and ‘Activator 
B’) so that the subsequent presence of only a single input can drive its own pathway and the pathway of the other input. Associations between inputs 
are recorded by a promoter ‘PAND’ that is activated in the presence of Activator A and Activator B to toggle the memory switch. Inputs into promoters and 
logic operations are shown explicitly except when the promoter name is italicized, which represents an inducible promoter. (b) Winner-take-all circuit 
allows only one input out of many to be recorded. This effect is achieved by a global repressor protein that gates all inputs and prevents them from being 
recorded if there has already been an input recorded in memory.
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administration of hormones may have therapeutic benefit compared 
with synthetic hormones applied in a non-ultradian schedule.

An alternative to device-based periodic drug delivery systems could 
be engineered bacteria that reside in the human gut and synthesize an 
active drug at fixed time intervals. To realize such an application, one 
would need to develop and implement intercell signaling circuits for 
synchronizing and entraining synthetic genetic oscillators112,113. Such 
circuits could be based, for example, on modular components from 
bacterial quorum sensing systems. Along similar lines, one could engi-
neer light-sensitive23,24 entrainment circuits for synchronizing mam-
malian synthetic genetic oscillators. This may help in the construction 
of oscillators that can faithfully follow circadian rhythms.

polymerase, and zinc-finger nucleases that define where homologous 
recombination can occur102. In this design, enhanced mutagenesis fre-
quencies could be targeted to specific regions of the genome.

Protein-based computational circuits. Beyond DNA- and RNA-based 
circuits, protein-based synthetic systems have the potential to enable 
flexible and fast computation through post-translational mecha-
nisms103–105. Protein-based circuits are advantageous in that they can 
be designed to target synthetic activities to subcellular locations24. In 
this way, different sites within the same cell could have different protein 
circuit states rather than relying solely on shared cellular promoter 
states, thereby enabling researchers to explore the functional dynamics 
and consequences of cellular localization. Protein-based designs can 
also operate on much shorter time scales than genetic circuits because 
their operation is independent of the transcription and translation 
machinery106. Accordingly, it would be exciting to develop protein-
based circuits that can act as rapidly responding logic gates, smart sen-
sors or memory elements.

With regards to this last application, synthetic amyloids could serve 
as novel components for epigenetic memory circuits. By fusing a yeast 
prion determinant from Sup35 to the rat glucocorticoid receptor, a 
transcription factor regulated by steroid hormone, Li and Lindquist107 
demonstrated that the state of transcriptional activity from the fused 
protein could be affected and inherited stably in an epigenetic fashion. 
Given the increasing number of identified prionogenic proteins108, 
there is an opportunity to create amyloid-based memory systems that 
transmit functionality from one generation to the next (Fig. 4). In 
these systems, aggregation could be induced by the transient expres-
sion of the prionogenic domain (PD), whereas disaggregation could be 
achieved by expressing protein remodeling factors, such as chaperones 
(heat shock protein 104). Though this system relies on the transcrip-
tion and translation of prionogenic and disaggregating factors, it may 
enable the control of protein effectors that can operate on shorter 
time scales. For example, enzymes fused to a prionogenic domain may 
exhibit different activity levels depending on whether they are attached 
to an amyloid core.

Because genetic circuits and proteins function on different time scales, 
it would also be worthwhile to develop synthetic networks that couple 
both modalities. For example, the output of protein-based computation 
could be stored in recombinase-based memory elements5,6,9. It would 
also be conceivable to couple the two types of networks to harness their 
varied filtering capabilities. For example, the mitogen-activated protein 
kinase cascade contains both positive-feedback and negative-feedback 
loops that enable rapid activation followed by deactivation109, thus 
acting like a high-pass filter. On the other hand, transcription- and 
translation-based gene networks operate on longer time scales render-
ing them effective low-pass filters. Thus, synthetic kinase/phosphatase 
circuits that in turn drive gene-based networks could be used to create 
bandstop filters, which could be coupled with other bandpass filters 
and used for complex patterning applications.

Intercell signaling circuits and pulse-based processing for genetic 
oscillators. Robust genetic oscillators with tunable periods have been 
developed through a combination of experimental and computational 
efforts11,12,110. In addition to shedding light on the design principles 
guiding the evolution of naturally occurring biological clocks and circa-
dian rhythms, these synthetic oscillators may also have significant util-
ity in biotechnology applications, such as in the synthesis and delivery 
of biologic drugs. Glucocorticoid secretion, for instance, has a circadian 
and ultradian pattern of release, resulting in transcriptional pulsing 
in cells that contain glucocorticoid receptors111. Therefore, pulsatile 
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Figure 4  Amyloid-based memory. (a) Amyloid-based memory can be 
implemented by fusing a prionogenic domain (PD) to an effector gene, such 
as a transcriptional activator. (b) Overexpressing the prion-determining region 
via promoter ‘POFF’ causes aggregation of the fusion protein, rendering the 
effector inactive. (c) Subsequent overexpression of chaperone proteins (e.g., 
HSP104), which act to disaggregate amyloids, via promoter ‘PON’ releases 
the effector from the amyloid state and enables it to fulfill its function. 
Inputs into promoters and logic operations are shown explicitly except when 
the promoter name is italicized, which represents an inducible promoter.
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a recombinase-based cascade of memory units and a riboregulated 
transcriptional cascade—that could be adapted for this purpose9. In 
each case, one could incorporate into the counters promoters that are 
cell cycle–dependent and replace the output reporter proteins with 
toxic proteins (Fig. 5). Circuits of this sort would enable cells to be 
programmed to have limited, prescribed lifetimes.

Redundant circuits that implement digital logic allowing for the 
conditional survival of engineered cells only within their desired envi-
ronments would also potentially reduce the failure rate of biological 
containment. If a broad set of interoperable parts were developed, mul-
tiple layers of control circuits could be built for increased reliability. As 
in electrical and mechanical engineering, quantitative analysis of failure 
rates in biological systems would enable improved systems-level design 
and robustness of synthetic gene networks. This could be accomplished, 
for example, by subjecting synthetic containment circuits to a variety 
of stressful conditions that would lead to increased mutation rates and 
thus improper functioning. Rational and directed evolutionary meth-
ods to engineer cells with decreased mutation rates or the application of 
redundant circuits could then be employed to minimize failure rates.

Whole-cell biosensors and response systems. Programmable cells that 
act as whole-cell biosensors have been created by interfacing engineered 
gene networks with the cell’s natural regulatory circuitry19 or with 
other biological components, such as light-responsive elements23,24. 
The development of novel or reengineered sensory modalities and 

Spike- or pulse-based processing is present in neurons and has been 
adapted for use in hybrid computation in electrical systems, where inter-
spike times are viewed as analog parameters and spike counts are viewed 
as digital parameters114. In synthetic gene circuits, pulse-based processing 
may open up exciting new methods for encoding information in engi-
neered cells. For example, instead of transmitting information between 
cells by means of absolute levels of quorum-sensing molecules, the fre-
quency of a robust genetic oscillator could be modulated. This might 
be useful in delivering information over longer distances, as frequency 
information may be less susceptible to decay over distance than absolute 
molecule levels. Representing signals in this fashion is analogous to fre-
quency modulation encoding in electrical engineering.

Engineered circuits for biological containment. Biological contain-
ment, which refers to efforts for ensuring that genetically modified 
organisms do not spread throughout the natural environment, can be 
achieved by passive or active techniques. In passive containment, cells 
are engineered to be dependent on exogenous supplementation to 
compensate for gene defects, whereas in active containment, cells are 
engineered to directly express toxic compounds when located outside 
their target environments115. Synthetic genetic counters or timers 
for programmed cell death could be used as an active containment 
tool. Counting circuits could, for example, be designed to trigger cell 
suicide after a defined number of cell cycles or a sequence of events. 
Recently, we have developed two designs for synthetic counters—
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Figure 5  Cell-cycle counter for biological containment. Cell-cycle counting is accomplished with a cascade of single recombinase-based memory units (e.g., 
SIMMs9), each of which is driven by a cell cycle–dependent promoter. After N cell-cycle events are counted, the gene circuit unlocks the expression of a toxic 
protein triggering cell death. Protein degradation tags (ssrA) are fused to the recombinase genes to ensure stability of the circuit.
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Ultimately, programmable cells possessing novel sensory modules 
could be integrated with mechanical, electrical and chemical systems 
to detect, process and respond to external stimuli, and exploited for a 
variety of environmental and biomedical applications. For example, 
bacteria could be engineered to seek out hazardous chemicals or heavy 
metals in the environment, perform cleanup and return to their origin 
to report on the number of hazardous sites encountered via analysis 
by microfluidic devices. To eventually achieve such complex tasks, an 
intermediate goal might involve programming chemotactic bacteria to 
swim from waypoint to waypoint. A dish containing gradients of several 
chemoattractants would constitute the navigational course (Fig. 6a).

At the core of this design could be a synthetic gene network made up 
of a series of sequential toggle switches that control the expression of 
receptors needed for bacterial chemotaxis toward chemoattractants122 
(Fig. 6b). The programmable cells would initially express only a single 
chemoattractant receptor, and therefore would migrate up only one of 
the chemoattractant gradients122. To determine that a waypoint has 
been achieved, a threshold-based toggle switch would be turned ON 
upon reaching a sufficiently high concentration of the chemoattractant. 

components would expand the range of applications that program-
mable cells could address. This could involve engineering proteins 
or RNAs to detect a range of small molecules116,117, or designing 
protein-based synthetic signaling cascades by rationally rewiring the 
protein-protein interactions and output responses of prokaryotic two-
component signal transduction systems118.

The detection of electrical signals or production of biological energy 
(e.g., mimicking the operation of electrical electrocytes119) could also 
be enabled by incorporating natural or synthetic ion channels into engi-
neered cells. In addition, magneto-responsive bacteria could play useful 
roles in environmental and medical applications120. Synthetic bacteria, 
designed to form magnetosomes and seek out cancer cells, could be 
used to enhance imaging, and magnetic bacteria could be engineered 
to interact with nanoparticles to enhance the targeting of cancer cells. 
Moreover, the introduction of mechanosensitive ion channels (e.g., 
MscL from Mycobacterium tuberculosis and MscS from E. coli) could 
endow designer cells with the ability to detect mechanical forces121. 
Such cells may be useful in vivo sensors for studying cellular differentia-
tion signals or the effects of external stresses on the body.
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intracellular variables, such as pH, light intensity and the metabolic 
state of the cell. The switchboard design, which would integrate novel 
sensory modalities with tunable, interoperable genetic circuits, would 
have broad functionality. It could be programmed, for example, to 
shift carbon flux between different pathways depending upon cellular 
conditions, thereby optimizing the production of biofuels, specialty 
chemicals and other materials.

Conclusions
The past decade has witnessed the power of intelligently applying engi-
neering principles to biology in the development of many exciting, 
artificial gene circuits and biomolecular systems. We are convinced that 
next-generation synthetic gene networks will advance understanding of 
natural systems, provide new biological modules and create new tools 
that will enable the construction of even more complex systems. Most 
importantly, if the current pace of progress in synthetic biology contin-
ues, real-world applications in fields such as medicine, biotechnology, 
bioremediation and bioenergy will be realized.
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