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SUMMARY
A ubiquitous feature of eukaryotic transcriptional regulation is cooperative self-assembly between transcrip-
tion factors (TFs) and DNA cis-regulatory motifs. It is thought that this strategy enables specific regulatory
connections to be formed in gene networks between otherwise weakly interacting, low-specificity molecular
components. Here, using synthetic gene circuits constructed in yeast, we find that high regulatory specificity
can emerge from cooperative, multivalent interactions among artificial zinc-finger-based TFs. We show that
circuits ‘‘wired’’ using the strategy of cooperative TF assembly are effectively insulated from aberrant misre-
gulation of the host cell genome. As we demonstrate in experiments and mathematical models, this mecha-
nism is sufficient to rescue circuit-driven fitness defects, resulting in genetic and functional stability of circuits
in long-term continuous culture. Our naturally inspired approach offers a simple, generalizable means for
building high-fidelity, evolutionarily robust gene circuits that can be scaled to a wide range of host organisms
and applications.
INTRODUCTION

In cells, gene regulatory networks integrate and process external

and internal information into appropriate gene expression output

responses.1 Connections in these networks are mediated by the

binding of transcription factors (TFs) to DNA cis-regulatory mo-

tifs (CRMs) located in upstream proximity to sites of transcrip-

tional initiation. Proper cellular function critically depends on

the genome-wide fidelity of these interactions: TFs must recog-

nize gene-associated CRMs with high specificity while avoiding

off-target interactions that can result in aberrant misregulation

(Figure 1). Indeed, there is evidence that native regulatory

network fidelity is optimized during evolution, likely through a

combination of positive and negative selection processes that,

respectively, maximize on-target regulation while minimizing

off-target misregulation.2–10 Disruption of network fidelity due

to altered TF specificity or expression levels can lead to a loss
3810 Cell 186, 3810–3825, August 31, 2023 ª 2023 The Author(s). Pu
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in cellular fitness or, in the case of multicellular organisms, to

abnormal development or oncogenesis.11,12

Extensive and ongoing investigation into the molecular basis

of transcriptional regulation has revealed that strategies em-

ployed by cells to maintain network fidelity can vary dramatically

across phylogeny.13,14 For example, network connections in

prokaryotes are maintained by families of TFs (e.g., helix-turn-

helix and winged-helix members) that recognize CRMs via

large-footprint, high-affinity interactions capable of specifying

unique addresses within small-sized genomes (106–107

bp).14–16 By contrast, despite possessing much larger genomes

(107–109 bp), eukaryotic cells primarily regulate transcription us-

ing TFs (e.g., zinc-finger [ZF] and homeobox family TFs) that

recognize and weakly bind to short, highly degenerate CRMs

that occur at locations scattered throughout the genome.17–23

How then can network fidelity be established with such low

specificity TFs that are incapable of cognate CRM recognition
blished by Elsevier Inc.
creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Gene networks rely on specific in-

teractions between transcription factors

and target genes for proper cellular function

(A) Cross-reactivity arising from transcription fac-

tor (TF) mutations or the introduction of synthetic

circuits can drive loss of genome-wide interaction

fidelity and disruption of cellular function and

fitness.

(B) Activation of synthetic gene circuits, con-

structed from a common class of artificial zinc-

finger (ZF)-based synthetic transcription factors

(synTFs), results in observable fitness defects in

yeast. The inducible circuit was chromosomally

integrated into yeast, induced by addition of

b-estradiol (EST), and circuit activation and

cellular fitness were quantified by flow cytometry

for Venus reporter fluorescence and pairwise

growth competition, respectively, 36 h following

induction. Bars represent mean values for three

biological replicates ± SD.

Related to Figure S1.
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within a complex genome? One explanation is that regulatory

connections in eukaryotic networks are established via the

cooperative assembly of TFs at closely spaced clusters of

CRMs located within enhancer regions.13,24–28 Under this

scheme, CRM proximity strengthens TF binding through weak

multivalent interactions between TFs and with associated tran-

scriptional cofactors.13,29–31 Thus, because functional regulatory

connections are dependent on the cooperative assembly of mul-

tiple TFs, eukaryotes can maintain network fidelity despite the

potential for genome-wide CRM occurrence.32

Over the last two decades, engineering artificial transcriptional

regulatory networks to reprogram cellular behavior has become

a major focus for the field of synthetic biology33,34 and has

emerged as a powerful approach for the development of cell-

based biotechnologies.35–38 These engineered networks, often

termed gene circuits, are constructed using TF-CRM interac-

tions that specify links between genes or couple gene expres-

sion outputs to molecular inputs such as small molecules, pro-

teins, or RNA.39,40 To date, the predominant focus in the field

has been on identifying molecular parts (e.g., engineered TFs

and promoters) and validating design strategies that enable the

construction of gene circuits with quantitatively precise steady-

state and dynamic behavior. Circuits engineered in both

prokaryotic and eukaryotic host cells are currently under devel-

opment for a wide range of applications, including metabolic en-

gineering and cellular therapy. An emerging and critical feature of

designing circuits for these applications is their genetic stabil-

ity.41 Introducing gene circuits into host cells can impose a

fitness cost by creating a metabolic or resource burden or

from expression of a toxic protein product.42–44 Cells harboring
C

mutations that abrogate circuit function

can therefore acquire selective growth

advantages over those with functionally

intact circuits, leading to the progressive

loss of circuit-bearing cells from a

population. Although design strategies

for addressing these issues have been
described,44–48 most rely on challenging ad hoc debugging,

and generalizable rules for engineering circuit stability remain

mostly undefined.

Disruption of transcriptional network fidelity represents

another potential source of instability for gene circuits. To date,

most circuit engineering efforts have focused on designing TF-

CRM interactions to support robust regulatory connections.

However, it is seldom investigated whether circuit expression

leads to diminished fitness through spurious interactions be-

tween circuit TFs and non-cognate CRMs within the host cell

genome. Indeed, loss of network fidelity resulting from circuit-

associated TF expression may pose an acute challenge for

gene circuits engineered in eukaryotic cells, which are often con-

structed using low-information TFs with potential for off-target

misregulation. We recently developed a gene circuit engineering

platform in yeast that uses synthetic ZF-derived transcriptional

activators to mediate circuit connectivity.49 As our previous

work demonstrates, this framework can be readily utilized to

construct diverse synthetic network connectivity, enabling pre-

cise control over circuit dose response as well as more complex

signal processing behavior.50 In this study, we investigate the

genetic stability of circuits engineered using this framework.

We show that an observable fitness cost associated with circuit

activity is caused by off-target misregulation of host cell tran-

scription, leading to the gradual loss of circuit function across

a cell population. In order to restore network fidelity, we draw

upon the organization of natural networks as inspiration and

test whether cooperative TF assembly can be used as an engi-

neering strategy to create insulated regulatory connections

that limit off-target TF binding. As our results show, circuit
ell 186, 3810–3825, August 31, 2023 3811
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connections that are functionally dependent on multivalent as-

semblies can be used to effectively mitigate misregulation and

restore fitness, resulting in the long-term stabilization of circuit

function.

RESULTS

Our recently reported synthetic gene circuit engineering platform

recapitulates many of the essential design features of native

transcriptional regulation in yeast and other eukaryotes. The

platform comprises a set of synthetic TFs (synTFs) constructed

from Cys2-His2 ZFs, the most prevalent and conserved DNA-

binding domain across eukaryotes.20,51 The creation of tunable

network linkages using synTFs is facilitated by their modular

design, and they are composed of 3-finger (3F) ZF domain arrays

engineered to bind artificial �9 bp CRMs that are arranged in

clusters upstream of a core promoter. Appending transcriptional

activation domains or protein-protein interaction domains to

either terminus of the ZF array enables synTFs to, respectively,

activate transcription at the core promoter and interact with

synTFs bound to adjacent CRMs (Figure S1A). The strength of

synTF-mediated circuit linkages can be tuned by adjusting mo-

lecular parameters such as the number of CRMs and the

strength of ZF binding. Furthermore, we created a collection of

20 distinct ZF species with complementary CRM specificities

that facilitate robust construction of circuit designs featuring

multiple synTFs. Our work and that of others have demonstrated

the utility of programming synTF circuits for a variety of circuit

functions in host cells that span eukaryotic phylogeny, including

in therapeutically relevant human cells.49,50,52–60

Since the DNA-binding sites that our synTFs interact with are

of a similarly low-information content as those of native eukary-

otic ZF-TFs,14,61 there is a possibility for off-target interactions

between synTFs and genomic CRM sites, potentially leading to

perturbation of host cell transcriptional network fidelity. Although

the diminished circuit performance or host fitness that accom-

panies a loss of fidelity may go unobserved during short-time-

scale experiments, it is possible that such phenotypic defects

may manifest during longer-timescale experiments that involve

cell growth over many generations. This possibility motivated

us to test whether there are measurable fitness costs associated

with expression of synTF circuitry in yeast. We constructed a

prototype inducible circuit consisting of a single transcriptional

network linkage in which expression of a synTF containing a

ZF from our collection (42-10) is under the control of an estradiol

(EST)-inducible system to activate expression of a Venus re-

porter gene (Figures 1B, S1A, and S1B; STAR Methods).

Following induction with EST, we observed an expected level

of reporter activation. However, we also observed a concomitant

loss of cellular fitness as measured over 36 h in pairwise growth

competition with a reference control strain (Figures 1B and S1C).

Control experiments confirmed that synTF expression was the

source of both circuit activation and the fitness penalty, and ex-

pressing the combination of ZF with transactivation domain

(TAD), but not either domain independently, led to a fitness

decrease (Figure S1D ‘‘high affinity’’). To investigate whether

this result was specific to ZF 42-10-derived synTFs, we con-

structed circuits featuring synTFs containing ZFs from our entire
3812 Cell 186, 3810–3825, August 31, 2023
collection (Figure S1E). For these 20 synTFs, which contain an

average of 97.8 potential genomic binding sites (Figure S1F),

we observed a consistent pattern of circuit activation and fitness

loss, highlighting the generality of this observation.

Cooperative TF assemblies reduce fitness cost burden
while maintaining circuit output
Because of the dependence of the observed growth phenotype

on a synTF-TAD fusion, we reasoned that circuit-mediated

fitness defects could potentially be the result of altered native

gene expression caused by synTFs binding to off-target CRMs

throughout the host cell genome. Indeed, analysis of the yeast

genome revealed the occurrence of 78 sites that were sequence

matches for the core 42-10 CRM and another 1,839 sites con-

taining single base mismatches (Figure S1F). Since this abun-

dance of potential off-target sites would make removal via

genome editing time consuming and laborious, we considered

less complicated engineering strategies that could mitigate

fitness cost while maintaining circuit function. The predominant

approach for programming network connections in synthetic cir-

cuits is based on TFs that have ‘‘one-to-one’’ specificity, a

design strategy that mirrors native prokaryotic gene regulation

by relying on high-information content, binary TF-CRM recogni-

tion to encode regulatory links with genome-wide specificity. On

the other hand, regulatory strategies involving cooperative as-

sembly that are common in eukaryotic cells rely on TFs that

are individually weakly binding and low information to establish

robust, highly specific connections through multivalent associa-

tion. Since these TFs have molecular characteristics similar to

our synTFs, we hypothesized that circuits incorporating regula-

tion by cooperative assembly could potentially be used to engi-

neer synthetic circuits with enhanced fidelity and diminished

fitness defects.

To gain insight into molecular strategies for using cooperative

synTF assemblies to construct highly specific circuit connec-

tions, we constructed a simple thermodynamic-based model

of transcription regulation that extends our previous work50 (Fig-

ure 2A; STARMethods). This class ofmodel can offer a simplified

first-principles framework for predicting gene expression pat-

terns based on key biophysical properties (e.g., protein-DNA

interactions and protein-protein interactions) and can be useful

as a guide for understanding synthetic systems in which such

properties are design-specified.62–65 Our model considers the

simplified case of a TF that can interact with aCRMat both target

synthetic (SYN) and ‘‘off-target’’ native (NAT) loci. As an

example, we consider a SYN locus with four tandem CRMs

and a NAT locus with a single CRM, where all sites are assumed

to be identical (Figures S2A and S2B). CRM binding is governed

by TF concentration ([TF]) and its affinity for the CRM (KTF), and

the energy of the cooperative interactions between TFs bound

to adjacent sites (c).63 We defined a regulatory specificity score

as the difference between transcriptional output at the SYN

(txnSYN) and NAT (txnNAT) loci (Figure S2C) and then plotted

this score as a function of [TF], KTF, and c (Figure 2A right).

This analysis revealed that regulatory specificity improves along

an axis defined by lowering affinity for DNA and increasing TF co-

operativity, a relationship that remained qualitatively similar for

cases containing different numbers of binding sites in both the
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Figure 2. Constructing gene circuits using

cooperative assembly minimizes fitness

defects while maintaining robust circuit

output

(A) A simple model reveals a molecular strategy

for using cooperative assemblies to engineer

regulatory specificity. Left: thermodynamic-

basedmodel of transcription regulation in which a

transcription factor (TF) can interact with DNA at

both an on-target synthetic circuit (SYN) locus

and an off-target native (NAT) locus. Binding is

governed by the TF affinity for DNA (KTF) and the

level of cooperativity between TFs bound to

adjacent sites (c). Right: regulatory specificity,

defined as transcriptional output from the SYN vs.

NAT locus, improves as the TF affinity for DNA is

lowered and TF cooperativity is increased.

(B) Experimental platform for constructing circuits

composed of cooperative synthetic transcription

factor (synTF) assemblies. Left: Inducible circuit

architecture. synTF species, under the control of

an estradiol (EST)-inducible system, form multi-

valent assemblies at a reporter locus to drive gene

expression. Complex formation is mediated by a

clamp protein. The synTF complex architecture

and cooperativity are governed by programmable

interaction domains (ZF and PDZ) and their

respective binding partners (CRM and PDZ

ligand). Right: Tunable circuit properties. synTF

concentration, DNA affinity, and complex size

are tuned by adjusting the EST dose, number

of arginine-to-alanine (R / A) mutations at

conserved positions in the ZF, and number of

CRM sites, respectively. Points represent mean

values for three biological replicates ± SD. WT, no

R / A mutations; 1X mut, 1 R / A mutation; 2X

mut, 2 R / A mutations, etc.

(C) Circuits utilizing cooperative regulatory as-

semblies of low-affinity synTFs minimize fitness

costs while maintaining high circuit output, thus

optimizing the fitness-activation tradeoff. Left:

cellular fitness vs. circuit activation for various

non-clamp and clamp circuit configurations, all

constructed from the same ZF (42-10). synTFhigh
uses wild-type ZF 42-10 (Kd � 2 nM); synTFlow
and synTFcoop use 4X mut ZF 42-10 (Kd � 15 nM);

clamps use syntrophin PDZ domains, which each

interact with a VKESLV ligand (Kd � 1.9 mM).

Right: fitness-activation measurements of circuit

configurations constructed from different ZF

species (with different binding sequences) exhibit

similar patterns. Axes labels are identical to the

fitness vs. activation plot on the left. Points

represent mean values for three biological

replicates ± SD.

Related to Figures S1, S2, and S3.
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SYN and NAT loci, as well as different formulations of the regu-

latory specificity score (Figure S2D). This result suggests a

design strategy whereby high-specificity circuit connections

can be obtained by engineering synTFs that enforce complex

formation through strong interaction with each other but interact

weakly with DNA.

We sought to test this strategy experimentally using a frame-

work we recently developed for engineering multivalent synTF

assemblies.50 Under this system, interactions between synTFs

bound to tandem, core promoter-adjacent CRMs are mediated

by a ‘‘clamp’’: a synthetic protein composed of multiple cova-

lently linked PDZ domains that interact with peptide ligands on

synTFs to enable multivalent coordination of their binding to

DNA (Figures 2B, left and S3A; STAR Methods). Modifying the

circuit in Figure 1B with a constitutively expressed clamp en-

ables us to test relationships between molecular parameters un-

derlying complex assembly and regulatory specificity that were

suggested by our model (Figure 2B): synTF expression level

([TF]) can be tuned through the addition of EST, whereas KTF

for the synTF can be adjusted by introducing alanine mutations

(WT-4X mut) to a set of conserved arginine residues in the ZF

array that make non-specific interactions with the DNA phos-

phate backbone49,66,67 (Figure 2B, right). Additionally, c can be

tuned by varying complex valency (n), resulting in altered dose

response steepness (Figures 2B, right and S3B).

We constructed various clamp and non-clamp circuit configu-

rations, tested them for activation and competitive growth rate

(Figure S1D), and then plotted their mean fluorescence and

relative fitness on a two-dimensional ‘‘fitness-activation’’ pheno-

typic space (Figure 2C). The circuit configuration tested in Fig-

ure 1B—a circuit containing a high-affinity synTF (wild-type ZF

42-10, Kd � 2 nM50), termed the synTFhigh circuit, exhibited high

reporter activation but low cellular fitness, placing it in the top-

left region of the space (Figure 2C). Reducing KTF by introducing

3 or 4 R / A ZF mutations was sufficient to rescue the fitness,

however, this predictably led to significant loss of circuit activation

(e.g., see synTFlow: 4X mut ZF 42-10, Kd � 15 nM50). Consistent

with predictions from our model, we found that circuit activation

could be restored via expression of clamp (syntrophin PDZ do-

mains: PDZ <> VKESLV ligand Kd � 1.9 mM) with low-affinity

synTFs and n = 4 (synTFcoop circuit) or 5 CRM sites, with little

apparent loss of fitness (Figure 2C). Furthermore, we found these

effects on fitness and circuit output are not due to differential

synTF expression, as low-affinity variants are expressed at equiv-

alent, or evenmodestly increased, levels comparedwith synTFhigh
(Figure S3C). To determine the generalizability of this result, we

tested synTFhigh, synTFlow, and synTFcoop circuit variants for our

entire ZF collection and observed the same pattern with all ZFs:

a rescue of fitness from synTFhigh to synTFlow and a subsequent

improvement of circuit function in synTFcoop (Figures 2C, right

and S1E). Our data demonstrate that wiring synTF circuits using

cooperative assemblies offers a simple and extensible strategy

for optimizing both circuit function and host fitness.

Cooperative assembly is sufficient to rescue aberrant
gene expression caused by synthetic circuits
To verify that differences in synTF circuit-imposed fitness costs

are indeed the result of host cell network misregulation, we per-
3814 Cell 186, 3810–3825, August 31, 2023
formedRNA sequencing (RNA-seq) to assess host cell transcrip-

tomics following induction of synTFhigh, synTFlow, and synTFcoop
circuits (all constructed from ZF 42-10). Biological replicates of

each strain demonstrated highly correlated gene expression

profiles (Figure S4A). We found that synTFhigh expression led to

widespread misregulation of the host transcriptome relative to

a reporter control strain (same genetic background with the inte-

grated reporter cassette and neutral spacers integrated into the

synTF and clamp loci) (Figure 3A). Consistent with a general

model of TAD-dependent off-target gene activation by synTFs,

the majority of misregulated genes were upregulated (182/211)

(Figure 3B), with such genesmore likely to harbor potential synTF

binding sites (8/9 bp homology to the CRM) within a 300 bp win-

dow upstream of the transcription start site (TSS) (14.8% or 27/

182 genes) compared with both downregulated (0/29 genes) or

unaffected genes (2.8% or 134/4,827) (Figure S4E).

By contrast, transcriptomes of cells harboring the synTFlow
and synTFcoop circuits demonstrated expression profiles that

were similar to one another and to the strain background, indi-

cating minimal effect on native transcription (Figures 3A, 3B,

and S4B–S4D). As expected, we found that addition of the clamp

shows no effect on endogenous gene misregulation compared

with the synTFlow case (Figures 3B and S4C), mirroring the

observation that synTFlow and synTFcoop have similar fitness

profiles. In fact, the only gene showing differential regulation

between synTFcoop and synTFlow strains was the fluorescent

reporter, with the synTFcoop circuit showing comparable expres-

sion levels to synTFhigh. Altogether, these results implicate tran-

scriptional network misregulation as the basis of the observed

growth defect in the synTFhigh circuit and demonstrate that this

defect can be rescued by tuned-down synTF-CRM interaction

affinity in the synTFlow and synTFcoop circuits.

Synthetic cooperative assembly reduces off-target
binding in the genome
The data revealed by our RNA-seq experiments are consistent

with off-target regulation in the host cell genome underlying the

fitness cost associated with expression of a high-affinity synTF.

To verify that this misregulation is driven by promiscuous synTF

binding events, we performed chromatin immunoprecipitation

sequencing (ChIP-seq) analysis of the synTFs across the three

circuit strains (synTFhigh, synTFlow, synTFcoop), the corresponding

strains with synTFs lacking a TAD fusion, and the reporter-only

control strain (Figure S5A; STAR Methods). Importantly, we

spiked in known quantities of Schizosaccharomyces pombe-

derived FLAG-tagged DNA, which allowed our data to be normal-

ized to facilitate quantitative comparisons between strains.68 In

addition to the reporter locus, which showed the expected strong

enrichment of synTF binding in both the synTFhigh and synTFcoop
strains, for both ±TAD conditions (Figures S5B and S5C), we also

observed significant enrichment of synTF binding at 23 sites in

synTFhigh, 5 in synTFcoop, and none in synTFlow (Figure 4A). To

evaluate whether these 28 sites could potentially mediate off-

target synTF misregulation, we filtered them on the basis of two

criteria: (1) whether the site was robust and not a potential pull-

down artifact based on its presence for strains both with and

without the TAD fusion,69 and (2) proximity of the alignment

peak (within 700 bp) to a putative synTF CRM, as determined
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Figure 3. Cooperative assembly rescues

aberrant gene expression caused by syn-

thetic circuits

(A) Differential gene expression analysis of

RNA-seq measurements following the induction of

synTFhigh, synTFlow, and synTFcoop circuits. Plotted

are genes that are significantly differentially regu-

lated relative to reporter-only control. The

synTFhigh circuit induces a global misregulation of

the host transcriptome, including significantly up-

regulating 182 genes. Gene expression density

distributions of synTFcoop and synTFlow strains are

highly similar to one another and cluster tightly

around reporter-only backgrounds.

(B) Differential gene expression profiles for

synTFhigh, synTFlow, and synTFcoop strains, plotted

for all genes. Purple dots denote genes that are

significantly differentially regulated vs. reporter-

only strain. The reporter was the only differentially

regulated gene in synTFcoop vs. synTFlow.

Related to Figure S4.
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by an independent dataset of quantitated 42-10 nuclease DNA

cleavage sequence specificities70 (STAR Methods). Satisfyingly,

we found that the same 10 sites were solely and independently

isolated by both criteria and were from the synTFhigh strain (Fig-

ure 4A). In most cases, these sites contained motifs that were

directly under the ChIP peak maxima, with some sites harboring

multiple motifs clustered under the peak (Figure 4B). Additionally,

all of the ten ChIP-seq hits contained top-ranked sequence spec-

ificities identified from the independent in vitro dataset70 (Fig-

ure S5E). By contrast, none of the 3 robust hits for our synTFcoop
strain had a correlated motif proximate to a ChIP peak. Further-

more, virtually all of the other motifs that we identified (within

2 kbof peaks) thatwere not correlatedwith a likelyChIP-seq bind-

ing event were low-ranked ZF binding sequences as determined

by the independent in vitro experiments. These results provide

strong evidence that our ChIP-seq analysis likely identified bona

fide binding events for synTFs.

To gain further insight into the potential role of the 10 synTFhigh
ChIP-seq-nominated binding events in conferring fitness de-

fects, we plotted alignment peaks from each of the circuit-con-

taining strains atop their corresponding genomic loci (Figures

4B and S5D), classifying binding events as genic or intragenic

based on the position of the CRM (and associated peak) relative

to the nearest gene.68 Here, genic denotes a motif located

upstream of a gene, where it is more likely to be involved in

transcriptional activation, whereas intragenic denotes a motif

located within an open reading frame (ORF), where its effect

on gene transcription is a priori less clear (e.g., positive, negative,
C

no effect). We then plotted the RNA-seq-

measured expression changes for the re-

porter and the ChIP-nominated genes for

each of the three circuit strains (relative to

reporter-only) and found that transcription

of all of the genes associated with genic

binding events in the synTFhigh strain

were upregulated relative to the control,

whereas those associated with intragenic
events showed variable regulation (Figure 4C). Importantly, and

as expected, the synTFhigh misregulation patterns were largely

rescued in the low-affinity strains, except at the reporter locus,

which showed comparable activation in synTFhigh and synTFcoop
strains. Altogether, these results strongly implicate off-target

synTF binding as the likely source of host cell transcriptional mis-

regulation in the strains harboring the synTFhigh circuit, an effect

that is minimized by cooperative synTF assembly in our

synTFcoop circuit.

Cooperative synTF regulatory linkages enhance long-
term genetic circuit stability
Motivated by the finding that cooperative synTF assemblies can

be used to mitigate loss of transcriptional fidelity and the accom-

panying fitness cost associated with circuit expression, we

investigatedwhether this strategy could also confer long-term cir-

cuit stability in continuously growing cultures. To test this, we uti-

lized a customizable, automated bioreactor platform we recently

developed, called eVOLVER,71,72 to perform 5-day continuous

culture of strains expressing the synTFhigh, synTFlow, and

synTFcoop circuit designs along with a reporter-only control (Fig-

ure 5A). Three biological replicates of each strain (for two different

ZFs) were inoculated into separate eVOLVER culture vials,

induced with 100 nM b-estradiol, and grown under a turbidostat

regime for 130 h to continuously maintain cultures at a constant

density (STAR Methods). Growth rates were measured for each

culture throughout the experiment, and cultures were periodically

sampled to assess circuit output and synTF concentration.
ell 186, 3810–3825, August 31, 2023 3815
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Figure 4. Synthetic cooperative assembly reduces off-target binding in the host genome
(A) ChIP-seq analysis pipeline for identifying genome-wide binding events by synTFs. Significant binding enrichment relative to the reporter-only strain was

observed at 28 endogenous sites. These hits were subsequently filtered based on two criteria: (1) presence in strainswith andwithout TAD fusion and (2) proximity

to synTF motif. This analysis yielded 10 sites enriched in the synTFhigh strain that were identified as binding events. The synthetic reporter locus was the only

enriched site that met these criteria in the synTFcoop strain (along with the synTFhigh strain).

(B) synTF ChIP enrichment patterns at the 10 nominated binding sites, classified as genic if located upstream of a gene TSS or intragenic if located within a gene

body. Location of top-ranked binding sequences (as determined by in vitro studies) are denoted by green boxes and were highly correlated with bound regions.

Relative ChIP enrichment was normalized to FLAG-tagged S. pombe spike-in DNA that was produced in parallel with the Saccharomyces cerevisiae samples.

(C) RNA-seq differential expression of genes associated with a synTF ChIP binding event. In general, synTFhigh genic binding events were associated with higher

gene expression, except at the reporter locus where synTFhigh and synTFcoop exhibited similar expression levels. Bars represent the log2 transformed fold change

in transcription for each strain (synTFhigh, synTFlow, synTFcoop) over the reporter-only control at each labeled gene.

Related to Figure S5.
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Following circuit induction, we observed a rapid collapse in the

growth rate of the synTFhigh strain, followed by a slow recovery

phase over �40 h (Figure 5A). This was accompanied by a

concomitant decay in the synTF concentration (mRuby) to pre-

induction levels, followed by loss of reporter expression (Venus).

Single-cell fluorescence-activated cell sorting (FACS) distribu-

tions over the time course revealed the gradual emergence of

a growing ‘‘circuit-off’’ subpopulation, which appeared concur-

rently with a population-wide loss of synTF-mRuby expression

(Figure 5B, top). By contrast, cultures inoculated with synTFlow
and synTFcoop circuits maintained a growth rate that was similar

to the control strain following induction and throughout the dura-

tion of the experiment (Figure 5A), with synTF concentration and

reporter activation remaining unchanged after reaching a post-

induction steady state and retaining a sharply defined ‘‘circuit-

on’’ population (Figure 5B, bottom). The same patterns of growth

and circuit expression were observed with circuits featuring a

different member of our library (13-6) (Figures S6C and S6D).

Adaptive circuit-breaking mutations target synTF
expression and function
A plausible explanation for the growth patterns we observed in

our eVOLVER experiment is the emergence of adaptive muta-

tions that rescue fitness costs by disabling circuit function, and

then ultimately fix within the population by outcompeting cells

with intact circuits. To gain insight into whether such mutations

could account for our observations, we created a simple compu-

tational model designed to simulate populations of cells

harboring both functional and broken circuits (STAR Methods).

The model accounted for the average synTF concentration in

each subpopulation of cells while assuming both a fitness cost

proportional to the probability of off-target synTF binding, as

well as a constant mutation rate capable of disrupting synTF ac-

tivity and relieving the fitness cost (Figure S6F). Consistent with

our observed experimental results, our model predicted a

decrease in the average culture fitness within 20 h after induc-

tion, followed by a recovery. Furthermore, as the TF-DNA affinity

decreases, the model predicts that fitness is improved and the

time to recovery increases, whereas decreasing cooperativity

decreases recovery time and reduces fitness (Figure S6F). These

predictions are consistent with the occurrence of mutations that

select against functional synTF expression underlying the obs-

erved culture dynamics.
Figure 5. Cooperative regulatory linkages enhance the long-term gene

(A) Testing long-term stability of synTF circuits in eVOLVER, an automated contin

bioreactor vials were inoculated with three biological replicates of each strain

continuously grown in inducer media (100 nM b-estradiol) using a turbidostat ro

circuit output by flow cytometry. Points represent a sample from each of three e

(B) Single-cell flow cytometry distributions of synTF and circuit reporter expressi

(C) Characterizing circuit genotype mutations selected from the eVOLVER con

synTFhigh-derived colonies: mutations in the induction cassette (yellow) and synT

synTFhigh circuit background and quantified for fitness (by growth competition) a

circuit output, while all except two were sufficient to restore fitness to control lev

(D) Adaptive circuit-breaking mutations rescue the pattern of gene misregulation i

for the synTFhigh circuit and two mutant genotypes: IND-A400fs (induction casset

differentially regulated relative to the reporter-only control.

(E) Correlation of transcriptomes for various circuit genotypes versus the synTFlo
Related to Figure S6.
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We next experimentally assessed mutational paths to loss of

circuit function by analyzing endpoint genotypes from 50 indi-

vidual colonies from synTFhigh and synTFcoop cultures. No

mutations were observed in the circuit genotype from synTFcoop-

derived colonies, while we found a total of 27 mutated synTFhigh-

derived colonies with mutations occurring within the induction

cassette (10 distinct) and in the synTF cassette (5 distinct) (Fig-

ure 5C). Mutations were found in each component of the induc-

tion cassette, with one TAD residue (A400fs, frameshift) targeted

in more than a third of all of the colonies (Figure S6B). Distinct

mutations in the synTF cassette were found in the promoter as

well as the coding sequence, with two mutations (C417S and

C417W) found in the same cysteine of the synTF Cys2His2 ZF

backbone, suggesting that disrupting the ability of the synTF to

bind DNA is sufficient for fitness rescue and corresponds with

the loss of reporter expression in the mutated strains. To confirm

that these circuit mutations drive fitness recovery, we tested the

effects of each individually in a clean synTFhigh background (Fig-

ure 5C). All of themutations were shown to disable circuit output,

while all but two restored fitness to control levels.

We verified that the mutations were selected for their ability to

restore loss of fitness through rescue of host gene network mis-

regulation by performing RNA-seq analysis on two circuit mu-

tants, one from each class: A400fs in the induction cassette

(IND-A400fs) and C417W in the synTF cassette (synTF-

C417W). We found that either mutation was sufficient to mostly

rescue the pattern of gene misregulation induced by synTFhigh
(Figure 5D). Interestingly, the transcriptomic profile of the IND-

A400fs mutant showed no significant gene misregulation over

the reporter-only control, while the profile of the synTF-C417W

mutant circuit showed similarity to synTFlow and synTFcoop
strains (Figure 5E). These results reinforce functional synTF

expression as the basis for synTFhigh circuit instability and,

furthermore, indicate that our engineering strategy for rescuing

this fitness defect by lowering synTF affinity recapitulates the

growth phenotype of adaptive circuit-breaking mutations.

Cooperative assembly mediated positive feedback
circuits for stable long-term activation memory in
continuous culture
We next sought to use our cooperative assembly scheme to en-

gineer more complex circuit architectures to validate that our

strategy can scale across network architectures featuring >1
tic stability of synthetic circuits

uous culture system with real-time measurements of cellular fitness. Individual

(synTFhigh, synTFlow, synTFcoop, reporter-only). Cultures were induced and

utine. Samples were periodically taken to measure synTF concentration and

VOLVER vials per strain type.

on over the time course of the continuous culture experiment.

tinuous culture experiment. Two classes of mutations were identified from

F cassette (green) (see Figure S6B). Each mutation was introduced into a clean

nd reporter expression (by Venus fluorescence). All of the mutations disabled

els. Points represent mean values for three colonies ± SD.

nduced by the synTFhigh circuit. RNA-seq differential gene expression analysis

te) and synTF-C417W (synTF cassette). Plotted are genes that are significantly

w circuit genotype. Control, reporter-only genotype.
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assembly regulated nodes and to potentially address a biotech-

nological need. We investigated the design of positive feedback

loops, which are central to the function of numerous natural and

engineered networks.57,73–77 A well-established property of

these motifs is their ability to extend the lifetime of network acti-

vation after an input signal is removed, thus providing a basis for

cellular memory.78 This capability could be valuable in bio-

manufacturing applications, where the production of chemicals

and proteins can be improved by inducing temporally discreet

expression of biosynthetic pathway genes under particular con-

ditions in a fed-batch or continuous culture process.79 However,

because it is costly to continuously supply chemical inducers in

large-volume bioreactors to maintain gene activation, one

attractive possibility is to deploy positive feedback circuits that

enable sustained expression following a transient pulse of chem-

ical inducer.

To engineer positive feedback circuits, we expanded our ex-

isting 2-node inducible circuit design to three nodes (Figures

6A and S7A). Here, a first synTF species (containing ZF: 43-8)

acts as a ‘‘trigger’’ to drive expression of a second synTF (con-

taining ZF: 42-10), which autoregulates its own transcription

and also activates the downstream Venus reporter. Both synTF

species in this circuit are low affinity, with complexes at the au-

toregulatory and reporter nodes both mediated by clamp bind-

ing, which we hypothesized would enable genetic stability. We

simulated transient induction in a bioreactor by testing circuit

activation in a 5-day eVOLVER experiment. We compared the

3-node positive feedback circuit to a no-feedback control (no

autoregulatory 42-10 CRMs at the second node) and our existing

two-node circuit, adding inducer (100 nM b-estradiol) for 12 h to

continuously growing strains, and then switching back to unin-

duced growth media for the rest of the time course (Figure 6A).

As expected, the positive feedback circuit exhibited robust

activation memory relative to the non-feedback circuits, which

decayed rapidly after inducer removal (Figures 6A and 6B).

Consistent with these circuit output dynamics, expression of

the autoregulated synTF was maintained in the positive feed-

back circuit but diminished over time in controls. The role of

positive feedback in maintaining circuit activity was further

demonstrated by versions of the 3-node circuit where we weak-

ened the feedback loop, either by reducing the number of CRMs

in the feedback complex or lowering clamp binding affinity (Fig-

ure S7), and both circuits demonstrated more rapid signal de-

cays compared with our original feedback design. Importantly,

we observed that all 3-node circuit designs (both feedback

and non-feedback controls) maintained a consistent and high

growth rate throughout the time course, suggesting mainte-

nance of genetic stability (Figures 6A and S7B). Following the

5 h time course, we re-administered inducer to each of the cir-

cuits, demonstrating their full reactivation and further supporting

the conclusion that signal decay seen in weak feedback and

control strains is a consequence of dynamic circuit properties

and notmutation-driven loss of circuit function. Altogether, these

results demonstrate that cooperative assembly mediated feed-

back circuits enable robust and tunable activation for a circuit

function that could address bioproduction and other biotech-

nology needs. In addition, they validate the scalability of our

framework, which has the potential to generate more complex
circuits with high regulatory specificity, fitness, and long-term

genetic stability.

DISCUSSION

In this study, we investigated the fundamental question of how

exquisite regulatory specificity is achieved in gene regulatory

networks, despite the widespread prevalence of natural TF

CRMs with surprisingly low-information content. Using synthetic

gene circuits, genome-wide measurements of transcription

(RNA-seq) and TF binding (ChIP-seq), and mathematical

models, we found that high specificity emerges simply from

cooperative interactions among TF regulatory proteins that indi-

vidually interact weakly and non-specifically. Further, our results

show that cooperative TF assemblies can be used to engineer

highly specific regulatory connections in gene circuits, offering

a means for enhancing circuit performance and minimizing cir-

cuit-imposed fitness costs in eukaryotic cells. We initially

observed that expression of synthetic gene circuits constructed

from ZF-based synTFs results in observable growth defects due

to misregulation of the native transcriptional network in yeast.

Using long-term continuous culture experiments, we demon-

strated that these fitness costs drive the gradual loss of circuits

from the population as adaptive mutants with abrogated circuit

function acquire a selective growth advantage over circuit-

bearing cells. In agreement with simple models of gene regula-

tion and evolutionary dynamics, we found that network fidelity

and host cell fitness could be restored, and circuits stabilized,

by engineering cooperative complexes that render circuit con-

nections functionally dependent on multivalent assembly of

weakly interacting synTFs. Collectively, this work demonstrates

that our naturally inspired strategy can be harnessed to effec-

tively insulate synthetic circuits from cross-talk with host regula-

tory networks, thus enabling the rapid development of circuits

with enhanced stability against evolutionary pressures (Figure 7).

In recent years, numerous studies have revealed that synthetic

circuits are susceptible to unintended interactions with endoge-

nous cellular processes.42–44 These interactions generally

impede circuit function, though in some cases they have been

shown to serendipitously support it.80,81 Thus, examining the

interface between synthetic circuits and the host, and devel-

oping strategies to functionally insulate circuits from the host

cell have become central objectives in synthetic biology.82,83

Recent studies characterizing synthetic circuits in Escherichia

coli have established that unintended circuit-host coupling can

arise when competition for cellular resources leads to circuit-

imposed burden.42,44 These observations have motivated the

development of numerous circuit insulation strategies.43–45,84,85

In this study, we offer evidence that transcriptional misregula-

tion resulting from off-target genomic binding constitutes

another class of fitness-reducing circuit-host interaction—one

that is potentially a primary source of disruption to circuit func-

tion in eukaryotic host cells due to their genomic complexity (Fig-

ure 7B). Results from our RNA-seq and ChIP-seq experiments

provide evidence that the misregulation of host transcription

caused by synTF circuits is likely the result of interactions with

a select subset of genomic CRMs located primarily, but not

exclusively, adjacent to sites of native gene transcriptional
Cell 186, 3810–3825, August 31, 2023 3819
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Figure 6. Using cooperative assembly to engineer positive feedback circuits for stable activation memory in long-term continuous culture

(A) Testing activationmemory of synTF circuits in eVOLVER following transient induction. Individual bioreactor vials were inoculated with four biological replicates

of each strain (2-node circuit; 3-node, no fb; 3-node, fb) and grown continuously using a turbidostat routine. Following inoculation and growth stabilization,

cultures were first transiently induced by growing in inducer media (100 nM b-estradiol) for 12 h, followed by growth in uninduced media for the remainder of the

time course. Samples were periodically taken to measure circuit output and autoregulated synTF concentration by flow cytometry. Points represent mean values

for the replicates ± SD.

(B) Single-cell flow cytometry distributions of circuit reporter expression over the time course of the continuous culture experiment.

Related to Figure S7.
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initiation. A priori prediction of off-target regulatory interactions

is challenging and complicated by many factors (e.g., regulatory

context, chromatin architecture, cell type), even when quantita-
3820 Cell 186, 3810–3825, August 31, 2023
tive measurements of DNA sequence recognition are available

from in vitro experiments50,70. This motivates the broader ques-

tion: what are general design strategies that could give
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Figure 7. A naturally inspired strategy to en-

gineer regulatory specificity and long-term

genetic circuit stability

(A) Different strategies employed by cells to

maintain regulatory network specificity. One

strategy, common in prokaryotic gene regulation,

uses high affinity, large-footprint interactions be-

tween TFs and CRMs (lock-and-key specificity). A

second strategy, common to gene regulatory

networks of higher-order organisms, uses multi-

valent associations between weakly interacting,

low-specificity components (cooperative assem-

bly specificity).

(B) Wiring circuit connections using cooperative

assembly is sufficient to enhance regulatory

specificity, insulate synthetic circuits from aber-

rant misregulation of the host genome, and pro-

mote long-term stabilization of circuit function.

ll
OPEN ACCESSArticle
researchers the ability to rapidly construct new synthetic circuits

that confer transcriptional fidelity, especially given the relatively

few synthetic biology tools available for optimizing circuits in

eukaryotes?

Our solution of using cooperative synTF assemblies to

address this challenge draws inspiration from natural eukaryotic

transcriptional networks, where combinatorial and cooperative

regulation by TFs has been proposed as a key mechanism for

the robust and specific rewiring of transcriptional circuitry over

evolutionary time.86–88 This solution is thought to be facilitated

by the distribution of binding energy among multiple protein-

DNA and protein-protein interactions, which accommodate

mutational strengthening or weakening of individual interactions

with minimal loss of regulatory robustness.89 Further, this drift

enables the formation and stabilization of new TF-TF and TF-

CRM interactions that can facilitate assembly of novel com-

plexes and establish new regulatory connections.86 Our present

work highlights an additional role for cooperative TF assembly as

a mechanism to maintain transcriptional network fidelity. Exten-

sive studies have revealed that eukaryotic TFs tend to bind

CRMs that are overwhelmingly too short and degenerate to

specify unique addresses in the large genome14,22 (Figure 7A).

One potential solution to this ‘‘specificity paradox’’ is employing
C

clusters of low-affinity binding sites, thus

making specificity and regulatory robust-

ness dependent on the collective action

of multiple TFs.17 Indeed, CRMs are often

shorter and further from consensus in

promoter regions regulated by multiple

TFs,90 while frequently interacting TF

pairs have been shown to generate

composite motifs with unique binding

specificity.19,91 Collectively, these obser-

vations suggest that by relaxing the

importance of any single interaction

within a complex, individual TF-DNA

interaction are less likely to be functional

and deleterious upon the likely appear-

ance of spurious binding sites in a large
genome—a strategy that amounts to optimizing the ‘‘hub’’ rather

than individually addressing the ‘‘spokes.’’

From a synthetic biology perspective, our work demonstrates

that programming cooperative assembly is a robust, generalizable

design strategy for engineering insulated synthetic gene circuitry

that minimizes cycles of ad hoc design. Unlike prevailing strate-

gies that rely on sophisticated biomolecular engineering to

develop highly specialized regulatory components for wiring

connections, circuits that employ cooperative assemblies can

be constructed from existing parts by weakening their interaction

affinity and engineering cooperative interactions between combi-

nations of components. This approach requires no a priori knowl-

edge of binding and misregulation profiles and, furthermore,

minimizes the need to fine-tune the regulation of expression levels

to manage component toxicity. In addition to simplifying circuit

design, engineering cooperative assemblies may provide useful

and complementary approaches to examine design principles

governing how specificity is encoded in natural regulatory

systems.82,92

Finally, because our approach offers a potential means for en-

gineering gene circuit stability, it could prove impactful in

biotechnology applications that demand maintenance of circuit

function over many generations (Figure 7B). For example, in
ell 186, 3810–3825, August 31, 2023 3821



ll
OPEN ACCESS Article
metabolic engineering, strains harboring circuit-controlled bio-

synthesis pathways must maintain function when they reach

bioreactor capacity during growth phases.93,94 Similarly, cell-

based therapy applications typically require the expansion of

genetically engineered cells to achieve products that are suffi-

ciently large for patient dosing. In both cases, any burden

imposed through circuit-host interactions would not only slow

production but could potentially give rise to circuit-deficient sub-

populations. In the case of metabolic engineering, this might

result in uncontrolled or early activation of metabolic pathways

that lower yield, whereas in cell therapy applications, potential

effects on product potency and purity could diminish both the

safety and efficacy of a treatment. Although post-expansion in-

duction of circuits using exogenously activated transcriptional

switches offers one potential solution, the opportunity for

misregulation still exists, and the requirement to add an inducer

molecule imposes an additional cost on the process. By relieving

circuit burden through regulatory insulation, our approach offers

a solution to both of these issues that can be applied to existing

circuit design strategies by engineering interactions to accom-

modate regulatory assemblies. Finally, it is possible that the

design strategies we developed here could be translated more

broadly to other molecular settings, including the engineering

of post-translational networks mediated by protein-protein inter-

actions, where specificity of cooperative assemblies encode

specific subcellular localization or maintain orthogonality from

native interaction network.95

Limitations of the study
Despite the apparent generalizability of our cooperative assem-

bly scheme, we anticipate a number of challenges that may be

encountered when scaling or deploying this strategy in other

subcellular or organismal settings. Although our demonstration

of multi-node orthogonal circuit function offers strong initial evi-

dence of the scalability of our approach, limitations may be

encountered when constructing higher-order networks, inclu-

ding effects on stoichiometric distribution of the clamp across

multiple regulatory complexes. Clamp concentration may be a

critical factor for tuning the system, especially when porting

our system to other organismal settings. Although clampwas ex-

pressed at a concentration permissible for complex assembly in

this study, it is possible that lower expression of clamp may not

be sufficient to drive assembly, while an excessively high clamp

concentration could limit activation due to synTF squelching.

Overcoming this challenge may require tuning or even devel-

oping additional clamp species to mediate complex assembly.

As we discussed above, it may be possible to use our coopera-

tive assembly strategy to engineer specificity in other types of

molecular networks (e.g., intracellular signaling or cell-cell

communication). However, our synTF toolkit is relatively mature

compared with other synthetic part sets, with well-understood

and quantitatively predictable biophysical properties. Molecular

assembly strategies for other types of networks would likely

require extensive component set validation to reach the same

level of programmability. For example, developing synthetic

pathways that use cooperatively assembling complexes to

wire connections may require a suite of new engineered protein

components created through a combination of computational
3822 Cell 186, 3810–3825, August 31, 2023
design and careful in vivo experimental validation.47,96,97 Finally,

we may encounter challenges in porting our strategy to other

organismal hosts, particularly to human and other mammalian

cells where extensive use of PDZ domains in signaling pathways

may preclude our current clamp design. Additionally, program-

ming cooperative assembly using the simple strategy of mutually

reinforced binding of synTFs to adjacent genomically integrated

CRMs may not be sufficient to achieve strong cooperativity or

activation since it does not account for chromatin regulatory

mechanisms that underlie much of mammalian transcriptional

regulation. This may be especially challenging in primary cells,

where transgene silencing is particularly acute.
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Antibodies

Mouse anti-FLAG tag monoclonal Sigma Aldrich Cat# F1804; RRID:AB_262044

Chemicals, peptides, and recombinant proteins

Dynabeads Protein G Thermo Fisher Scientific Cat# 10004D

Adenine hemisulfate Sigma Aldrich Cat# A9126

B-Estradiol Sigma Aldrich Cat# E8875-5G

ChIP DNA Clean and Concentrator Column Zymo Research Cat# D5205

RnaseA Thermo Fisher Scientific Cat# FEREN0531

LightCycler� 480 SYBR Green I Master Roche Cat# 4887352001

Yeast extract VWR Cat# 90000-726

Bacto peptone VWR Cat# 90000-368

D-glucose Sigma Aldrich Cat# G7528-1KG

Yeast nitrogen base VWR Cat# 90004-146

Complete supplement mixture (CSM) media Sunrise Science Products Cat# 1001-100

CSM without uracil Sunrise Science Products Cat# 1004-100

CSM without leucine Sunrise Science Products Cat# 1005-100

CSM without uracil and leucine Sunrise Science Products Cat# 1038-100

Critical commercial assays

Rneasy Plus Mini Kit QIAGEN Cat# 74134

YeaSTAR RNA kit Zymo Research Cat# E1004

Deposited data

Data files for RNA-seq This study GEO: GSE203146

Data files for ChIP-seq This study GEO: GSE203146

All other raw data files This study https://doi.org/10.5061/dryad.zpc866tdg

Experimental models: Organisms/strains

S. cerevisiae: Strain background: YPH500 ATCC 76626

S. pombe: Spike-in control for ChIP-qPCR: FWP5607 Gopalakrishnan et al.98 FWP5607

Oligonucleotides

ChIP-qPCR primer

fwd: 5’-gcgatcacagacattaacccacag-3’

This study N/A

ChIP-qPCR primer

rev: 5’-tggcggatctgggatccga-3’

This study N/A

Software and algorithms

FlowJo V8 FlowJo, LLC N/A

GraphPad Prism GraphPad Software N/A

Bowtie2 Langmead and Salzburg99 N/A

SAMtools Li et al.100 N/A

BEDTools Quinlan and Hall101 N/A

Custom ChIP-seq analysis code This study https://doi.org/10.5281/zenodo.8083144

Custom RNA-seq analysis code This study https://doi.org/10.5281/zenodo.8083146

Modeling code: Thermodynamic model

and Population Genetics model

This study https://doi.org/10.5281/zenodo.8083150
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact: Ahmad S.

Khalil (khalil@bu.edu).

Materials Availability
Key plasmids have been deposited at Addgene for distribution. DNA constructs and strains are available from the lead contact.

Data and Code Availability
d Raw RNA-seq and ChIP-seq data for transcriptome and binding analyses, respectively, have been deposited in the NCBI GEO

database. Accession number is listed in the key resources table. All other raw datasets have been deposited on Dryad. DOI is

listed in the key resources table.

d All original code is available on Github and has been deposited on Zenodo. DOIs are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Strains
The background strain used for all experiments in this study was S. cerevisiae YPH500 (a, ura3-52, lys2-801, ade2-101, trp1, his3,

leu21) (Stratagene). Strains were constructed by sequential plasmid transformations, stably and singly integrating synthetic cas-

settes into the yeast genome using standard lithium acetate-based transformation techniques and growth on selective minimal me-

dia (Sunrise Science Products), using the URA3, LEU2, and hygromycin B phosphotransferase (HPH, integrated into the HO locus)

genes as selectable markers. Induction and synTF cassettes were integrated into the HO locus, reporters were integrated into the

URA3 locus, and clamp (or random spacer in cases without clamp) was integrated into the LEU2 locus. For the feedback circuits

in Figure 6, induction and synTF 1 (ZF 43-8) cassettes were integrated into the LEU2 locus, reporters were integrated into the

URA3 locus, synTF 2 (ZF 42-10) cassettes were integrated into the HO locus, and the clamp was either integrated alongside the re-

porter in the URA3 locus or integrated separately in a custom locus with a TRP1marker. Genotypes for experimentally tested strains

are listed in Table S2. Experimental replicates comprised distinct colonies picked from a transformation plate following construct

integration and selection.

METHOD DETAILS

Cloning and plasmid construction
Plasmid constructs used in this study are listed in Table S1 and their designs described in Figures S1 and S3. All plasmids in this study

were constructed using Golden Gate Assembly102 and formatted with the Yeast MoClo Toolkit103 (Addgene Kit #1000000061). ORFs

encoding previously described zinc finger and clamp proteins49,50 were codon optimized for yeast, adapted for Golden Gate assem-

bly, and synthesized (IDT). BsmBI, T7 DNA Ligase, and T4 DNA Ligase Buffer (NEB) were used to construct Level 0 and Level 2 plas-

mids. The Golden Gate Assembly Master Mix BsaI-HF v1 and v2 (NEB) was used to construct Level 1 plasmids.

Flow cytometry
Yeast colonies were picked from plates and cultured overnight in 500 mL synthetic defined (SD) media prepared without the appro-

priate amino acids required for auxotrophic selection. SDmedia was prepared with Yeast Nitrogen Base without Amino Acids (VWR),

2%w/v D-glucose (Sigma Aldrich), and appropriate CSMamino acid dropoutmixture (Sunrise Science Products). Cultures were then

diluted 1:50 into 500 mL of non-selective SD media (SDC) and grown for 7 h at 30�C in the presence or absence of inducer

(ß-estradiol).

Prior to flow cytometry reading, cells were diluted 1:20 into 200 mL of PBS treated with 20 mg/mL cyclohexamide to inhibit protein

synthesis, and stored at 25�C, in the dark, for 1 h to allow for complete fluorophore maturation. Plates were then stored at 4�C
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overnight. Typically, 10,000 events were acquired using an Attune Nxt Flow Cytometer equipped with a high throughput autosampler

(Thermo Fisher Scientific), and data was processed using FlowJo (Treestar Software). Events were gated by forward and side scatter,

and geometric means of the fluorescence distributions were calculated. Flow cytometer laser/filter configurations used in this study

were mVenus (488 nm, 574/26), mRuby (561 nm, 620/15), and mTurquoise (405 nm, 512/25).

Fitness assay
We adapted a previously described fitness assay based on competitive growth between a ‘‘reference’’ strain and ‘‘query’’ strain.104 A

single colony for a reference strain constitutively expressing (pTDH3) an mTurquoise reporter was grown in 2 mL SDC overnight with

shaking at 30�C, then diluted 1:100 in 20 mL SDC and grown overnight with shaking at 30�C. Single colonies for three biological rep-

licates for each query strain expressing synTF circuits or the reporter only were each cultured overnight in 500 mL SD -ura/-leu media

in 96 well plates. The reference strain culture was diluted 1:50 into 500 mL of SDC in 96 well plates in the presence or absence of

inducer (1 mMß-estradiol) across four 96 well culture plates, and each query strain was added to the reference strain-containing wells

at 1:50 andmixed. A 10 mL sample was immediately sampled from eachwell and fixed in PBS + 20 mg/mL cycloheximide to obtain a t0
measurement of the cocultures prior to induction. The cocultures were then diluted 1:50 into SDC with or without inducer every 12 h

and samples were isolated at 16.5 h (t1) and 36 h (t2) corresponding to �7 and 15 generations, respectively, and fixed in PBS +

20 mg/mL cyclohexamide for flow cytometry analysis. We determined the relative abundances of reference and query strains at

t0, t1, and t2 for each coculture. Abundance was derived from the fraction of cells in each well expressing the mTurquoise reporter

(reference). Fitness was computed for each query strain by calculating changes in abundance from t0 to the experimental

endpoint, t2:

F =
1

t2 � t0
log

�
nðt2Þ
nrðt2Þ

�
nðt0Þ
nrðt0Þ

�

where n (t) and n (t) are the cell counts for the query and referen
r ce strains, respectively, at time t after coculturing.104

Chromatin immunoprecipitation sequencing (ChIP-seq)
Preparation, immunoprecipitation, and sequencing

250mL flasks of SDCwere inoculated with overnight cultures and grown for 1 h before induction with 100 nM ß-estradiol, then grown

for an additional 8 h to an OD600 of 0.525–0.625. All cultures were diluted to OD600 0.525, then cells were crosslinked with 1% form-

aldehyde for 9min at 30�Cwith shaking. Fixation was quenchedwith a final concentration of 125mMglycine (EMD 4840OmniPur) for

10 min at 30�Cwith shaking. Cells were pelleted for 10 min at 4�C at 3000 RPM (Haraeus Multifuge X3R), washed twice with ice-cold

TE (Tris-HCl, EDTA), transferred to 4 bead-beater tubes/strain and frozen at -80�C. Cell pellets were resuspended in 400 mL ice cold

lysis buffer (50 mM HEPES, 140 mM NaCl, 1mM ethylenediaminetetraacetic acid, 1% Triton X-100, 0.1% Na-Deoxycholate, 1 mM

phenylmethylsulfonyl fluoride, 200 mL Roche cOmplete protease inhibitors). 0.5mmdiameter glass beadswere added to 1mmbelow

the meniscus. Cells were lysed by bead beating on a MagNA Lyser (Roche) three times for 45 s each at 4500 RPMwith 2 min rests at

4�C. Lysate was collected by puncturing the tube with a 21G needle and centrifugation at 2000 g for 2 min into a 2mLmicrotube. The

pellet was resuspended in lysis buffer, then sonicated for 6 pulses using a probe sonicator (Fisher Scientific FB120) for 20 s at 25%

amplitude with 120 s intervening rests on ice, achieving a range of 150-1500 bp DNA fragments. Cell debris was pelleted by centri-

fugation at max speed for 15 min at 4�C.
FLAG-tagged S. pombe (generously provided by theWinston Lab, FWP567) was used as a spike-in control andwas prepared simi-

larly to the S. cerevisiae cultures with a fewmodifications: grown in 250 mL YESmedia to OD600 0.65, split into 5 tubes, underwent 4

lysis steps on the bead beater and 5 sonication steps. The supernatant from the 4 preps of each strain (5 preps of S. pombe) were

mixed together in a new low retention tube (Thermo Fisher Scientific 02-681-320). To determine DNA concentration, 50 mL samples

from each strain were isolated. Samples were brought up to 200 mLwith elution buffer, then incubated with 50 mg of RNAse A (Thermo

Fisher Scientific) at 37�C for 30 min to remove RNA. Then 100 mg of Proteinase K (Thermo Fisher Scientific) was added and samples

were incubated overnight (�16 h) at 60�C to degrade proteins and reverse crosslinks. Samples were then purified with the ChIP DNA

Clean and Concentrator kit (Zymo Research), eluted with 100 mL water and concentrations were determined by Qubit 4 Fluorometer

(Thermo Fisher Scientific). 50 mLwere brought to 13.5 ng/mL concentration and split into 4 separate tubes, then diluted to 1mL in lysis

buffer. Input samples were concurrently isolated at 10% of the DNA concentration for the IP samples and brought to 100 uL lysis

buffer. 1 ug anti-FLAG (Sigma F1804) was added to each IP sample. The prepared (lysed and sonicated) FLAG-tagged S. pombe

chromatin was added as a spike-in control to 10% of the sample DNA concentration for all IP and input samples. Input samples

were stored at 4�C and IP samples rotated overnight at 4�C.
30 mL Dynabeads Protein G (10004D, Thermo Fisher Scientific) per culture was added to a low retention tube and washed 3 times

with 1 mL ice cold lysis buffer. Dynabeads were resuspended in 100 mL lysis buffer per culture. 100 mL of Dynabead solution was

added to each antibody-pull-down sample and incubated at 4�C for 4 hwhile rotating. Dynabeadswere washed at room temperature

on a magnet (twice with 1 mL lysis buffer, twice with 1 mL lysis buffer/500 mM NaCl, twice with 10 mM TrisHCl-pH8/250 mM LiCl/

0.5%NP-40/0.5% sodiumdeoxycholate/1mMEDTA, and oncewith 1mL TE). Boundmaterial was eluted by adding 200 mL of 50mM

Tris-HCl ph8/10mM EDTA/1%SDS and incubating at 65�C for 30min. A second elution with the same buffer was combined with the
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first and tubes were incubated at 65�C overnight to reverse crosslinks. Input samples were brought to 400 mL elution buffer and

stored at 65�C with antibody-pull-down samples. 50 mg of RNase A was added to each pull-down and input sample and incubated

at 37�C for 30 min. 100 mg Proteinase K was added to each sample, then incubated at 55�C for 4 h. DNA was purified with the ChIP

DNA Clean and Concentrator kit (Zymo Research): 4 preps/strain were concentrated into two preps in two columns and eluted with

25 mL of water for IP samples/column (50 mL total) or 200 mL water for input samples and stored at -80�C.
Sample concentrations were measured with the Qubit and 38 mL of each sample was submitted to the Tufts Genomics Core for

TruSeq ChIP library preparation (Illumina). Tufts Genomics Core subsequently sequenced all samples, paired end, on a NextSeq

550 (Illumina) to 75 bp.

ChIP-seq analysis

ChIP-seq data analyses were performed using the Snakemake workflow management system.105 Code and raw data suitable for

reproducing all ChIP- and RNA-seq analyses are publicly available (see Resource Availability).

ChIP-seq library processing

Adapter removal and 3’ quality trimming of paired-end reads was performed using cutadapt (http://journal.embnet.org/index.php/

embnetjournal/article/view/200). Reads were aligned using Bowtie299 to a combined genome consisting of S. pombe genome

ASM294v2 concatenated with S. cerevisiae genome build R64-2-1 modified to include the mVenus reporter at the URA3 locus.

Correctly paired uniquely mapping reads mapping to S. cerevisiae were selected using SAMtools.100 Coverage of fragments and

fragment midpoints were generated using SAMtools100 and bedtools,101 and normalized to the number of fragments in the library.

Quality statistics of raw, cleaned, non-aligning, and correctly paired mapping reads were assessed using FastQC (https://www.

bioinformatics.babraham.ac.uk/projects/fastqc/).

Transcription factor ChIP-seq peak calling

Transcription factor peak calling was performed for each strain by calling peaks in each replicate using MACS2,106 followed by

filtering for reproducibility among replicates by the Irreproducible Discovery Rate (IDR) method (https://doi.org/10.1214/

11-AOAS466). The size of the small and large local regions used by MACS2 to model expected counts were set to 500 and

2000 bp, respectively, and the IDR threshold was set to 0.01.

Transcription factor ChIP-seq differential binding analysis

For transcription factor ChIP-seq differential binding analysis, transcription factor peaks were called as described above. A non-

redundant list of peaks called in the strains being compared was generated using bedtools,101 and the counts of fragment midpoints

fromboth input and IP samples over these peakswere used as the input to a differential binding analysis with DESeq2,107 in which the

linear model coefficient extracted represents the change in IP/input enrichment in the query strain versus the control strain. We inves-

tigated a set of 132 peaks as candidates for specific binding in any of the synTFhigh, synTFlow, or synTFcoop strains over the reporter-

only control strain, at a false discovery rate of 0.05.

Chromatin immunoprecipitation quantitative PCR (ChIP-qPCR)
Samples were prepared as described for ChIP-seq. qPCRwas performed on a LightCycler 480 Instrument II (Roche) with LightCycler

480SYBRGreen IMaster Kit (Roche) according tomanufacturer’s instructions. A total reaction volume of 10 mL (2 mL of 1:50 dilution of

input DNAor 1:20 dilution of IPDNA, 0.5 mMof forward primer, 0.5 mMof reverse primer, 5 mL of 2X SYBRGreenMasterMix), using the

following cycle conditions: (i) pre-incubation: 95�C for 10min; (ii) amplification (45 cycles): 95�C for 10 s, 57�C for 20 s, 72�C for 8 s; (iii)

melting curve: 95�C for 5 s, 65�C for 1min, 97�Cat ramp rate 0.11C/s; (iv) cooling: 40�C for 10 s. PCRprimer sequenceswere designed

to flank the cis-regulatory motifs (CRMs) at the synthetic promoter: gcgatcacagacattaacccacag; tggcggatctgggatccga. Fold enrich-

ment over the reporter-only control strain was then computed from the resulting qPCR Ct values using the DDCt method.

RNA sequencing (RNA-seq)
Preparation and sequencing

RNA-seq measurements were performed on two biological replicates per strain type. Our results were reproduced with a technical

replicate for each biological replicate in two separate experiments, aside from synTFhigh, for which we reported on two biological

replicates and a single technical replicate. Total RNA was purified from �5x107 cells following the ‘‘Purification of Total RNA’’

from the ‘‘Yeast Mechanical Disruption’’ protocol in the RNAeasy Plus Mini Kit handbook: 50 mL of cells from an overnight culture

were induced with b-estradiol and cultured for 7 h in a 30�C shaking incubator. Cells were brought to the same concentration,

spun down for 5 min at 1000 RCF at 4�C, liquid was removed and the pellets were resuspended in 600 mL RLT buffer + b-mercap-

toethanol. �600 mL of 0.5 mm diameter glass beads were added and cells were lysed by bead beating on a MagNA Lyser (Roche)

three times for 45 s each at 4500 RPM with 2 min rests at 4�C. �300 mL of supernatant was moved into a clean tube, 300 mL of 70%

ethanol was added, and samples were processed using the RNeasy Plus Mini Kit (QIAGEN) according to the manufacturer’s instruc-

tions. Sequencing libraries were prepared at the Tufts University Core Facility (TUCF Genomics) using the TruSeq Stranded mRNA

Library Prep Kit (Illumina). 50-bp single-end reads were sequenced on an Illumina HiSeq 2500.

RNA-seq analysis

RNA-seq data analyses were performed using the Snakemake workflow management system.105 Code and raw data suitable for

reproducing all ChIP- and RNA-seq analyses are publicly available (see resource availability).
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RNA-seq library processing

Adapter removal and 30 quality trimmingwere performed using cutadapt (http://journal.embnet.org/index.php/embnetjournal/article/

view/200). Reads were aligned using TopHat2 without a reference transcriptome, against S. cerevisiae genome build R64-2-1 modi-

fied to include the Venus reporter at the URA3 locus. Uniquely mapping reads were selected using SAMtools.100 Coverage of the

50-most base of the read (30-most base of the RNA fragment) was extracted using bedtools genomecov,101 and normalized to the

total number of uniquely mapped reads. Quality statistics of raw, cleaned, non-aligning, and uniquely aligning reads were assessed

using FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/).

RNA-seq differential expression analysis

RNA-seq differential expression analysis was performed for transcripts of verified coding genes, using an annotation of transcript

boundaries based on TIF- 108 and TSS-seq68 data that was modified to accommodate the Venus reporter at the URA3 locus.

Read counts over these transcripts were input to differential expression analysis with DESeq2.107

eVOLVER continuous culture
eVOLVER experiments were run as previously described,71,72 with the followingmodifications. Following eVOLVER sterilization, each

vial was inoculated from saturated overnight cultures and run at 25 mL total volume at 30�C with stirring. For all experiments, yeast

strains were grown in synthetic complete (SC) media supplemented with adenine hemisulfate (50 mg/mL), with or without inducer as

detailed below. eVOLVERwas operated in turbidostat mode, which uses feedback on OD to trigger dilutions andmaintain cultures in

a defined exponential-phase density range; OD is continuously measured, from which the growth rate is calculated (github.com/

FYNCH-BIO/). Cultures were periodically sampled to assess reporter and synTF expression via flow cytometry.

For the experiments of Figure 5, cultures were continuously maintained between OD 0.2–0.5. Following inoculation, strains were

first grown in inducer-free media for 18.5 h to stabilize cultures, and then induced with media containing 100 nM ß-estradiol (time = 0)

for the remainder of the time-course.

For the activation memory experiments of Figure 6, cultures were continuously maintained between OD 0.25–0.5. Following inoc-

ulation, strains were first grown in inducer-free media for 24 h to stabilize cultures, prior to induction with 100nM ß-estradiol (time = 0).

After 12 h of induction, media bottles were exchanged for inducer-free media for the remainder of the time-course.

Thermodynamic model
Model description

We constructed a simple thermodynamic model to gain insight into how cooperative assembly could be used to engineer specific

regulatory connections in gene circuits, drawing on the rich history of describing transcriptional regulation by a thermodynamic treat-

ment.62,63,65,109 The model presented in this paper is a simplified version of our previously described model framework for cooper-

atively interacting synthetic transcription factors (synTFs) in yeast.50 Note that the previously described model was intended to be a

molecularly-detailed, quantitative, and predictive design tool that could be parameterized by our experiments and then used to select

molecular configurations that would yield a desired logic or dynamic output. Instead, the goal of the current model is to capture the

minimal features of interest that we wanted to tune/control – e.g., DNA-binding affinity, valency, and TF cooperativity – thus providing

a general framework to develop quantitative intuition about the relationship between those properties in driving regulatory specificity.

Below we provide a detailed description of the features and assumptions that underlie the current model, highlighting its key differ-

ences and simplifications relative to the previously described framework.

Themodel is composed of four key parameters: transcription factor concentration ([TF]), TF-DNA affinity (KTF), TF-TF cooperativity

(c), and the number of binding sites at a given locus (n). We begin by enumerating all possible TF-bound promoter configurations for n

binding sites. Each promoter state is assigned a transcriptional rate (r) and a thermodynamic weight (w). The transcriptional rate for a

particular state is proportional to the number of TFs bound to a promoter. For simplicity, maximum transcriptional rate for a promoter

is set to 1. Transcriptional weights describe the relative free energies of each state and are computed based on the number and af-

finity of interactions within each state, as previously described.50 Transcriptional output is computed by averaging the relative con-

tributions from each TF-bound promoter state:

txn =
X
i

ri$wi

,X
j

wj
where i are transcriptionally active states and j are all promoter s
tates.

To model cooperative synTF assembly, we include a promoter state weighted by an additional cooperativity (c) term. In our study,

this represents the additional free energy contribution by the clamp molecule on fully bound promoters. However, unlike in our pre-

vious model framework, we do not account for the concentration of the clamp in the cell, nor do we explicitly enumerate all possible

clamp-bound assembly states. Instead, we chose to capture and vary TF cooperativity through the single term, c, exclusively

accounting for it when all TFs are bound on the promoter. This choice is justified by our previous work, in which we obtained coop-

erativity (c) values by fitting a thermodynamic model to experimental data collected from yeast cells in which clamp-mediated TF

assemblies of different sizes (n=2, 3, or 4) drove transcription of a fluorescent reporter.50 The resulting fit predicted that TF cooper-

ativity increases by�75-fold for every additional TF bound to a promoter. Thus, it is reasonable to only consider TF cooperativity on a
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fully occupied promoter because the transcriptional contribution from that state will be orders of magnitude larger than that of

partially bound promoters. The result is a model framework with a simplified description of cooperativity captured through the single

term, c, which importantly allows us to derive general principles for the relationship between cooperativity and regulatory specificity.

Because our accounting for cooperativity is general, future work could integrate more molecularly-detailed aspects of clamp-based

cooperativity or even model other reported mechanisms of TF cooperativity13,110,111 to inform optimal circuit design that minimizes

regulatory crosstalk. Finally, we assume that cooperativity does not affect the maximum rate of transcription at a promoter. Total

transcription is calculated as described above. An example calculation of transcription at n=1 binding site is shown in Figure S2A

and transcription at n=4 binding sites with cooperativity is shown in Figure S2B.

Regulatory Specificity

We extended our model to investigate how biophysical parameters governing synTF assembly could be used to design specific

regulatory connections. The model considers the simplified case of a TF that can interact with binding sites at a target synthetic

(SYN) locus and an ‘off-target’ native (NAT) locus (Figures 2A and S2). To model different synTF assembly sizes, we considered a

SYN locus with binding site clusters of n = 3 – 5; to model the spurious appearance of a CRM in the genome, we considered a

NAT locus with n = 1 binding site.

We defined a regulatory specificity score as the difference between transcriptional output at the SYN (txnSYN) and NAT (txnNAT)

loci (Figure S2C). Using the thermodynamic model, we computed regulatory specificity scores across a range of DNA affinities

(KTF = 10-2 – 102 mM), cooperativities (c = 0 – 20 kBT), and SYN binding site numbers (n = 3 – 5). For simplicity, TF concentration

was set to 1 mM for all simulations. We repeated this analysis for different formulations of the regulatory specificity score

(Figure S2D).

All MATLAB code associated with this model is publicly available (see Resource Availability).

Population genetics model
We developed a population genetics model to explain the observed fitness dynamics in the eVOLVER continuous culture experi-

ments. Generally, the dynamics ofmutant progenies in adapting populations are shaped by both deterministic (e.g., natural selection)

and stochastic forces (e.g., demographic fluctuations). It can be shown that the dynamics of a mutant progeny will be dominated by

fluctuations when the population size is less than the inverse selective advantage (defined as the normalized fitness difference be-

tween the mutant and functional population).112 In our experiments, a newmutant cell will obtain a fitness advantage on a time-scale

comparable to the doubling time. As a result, the mutant population will grow deterministically after about one doubling and we can

safely neglect demographic fluctuations (that is, fluctuations caused by finite cell numbers). To this end, we use an Ordinary Differ-

ential Equation (ODE) model to describe the population genetics.

In our model, we assume that cells grow at a rate F(z) where z is the concentration of a synTF. Before a synTF is induced, cells

double approximately every 1.5 hrs (l). After induction, cells pay a fitness penalty proportional to the fraction of ‘off-target’ NAT sites

that are occupied by synTFs. We model off-target binding using our thermodynamic framework for n = 1 binding site, as before. This

leads to the fitness function:

FðzÞ = l

�
1 � b

z

Kz+z

�

where b is the maximum fitness cost imposed by a synTF.
In our thermodynamic framework (Figure S2), KTF can range from 10�2 to 102 mM, but we work in units of TFs per cell. If a typical

yeast cell is about 10�15 L, this translates to a range of 100 to 104 for Kz. When induced, functional cells produce synTF at a rate a (per

cell). Cells can mutate the transcriptional circuit at rate m per unit time. We assume that the mutation rate does not depend on the

doubling time. We know that themutation rate per generation is roughly 3.5310�10.113 If we assume that there are�100s of potential

mutants that can break the circuit, then the per hour rate to get a circuit-breaking mutation in a single lineage is 2.53310�8.

Since there are roughly 108 cells in the population, the average time to see amutation is on the order of 1 h. Since cells are grown in

our continuous culture experiments for 18 h prior to induction, it is reasonable to expect mutants in the population at the time of in-

duction. However, prior to induction themutations are nearly neutral (they incur no fitness benefit) and therefore the size of themutant

lineages will be determined solely by stochastic fluctuations. Standard theory dictates that if amutant colony survives until the time of

induction, its size will be on the order of the number of generations between the mutation and induction. This will be on the order of

100 cells, which we take as the initial mutant clone size. Using this order-of-magnitude estimate will be sufficient for our purposes,

since we are ultimately interested in predicting qualitative features of the dynamics.

We model the number of functional (xf) and mutant (xm) cells in a growing population as:

d

dt
xf = FðzfÞxf � mxf
d

dt
xm = FðzmÞxm +mxf
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Letting TFf denote the number of synTFs in functional cells, we have

d

dt
TFf = axf � mTFf

The second term comes from the fact that mxf functional cells mutate per unit time, each taking zf=TFf / xf synTFs with it. Therefore,

the number of synTFs in functional cells is described by the following equation:

d

dt
zf =

d

dt

TFf

xf
= a � mzf � zfðFðzfÞ � mÞ
a � FðzfÞzf
The number of synTFs in mutant (broken-circuit) cells is defined by:

d

dt
TFm = mzfxf

This implies that the change in the number of mutant (broken-circuit) cells can be described by:

d

dt
zb = mzf

xf
xm

� zm

�
FðzmÞ + m

xf
xm

�

� zmFðzmÞ+m
xf
xm

ðzf � zmÞ

Note that we have assumed the population is growing exponentially, rather than in a finite culture. However, from the perspective of

TF concentration and fitness only the species fractions, which are identical for exponentially growing and finite populations, are

relevant.

We tested the qualitative features of this model by varying themaximum fitness cost (b) and synTF binding affinity (Kz) while holding

all other parameters constant. Changing the maximum fitness cost (Figure S6F) is analogous to choosing a different member of our

zinc finger library, with varying DNA-binding specificities that could lead to differing levels of ‘OFF’-target interactions. Strains with a

maximum high fitness cost show a severe growth defect after induction and are quickly out competed. This simulation result is similar

to our eVOLVER continuous culture experiment using a second, high affinity zinc finger (13–16) (Figure S6C). Strains with comparably

lower fitness costs are also lost over time but at a slower rate. Changing synTF binding affinity in themodel is analogous to testing the

high and low affinity ZF variants. As with the evolution experiments, functional cells harboring low affinity synTFs are retained for

longer periods of time compared to those with high affinity synTFs.

QUANTIFICATION AND STATISTICAL ANALYSIS

FlowJo was used to extract geometric mean fluorescence values or the percentage of mTurquoise, mVenus ormRuby activated cells

from flow cytometry measurements. Microsoft Excel and GraphPad Prism software were used to process data. Statistical details

such as number of replicates and error calculations are provided in figure legends.
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Supplemental figures

Figure S1. Design and characterization of synthetic circuits, related to Figures 1 and 2

(A) Design details of inducible synTF circuit components including amino acid sequences common to all synTFs used in this study. SynTF activators are

composed of a 3-finger (3F) ZF array fused to a herpes simplex VP16 transactivation domain (TAD), 33 repeat FLAG epitope tag (Sigma), mRuby fluorescent

protein, syntrophin PDZ ligand, and SV40-derived nuclear localization sequence (NLS). For zinc-finger affinity alleles, mutated arginine residues are underlined.

DNA sequences for engineered synTF promoters, composed of a minimal CYC1 (minCyc1) promoter with upstream synTF binding sequences (CRMs). All

sequences were yeast-optimized and chromosomally integrated into S. cerevisiae.

(B) Characterization of inducible expression system. mRuby2 fluorescent protein expression was used as a proxy to quantify the b-estradiol-inducible promoter.

Flow cytometry measurements were made at mid-log phase, and error bars indicate standard deviation from three biological replicates. [Est], b-estradiol

concentration.

(C) Workflow for the competition co-culture experiment used to quantify fitness across this study. Query strains (and associated control strains) were each co-

cultured 1:1 with a reference strain (parental strain constitutively expressingmTurquoise reporter). Three biological replicates (separate colonies) of each query or

control strain were measured in separate wells, and duplicate experiments were performed in media with and without 1 mM b-estradiol inducer. Cocultures were

sampledwhen initially mixed (T0) and every 12 h to determine relative abundancies of reference vs. query or control strain, derived from the fraction of cells in each

well expressing mTurquoise. Fitness measurements were equated for each query strain by calculating changes in mTurquoise expression from T0 to the

experimental endpoint.

(legend continued on next page)
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(D) Deletion of either the VP16 transactivation domain or the ZF DNA-binding domain is sufficient to rescue the fitness cost induced by synTFhigh circuits. Strains

lacking designated circuit components were constructed, and cellular fitness and circuit activation measured as previously described. Bars represent mean

values for three biological replicates ± SD (measured in two separate experiments).

(E) Cellular fitness and circuit activation for synTF circuits constructed from a collection of distinct ZF species. Fitness and activation profiles were quantified at

36 h following induction, in conditions with and without b-estradiol inducer. In this case, ‘‘control’’ denotes a strain with no integrated circuit components, since

reporter-only strains are different for each synTF. Tukey boxplots represent the range of means for 20 ZF synTF library members.

(F) Prevalence of synthetic ZF binding sites in the yeast genome. Occurrences of the full and single mismatches of the predicted core (9 bp) binding motifs for the

full ZF collection.
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Figure S2. Description and analysis of thermodynamic model for cooperative-assembly-driven specificity, related to Figure 2

(A) Description of thermodynamicmodel for a single TF binding site. Gray boxes: enumeration of promoter states with corresponding thermodynamic weights and

transcriptional rates (proportional to the number of bound TFs). Equation: transcriptional output (txnn = 1) is obtained by averaging the relative transcriptional

contributions of all promoter states. KTF, TF-DNA-binding affinity.

(B) Description of a generalized thermodynamic model incorporating TF cooperative assembly. Gray boxes: enumeration of promoter states with corresponding

thermodynamic weights and transcriptional rates (proportional to the number of bound TFs). Equation: transcriptional output for n = 4 binding sites. KTF, TF-DNA-

binding affinity; c, cooperativity term that defines the additional stability provided by the multivalent TF interactions.

(C) Regulatory specificity score is defined as the difference between SYN on- vs. NAT off-target transcription.

(D) Regulatory specificity space is qualitatively preserved for different model formulations. Alternative regulatory specificity score with n = 4 binding sites (top left).

Specificity score as described in (C) for different number of binding sites at the SYN locus: n = 3 (top right), n = 4 (bottom left), and n = 5 (bottom right).
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Figure S3. Design of the cooperative clamp and characterization of clamp-mediated cooperative synthetic circuits, related to Figure 2

(A) Design and sequence details of the cooperative clamp. Cooperative clamps are composed of the same SV40-derived NLS followed by repeat units of the

syntrophin PDZ domain. An n = 4 clamp sequence is depicted with the repeat units highlighted. Sequences were yeast-optimized and chromosomally integrated

into S. cerevisiae. The binding affinity of the syntrophin PDZ <> VKESLV ligand pair was experimentally determined to have a Kd � 1.97 mM.

(B) Single-cell dose response behaviors for the independent (synTFmed) and cooperative (synTFcoop) synTF circuits. Flow cytometry analysis of the dose re-

sponses show a linear shift from OFF to ON with the non-clamp synTF and a characteristically non-linear shift from OFF to ON with the clamp-mediated

cooperative synTF architecture in response to increasing inducer concentrations.

(C) synTF expression levels measured by quantifying synTF-mRuby2 fluorescence following circuit induction. Bars represent mean values for three biological

replicates ± SD.
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Figure S4. Correlation of transcriptomes of strains expressing synTF circuit variants, related to Figure 3

(A) Correlation of RNA-seq measurements for biological replicates.

(B) Pairwise correlations of transcriptomes for the three synTF circuit configurations. The synthetic reporter was the only gene differentially regulated by synTFcoop
vs. synTFlow. Two biological replicates for each strain are reported. FDR, false discovery rate.

(C) Transcript levels are highly correlated between strains expressing synTFcoop and synTFlow circuits.

(D) Differential gene expression values for synTFhigh and synTFcoop against synTFlow. Differential gene expression for the synTFcoop strain correlates highly with

synTFlow, with one notable exception: the synthetic reporter gene, which is differentially expressed to equivalent levels as the synTFhigh strain.

(E) Differential gene expression analysis of RNA-seq measurements following induction of synTFhigh, synTFlow, and synTFcoop circuits. Plotted are genes that are

significantly differentially regulated relative to the reporter-only control. The synTFhigh circuit induces a global misregulation of the host transcriptome, including

significantly upregulating 182 genes. Gene expression density distributions of synTFcoop and synTFlow strains are highly similar to one another and cluster tightly

around the reporter-only background. Filled circles represent genes with a motif located within 300-bp upstream of the TSS that has at least 8/9 bp homology to

the cognate motif.
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Figure S5. Validation of ChIP-seq methods and synTF binding profiles, related to Figure 4

(A) Correlation of ChIP-seq measurements for biological replicates. Correlations are plotted for both immunoprecipitated (IP) and input control samples for

synTFs lacking a TAD fusion. Correlation coefficients were calculated using normalized counts in non-overlapping windows over the genome.

(B) ChIP enrichment profiles at the synthetic reporter locus for no synTF, synTFlow, synTFhigh, and synTFcoop (±TAD). Binding enrichment for two biological

replicates of each strain are shown. Themaximumpeak heights (purple line) are highly correlated with the genomic location of the ZF 42-10 binding sites. Relative

ChIP enrichment was normalized to FLAG-tagged S. pombe spike-in DNA that was produced in parallel with the S. cerevisiae samples.

(C) synTF enrichment at the synthetic reporter locus measured using ChIP-quantitative PCR (ChIP-qPCR). Fold enrichment is determined for each condition

compared with a reporter-only control. Enrichment patterns recapitulate those observed with ChIP-seq. Bars represent mean values for three technical

replicates ± SD.

(legend continued on next page)
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(D) ChIP enrichment profiles for each synTF (low, high, coop) strain, reporter-only control strain, and input control sample at five representative loci. Relative ChIP

enrichment was normalized to FLAG-tagged S. pombe spike-in DNA that was produced in parallel with the S. cerevisiae samples.

(E) Top-ranked interaction motifs for ZF 42-10, as determined by an independent dataset based on an in vitro DNA cleavage profiling assay.70 Abundance after

cleavage quantifies the frequency that a motif has been targeted (and cleaved) by a nuclease version of our candidate ZF. The 15 synTFhigh binding events

nominated by our ChIP-seq analysis occurred at the seven most preferred motifs.
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Figure S6. Growth, circuit expression, and mutational patterns are conserved in a replicate long-term culture experiment and captured by a

population genetics model, related to Figure 5

(A) Raw growth rate traces for three biological replicates of synTF and control strains in long-term eVOLVER continuous culture. Each replicate was cultured in a

separate eVOLVER vial. The auxiliary (aux.) control has a scrambled placeholder sequence integrated into each of the three loci into which circuit components are

integrated.

(B) Mutational analysis of the circuit genotype from synTFhigh-derived colonies following eVOLVER long-term culture. Mutations were identified within the in-

duction cassette (yellow) and synTF cassette (green). A single residue in the induction cassette was highly targeted, with mutations identified in 10 of the

sequenced colonies.

(legend continued on next page)
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(C) Raw growth rate traces for three biological replicates of a second synTF species (ZF 13-6) and control strains in long-term eVOLVER continuous culture. Each

replicate was cultured in a separate eVOLVER vial. The inducer (induc.) control has the induction cassette driving an mRuby2 fluorescent reporter in place of the

same induction cassette driving the synTFs.

(D) Single-cell flow cytometry distributions of synTF and circuit reporter expression over the time course of the continuous culture experiment for a second synTF

species (ZF 13-6).

(E) Mutational analysis of the circuit genotype from synTFhigh-derived colonies following eVOLVER long-term culture with a second synTF species (ZF 13-6).

(F) A population genetics model captures the population fitness and circuit retention dynamics observed in long-term culture experiments. Description of the

model (top). A TF is produced at a constant rate (a) and has an affinity for DNA (KTF), which is proportional to themaximum fitness cost (b) it imposes on a host cell.

The number of functional and mutant cells in a population is defined by xf and xm, respectively. The concentration of TF in each cell type is defined by zf and zm,

respectively. Functional cells are converted to mutant cells at a constant rate m. The growth rate of each population (F) is a function of the concentration

and maximum fitness cost of each TF. Population fitness (middle left) and circuit retention (middle right) dynamics for a range of TF fitness cost values (b), where

KTF = 1. Population fitness (bottom left) and circuit retention (bottom right) dynamics for a range of TF-DNA-binding affinities (KTF), where b = 1.

ll
OPEN ACCESSArticle



(legend on next page)
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Figure S7. Design of 3-node positive feedback circuit and testing of design variants, related to Figure 6

(A) Design details of positive feedback strains. The table lists synTF-CRM architecture at the autoregulatory node (‘‘node 2 promoter’’), PDZ ligand fused to the

second synTF (ZF 42-10), and clamp valency. The first synTF species (‘‘trigger’’) uses 4X mut ZF 43-8 (Kd � 13.6 nM); the second synTF species uses 4X mut ZF

42-10 (Kd � 15 nM). The clamp uses syntrophin PDZ domains: PDZ <> VKESLV ligand Kd � 1.9 mM; PDZ <> IRETIL Kd � 0.18 mM.

(B) Growth rate traces for feedback circuit variants throughout the eVOLVER continuous culture experiment.

(C) Reporter circuit output for feedback circuit variants throughout the eVOLVER continuous culture experiment. Samples were measured by flow cytometry.

Points represent mean values for four biological replicates ± SD.

(D) Autoregulated synTF concentration for feedback circuit variants throughout the eVOLVER continuous culture experiment. Samples were measured by flow

cytometry. Points represent mean values for four biological replicates ± SD.
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