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Abstract: A standard paradigm in control theory involves the use of feedback to change 
the dynamics of a system in some significant way. In the language of Willems ([9]), tIus paradigm 
prescribes the usc of feedback to create desirable "behaviorn in the system. There is growing interest 
(see e.g. [8]) in exploring an alternative paradigm applied to the control of systems in which there is 
a set of various behaviors pre-existing within the natural (uncontrolled) dynamics of the system, and 
wherein control acts in a minimalistic way to entrain a mode of behavior chosen from this set. We 
shall explore the latter in the context of some mechanical systems in whlch the control is only allowed 
to act intermittently. The systems we look at involve the controlled one dimensional scattering of a 
certain number of particles. In the absence of control, the systems are similar to the Toda lattices 
that have been considered by Moser ([7]) and others. We introduce boundary controls and confine 
our analysis to two classes of open loop 'controls-roughly corresponding to constant and periodic 
forcing. For the constant controls, the set of possible behaviors is easily described using fixed point 
analysis. For periodic forcing, on the other hand, the behavior set is very rich, and is modeled as 
the dynamics of an iterated 2-d mapping. Results on the stability and bifurcations of periodic orbits 
are given. 

1 Introdu.ction 

This paper describes the dynamics of a system of colliding particles whose motions will be controlled 
by varying the position, velocity, and inertia of a "racquet" at the boundary of a domain to which 
the particles are confined. While the system is extremely simple, the dynamics are nevertheless 
nonlinear, and there is a rich set of natural behaviors which can be produced by appropriate control 
actions. 

The motivation for studying this system comes in part from a toy recently shown to the author by 
one of his children. The toy contains several hard clastic spheres which are constrained to move so 
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as to guarantee collisions. The object of play is to produce any of several immediately perceivable 
patterns of collisions. A. broader motivation is to understand the general problem of controlling 
complex systems for which any controlling agent must learn how to influence the internal dynamics 
so as 10 elicit desired modes of behavior. The objective is non-classical in the sense that we wish 
to use feedback only 10 change the observed behavior of the system but not the qualitative nalure 
of lhe system itself. For the system of colliding particles studied below, we find a large number of 
possible modes of behavior, but o·ur understanding of how these depend on the control variables is 
not yet complete. Before a mature behavior-oriented approach to nonlinear control theory can be 
applied 10 such systems, it will be necessary to develop a more complete stability and bifurcation 
theory of the open-loop dynamics of prototypical systems. These objectives are currently being 
pursued in conjunction with controlling the gait of walking robots (c.f. [3]), controlling juggling ([5] 
and [6]), and controlling kinematic chains in which the number of degrees of freedom exceeds the 
number ~f actuators which are directly controlled. (See [1] and [2].) 

While there is not presently a large body of research literature on the behavior-oriented conlrol of 
nonlinear systems (c.f. the linear theory proposed in [9]), recent work by Ott ct al. ([8]) has been 
directed somewhat along these lines. We believe lhat the existence or non-existence of chaos in lhe 
dynamics we arc trying to control is perhaps a red herring, however, since we only need a rich set 
of natural dynamics, not necessarily fully developed chaos, to make the behavior oriented approach 
to control interesting. Also, we wish to avoid chaotic transients in switching from one stable mode 
of behavior to another. 

The paper is organized as follows. In the next section, we review some elementary facts regarding the 
dynamics of elastic collisions. Section 3 describes the control problem to be studied, and discusses 
the system's response to steady state forcing. Section 4 presents preliminary results on the system's 
response to periodic forcing. Concluding remarks arc given which summarize simulations showing 
the co-existence of distinct stable modes of behavior. While it must be pointed out that we only 
treat the response of the system to open loop forcing, simulations indicale that the set of possible 
responses is extremely rich, and further study of prescriptive control strategies seems warranted. 

2 Preliminaries on the dynamics of elastic collisions 

Before describing the system in detail, it is useful to recall some elementary facts about elastic 
collisions, and in so doing, it is important to distinguish between collisions involving two and 
collisions involving simultaneously more than two particles. Consider first two particlcs of mass ml 

and m2 constrained to move without friction on a line. In an elastic collision, both total moment~m 
and energy are conserved. Suppose the particles in our system have velocities vi and v~ just prior 
to colliding and v{ and v{ just aftcr colliding. Decause momentum M and energy e are conserved, 
both the initial velocity pair, (vI, v~), and final veloci ty pair, (v{, v{), simultaneously satisfy the 
equations 

(1) 
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(2) 

It is easy to see that there are prccisely two points in the (vt,v2)-plane at which the momentum 
locus intersects the energy locus. Thus if the initial velocity pair (vi, vD is given, it defines values 
M and e, and from (1)-(2) we find the post collision velocity pair ~v[, vn. On the other hand, ifthe 
same pair of particles were to collide with ini tial veloci ties (v{, V2), the post collision velocity pair 
would be (vi, vD. The implication of this observation is that the pairs Vi = (vt, vD and iiI = (v{, v{) 
are related by an idempotent matrix. I.e., there is a 2 X 2 matrix A such that 

iiI = Au', (3) 

and A2 = I. We have the following explicit characterization. 

Lemma 2.1 Suppose that two particles of mass ml and ml slide without friction along an infinitely 
long linear tract in the absence of e:cogenous forces. If the particles undergo an elastic collision and 
if the pre- and post- collision velocities are Vi = (vi, vD and vI = (v{, vi) respectively, then these 
are related by (3) where 

Proof: That such a matrix A exists follows from our above remarks. That it has this particular 
form follows from a simpl~ calculatiQn involving the conservation laws (1)-(2).0 

Conservation of momentum and energy docs not suffice to ch~racterize elastic collisions simulta
neously involving .three or more particles. The post collision distribution of velo<;:ities in such a 
collision will depend not only on the pre-collision velocities but also on the relative amounts of time 
each particle spends in contact with the others. Such collisions are not easily analyzed, and the 
.... elocity transition must generally be determined by integrating the actual equations of motion. 

3 The control of colliding particles in 1 .. dimension 

The dynamics of the system to be studied are dcscribed in terms of Figure 1. It consists of a 
frictionless line or track along which n particles of unit mass may slide. The particles undergo 
clastic collisions, and they are confined to move between two barriers with which elastic collisions 
also occur. We assume that the left hand barrier is fixed, but that the right hand barrier moves 
and functions as a. racquet which strikes the particles to influence their motions. The effect of the 
racquet striking a. particle is described by a scattering law of the form (3). More specifically, suppose 
the racquet has mass M and velocity v! just prior to striking the particle which has unit mass and 
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Figure 1: Particles of unit mass slide without friction in one dimension bctween a reHecting barrier 
and a racquet which may be moved left and right. 

is moving at pre-collision velocity v!. Then the post collision velocity of the particle and racquet 
are respectively vt and vI given by the formula 

v~ = Mtl ( I) (l-M 
VI' M+l 

M+I V~ 2M) . 
M+I (VI') M-l i' (4) 

The control objective which wc pursuc for this system is to program'sequences of racquet strikes 
to elicit prescribed stable patterns of motion among the particles. The principal results of this 
and thc next section of the paper are to characterize several achievable patterns. Since we assume 
control actions are effected by moving thc racquet left and right, we must in principle incorporate 
the dynamics of the racquet into any control strategy. We shall ignorc the details of the racquet's 
dynamics, however, and assume that it may be moved as fast as necessary to any point of the line 
to strike with velocity VI" In the next section, we shall also study the dynamics of the racquet and 
particles system under the assumption that the racquet inertia M may be varied for the purpose 
of controlling the system. This type of control is used by tennis players who change the effective 
inertia of a tennis racquet by adjusting their grip to he a greater or lesser distancc from the racquet 
head. 

Virtual Particles. If there is more than one particle in our system as depicted in Figure 1, 
then there are two equivalent ways to view the motions. Physically, the particles remain ordered 
from left to right, and they constantly exchange velocities by means of elastic collisions. In effect, 
however, because the particles all have unit mass, cach pairwise collision simply rcsults in an exact 
exchange of velocities. Hence, to describe the overall motion of the system, it is possible to label 
the particles according to their veloci ties. From this point of view, the particles "pass through" 
each other whenever a pairwise collision occurs. We shall refer to these velocity-labeled particles as 
virtual particles. It is convenient to study the motions of the virtual. particles since their velocities 
only change at the reflecting barrier and when they are struck by the racquet. 
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As mentioned in tile preceding section, velocity exchanges resulting from collisions of three or more 
particles being struck simultaneously by the racquet do not obey a simple algebraic scattering law 
of the form (3). The following definition thus highlights an important distinction ... 

Definition 3.1 Collisions simultaneously involving two particles are called simple. A racquet strike 
involving one particle is called a simple racquet strike. Collisions simultaneously involving more 
than two particles and racquet strikes simultaneously involving more than one particle are called 
non-simple. 

The first set of controlled behaviors whlch we wish to study are responses to what may be thought 
of as constant inputs for the system. Suppose the n particles have initial velocity distribution 
'V~, ••• ,'V~. We choose coordinates, denoted, say, by :&, for the axis along which the racquet and 
particles move such that the reflecting barrier is located at :& = o. Although the racquet may be 
moved left or right to strike the left-most particle at any point along its trajectory, the nominal rest 
position of the racquet will be :& = 1 in our chosen coordinate system. We implement the following 
simple 

CONTROL LAW: the rightmost particle is struck by the racquet moving at velocity -'Veach time 
the particle crosses the position :& = 1 moving in a left to right (positive) direction. 

The following characterizes the behavior of the particle motions under this law. 

Theorem 3.1 Assuming that only simple racquet strikes and collisions occur, each virtual particle 
which is initially'in motion will approach a steady state speed]lt[ v under the above control law. 

Proof: Clearly the theorem will hold if it holds for a single particle system. We keep track of 
the particle's motion by listing its speed just prior to each racquet strike. Under the law (4) , the 
evolution of these speeds is given by 

M-l 2M 
1)/;+1 = ( __ )vk + --v. 

p M+l p M+l 

Thls mapping has a fixed point: vp = Mv, and this proves the theorem.O 

Remark 3.1 In steady state under the abov~ control law, there is an exact momentum exchange 
between the racquet and particle at each strike. 

...... 
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The following theo~em shows that generically only simple collisions and racquet strikes occur. 

Theorem 3.2 For a generic set of initial particle velocities v~, ••• ,v~ and racquet inertias M I each 
virtual particle which is initially in motion will approach a steady state speed 111 v under the control 
law of the previous theorem. 

Proof: We prove this theorem in two parts. First we show that if the speeds evolve to within a 
prescribed threshold of their claimed steady state values, then unless the initial velocities and M 
ha.ve a functional dependency, no two particles approach each other closer than a. certain positive 
distance. It will then be noted that for a generic choice of initial velocities and racquet inertias, no 
non-simple collisions or racquet strikes occur before the particle speeds have gotten to within the 
necessary threshold of their steady state values. 

To carry out the argument, we shall want to analyze the trajectories of a typical pair of particles. 
It will be shown that the pair remains separated by a positive distance asymptotically except for 
regular encounters as directions are reversed at the reflecting barrier and racquet. To eliminate such 
irrelevant encounters from consideration, we unfold particle motions to occur on a doubly infinite 
line which is subdivided into subintervals of length two. We lift the dynamics to this unfolded 
domain by stipulating that all particle motions will be from left to right on the infinite line. The 
effect of the racquet is modeled by having the particles undergo velocity transitions according to 
the law 

M-l 2M 
vp I-t (M + 1 )vp - j1y1 + 1 v 

each time the particle transits one of the length two subintervals. 

Consider now the motion of two particles. Assume, without 1055 of generality, that the left hand 
particle is slower than the right. (Because the particles are actually moving in a compact interval 
we may always arrange them such that the slower is on the left in the "unfolded" model.) Suppose 
also that the initial conditions are such that ~l(O) is a transit point: that is to say the velocity of 
the left-hand particle has just undergone a transition. Let T denote the amount of time required 
for the faster particle to subsequently cross the point of velocity transition. In the instants of time 
immediately after the faster particle has undergone a transition, the positions of the two particles 
are given by 

~l(t) = Vl • (t + T) + ~l(O), and 

M-l 2M 
~2(t) = M + 1 V2 - M + 1 v + V2' T + ~2(0). 

The next velocity transition for the slow particle occurs at t satisfying Vl • (t + T) = -2. At this 
point, we have 

2 M-l 2M 
~2(t) = (-- - T)( -M V2 - -M v) + V2T + :C2(0). 

Vl + 1 + 1 
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Since T may be expressed in terms of :1:1(0), :1:2(0), and V2, we may rewrite this formula as 

Since :l:I(t) = :1:1(0) - 2, the relative distance between :1:2 and :1:1 at the next velocity transition for 
the slow particle, :1:1) is 

:l:2(t) - :l:I(t) = (-2 _ :1:1(0) - :I:,(O»(lvI -lv2 _ 2M v) + 2. 
VI V, M + 1 M + 1 

Stated in slightly different notation, suppose :I:~ and :I:~ are the respective positions of the particles 
when the k·th velocity transition of the slow particle, :1:1) occurs, then 

k Ic+I k+! 
:I:~+!_ :I:~+1 = 2e/1 

- V2 ) + ~(:z:~ - :z:~), vf v~ 

where 
v~+1 = (M -l)v~ _ ~v. 
, M+1' 1\-1+1 

From this we ma.y write 

(5) 

Now barring multiple collisions, wc have limk ___ oo vf = -kfv. Hence suppose we take as our initial 
velocities v~ = -Mv + e+ 5 and v¥ = -Mv + E, wherc E and 5 arc small positive numbers. A typical 
term in the above su·m is 

Now if we write vI = -Mv + 1'/, then 

.+1 M - 1· 2M M - 1 
v~ = (--)v~ - --v = -Mv + --1'/. 

I M+l' M+l M+l 

Hence a typical term in the 5U.m is the product of 

and 

(-mv + (~+DjE)( -mv + (~+Dj-l(E+ 5))' 
These sums are bounded and monotonic and thus clearly form a. convergent sequence as k tends to 
00. Hence the relative distance (5) approaches a. finite limit d as k --. 00 and this will genera.1ly not 
be equal to zero. 

G 
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It remains to note that our assumption that the initial velocities were close to the limit -Mv is 
consistent with the evolution of the system from a generic set of initial velocities. This follows 
from our discussion of single particle dynamics and the observation that the only way the particles 
could fail to approach tIus limit would be if non-simple racquet strikes repeatedly occurred. But 
the occurrence of a non-simple racquet strike of two or more particles imposes algebraic conditions 
on the initial position and velocity data and system parameters. Thus, we find it is generic that 
non-simple racquet strikes do not occur in any pre-specified finite interval of time. Since without 
non-simple racquet strikes the velocities will get close to the limiting value -1vlv in a finite time 
(which is easily computed for any initial conditions), we see that our assumption holds generically. 0 

Remark 3.2 Since (generically) any virtual particle having nonzero initial velocity will tend toward 
steady state speed ll/v, while any virtual particle which is initially at rest will remain at rest, it 
follows from the previous theorem that there are precisely n + 1 constant-velocity behaviors for our 
system. These may be indexed by either the number k of particles in motion or th~ complementary 
number n-k which are at rest. We note that with even the smallest initial velocity, a virtual particle 
will eventually approach steady state speed Mv, and hence the only constant-velocity steady state 
behavior wroch is stable is the one in which all particles are moving with speed 11lv. 

Remark 3.3 Suppose we slightly deform the track in our racquet and particle system so that it 
has a parabolic shape with minimum at :z: = 1/2. This adds a gravitational force which is felt by 
the moving particles and changes the stability characteristics described above. All virtual particles 
which are initially sufficiently close to :z: = 1/2 and wluch have initial velocities too small to make 
it up the potential well to the strike-point :z: = 1 will remain near the minimum of the potential 
:z: = 1/2 for all time. On the other hand, any virtual particle wroch is moving fast enough initially to 
get to :z: = 1 will be forced toward the steady state speed Mv. Thus for this modified system, there 
arc n + 1 constant-velocity motions counted, as in the previous remark, according to the number 
of virtual particles wroch are in motion. Each of these motions is stable in the sense that if the 
rest particles (point masses lying at the minimum of the potential) are perturbed slightly and the 
velocities deviate slightly from 0, the phase portrait of each rest particle remains in a. neighborhood 
of the point (:z:, vp) = (1/2,0), and those particles moving ncar the speed Mv tend toward this speed 
as time evolves. 

Remark 3.4 The coexistence of a. number of stable modes of behavior as described in the previous 
remark is an important feature which will also be noted for the periodic racquet motions discussed 
in the next section. Adding a small amount of frictiori to the particle motions will result in the 
steady state motions we have described being asymptotically stable. By making slight planned 
deviations from the control we have prescribed, it is possible to use the racquet strikes to move the 
system among the various domains of attraction. Feedback control strategies along these lines will 
be discussed elsewhere_ 

, 
I 
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4 The response to a periodically moving racquet 

Under the control law studied in the preceding section, the dynamics of the individual virtual 
particles are decoupled, and hence our investigation is reduced to the study of certain iterated 
scalar mappings. By contrast, even when there is only a single particle in our system, the response 
to periodic motions of the racquet is governed by two dimensional dynamics. This is because 
characterization of the response must be given not only in terms of the velocity transitions that 
OCCUI but also how these are synchronized with the period of the racquet. We again explicitly 
describe the open loop control law (=periodic racquet motion) we shall study. 

PERIODIC CONTROL LAW: The racquet moves back and forth between the positions :& = 1 and 
:& = 2 in the saw-tooth wave form: 

{

V 

vet) == -v 
vet) = vet ± 2h) 

O-:;t<h 
h'::; t < 2h. 
otherwise 

Note that because we have fixed the amplitude of the racquet's motion, the period and velocity are 
related by vk = 1. The remainder of this section will be devoted to obtaining an understanding of 
the dynamical response of our system of particles to this forcing. 

For the moment, assume there is a single particle. As it moves, it will eventually collide with the 
racquet when it is moving either left or right. The velocity is changed according to the scattering 
law (4). To keep track of the particle dynamics over the course of many racquet strikes, as in the 
preceding section, is is useful to record the particle velocities just prior to each racquet strike. The 
rules describing the evolution of these quantities will depend on the particle path as it leaves the 
racquet: 

TRANSITION RULES 

Type (i): vp ..... (~~)vp + ~~111 
if the particle meets the racquet moving to the right and will again be struck by the racquet 

on its next left-stroke; 

Type (ii): Vp ..... (~:;Dvp - ~'.;111 

if the particle meets the racquet moving to the right and will next encounter the reo.ecting 
barrier before being struck by the racquet againj 
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Type (iii): l1p I-t (~+Dvp + ~~111 
if the particle meets the racquet when it is moving left. 

For fixed M and 11 it is somewhat more complicated than what was done in the preceding section 
to keep track of the evolution of these velocities. 

As in the preceding section, the only control variables which may be employed to modify the system's 
behavior within the structure of the assumed law arc the racquet inertia M and the racquet velocity 
v. In Section 3, varying either M or v could change the steady state velocity of the system, but 
the dynamics remained qualitatively unchanged for all choices of M and v (both positive). It is 
not difficult to see that the qualitative response to the periodic control law described above is also 
unchanged as we vary 11. This follows from writing out the explicit dependence of the particle 
velocity in terms of successive velocity transitions of the above form. As the number of transitions 
becomes large it is clear that the particle velocity vp ceases to depend on the initial velocity, and 
under any change in racquet speed v I-t av, we shall have the particle velocity at any instant in 
time scaled by the same factor. Since the period of the racquet motion will be scaled inversely 
(i.e. h I-t h/a because we keep the amplitude of the racquet trajectory fixed), it follows that the 
motions of the racquet and particle remain unchanged except for the combined system speeding up 
or slowing down. Qualitative changes in the particle motion are produced by varying M, however, 
and it is these changes which we now summarize. 

Theorem 4.1 For 1 < M < 2} the periodic control law above leads to an asymptotically stable 
periodic orbit of period 2h for the particle. 

Proof: The proof ~ses a construction which will be more broadly useful than this .theorem alone. 
We note that given any time ° ::; to < 2h and particle velocity vp measured just pri~r to a racquet 
strike at to, it is possible to write down the next recorded velocity ii~ (in terms of the velocity 
transition mappings above) and the time t when the next racquet strike occurs. This defines a 
function F(vp , to) = (iip, t). This is the key to our proof, since we show there is an orbit as claimed 

by showing that the function F( l1p, to) - (20h) has a stable fixed point. It is not difficult to show 

that the only possible velocity value that could be a component of this fixed point is itself a fixed 
point of the third velocity transition 

M-l 2M 
vp I-t (M + 1 )vp + M + 111, 

which is obviously Ml1. The t-component of F(l1p, to) may be explicitly written in this case as 

t = (M -1)(l1p + l1)to + S(M + 1) 
(M -1)vp + (3M + 1)11 
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Substituting the steady state velocity Mv for VI" we wish to solve 

and 
t = to + 2h = to + 2/'11 

for to in the interval h ::; to < 2h. Solving, we find to = 3~M, and this will be in the desired 
range precisely when 1 < kI ::; 2. This shows the period 2h orbit exists under the conditions of 
the formula. To show that it is stable, we need to evaluate the derivative of F at 'the fixed point. 
This may be done by the obvious explicit calculation in this case, and we find that this derivative 
has repeated eigenvalues ~:;~, ~:;~ at the fixed point. Since these are both strictly less than 1 in 
absolute value, the fixed point is stable, and this proves the theorem. 0 

Remark 4.1 It turns o~t that this orbit is stable precisely when it existS. Generally, this will be 
true of all the velocity orbits we study for this system. 

Our study of the particle dynamics produced by the periodic racquet motions we have described 
may be reduced in general to studying the iterated function dynamics of F : Vx {O, 2h] -. Vx[O, 2h], 
where V is the set of velocities "recorded" just prior to each racquet strike (V = {-'I1,oo», and F 
maps points in this velocity-time space as follows: ' 

H ° ~ to < h then 

If h ~ to < 2h then 

where s denotes the time (mod(2h» a.t which the next collision between the racquet and the 
particle occurs. (We omit the explicit expression for s, since it is in principle straightforward to 
calculate but roughly doubles the complexity of the explicit formula for F('I1O, to).) The idea here 
is that this function describes simultaneously the velocity transitions of our system together with 
the sequence of times modulo the basic period 2h at which the racquet strikes the particle. While 
a complete characterization of the iterated function dynamics for F cannot be given here, we are 
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able to carry out some elementary calculations which illustrate important qualitative f~atures of 
the system dynamics. 

Thinking of the three basic types of velocity transitions in the above table as letters in an alphabet, 
we may uniquely identify any trajectory obtained from iterating the function F by the sequence of 
velocity transitions which it defines. Conversely, if any sequence of velocity transitions is written 
down, it will define a trajectory of iterates of F provided an appropriate sequence of transi tion 
times can be given. 

To illustrate what is involved in finding a trajectory which realizes a prescribed sequence of vdocity 
transitions, we shall investigate the ~stence of several periodic trajectories. Call a trajectory in 
which there is a repeated pattern of velocity transitions· consisting of a type (i) transition followed 
by k -1 type (iii) transitions a type 1 velocity cycle. We shall show that type 1 velocity cycles may 
or may not exist. 

Proposition 4.1 There is no type 1 velocity cycle of length 2. 

Proof: A velocity cycle of length 2 would alternate velocity transitions of type (i) and type (ii). 
One can explicitly solve for the particle velocities comprising this cycle: 

2M 
and V2 = (111 + 1)2 v. 

The corresponding 2-cycle of collision times th t2 would be related according to the above definition 
of F by the fot:mulas 

and 

t2 = (M - l)(v - VI)t I + 2(M + 1) 
(1 - M)Vl + (3M + l)v 

tl = (M"": 1)(V2 + V)t2 + 2(M + 1) _ 2/v. 
(M-l)(v2+ v) . 

In order for a type 1 2-cycle to exist, we must be able to solve these equations simultaneously for 
tI, t2 in the respective intervals 0 :5 tl < hand h :5 t2 < 2h. Solving the equations simultaneously 
for h yields 

_ M6 + 6Ms + 15M4 + 56M3 + 39M2 + 10M + 1 h 
h - (M -l)(M + 1)3(M2 +4M + 1) . 

(Recall that h = l/v.) It is not difficult to show that on the interval 1 < M < 00, tl is monotonically 
decreasing and always greater than h. Since we therefore cannot have tl < h, we have shown that 
no 2-cycl.e of type 1 exists. 0 

A tedious but elementary calculation of this type shows that a length 3 type 1 velocity cycle exists 
with 
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provided we can find a corresponding time cycle (th tZI t3) with 0 :5 tl < hand .. h :5 tZI t3 < 2h. 
Elementary but lengthy arguments along the lines described in proving the proposition show that 
all required inequalities are satisfied provided 

3M2 -8M+l > 0 

and 
M3 - 11M2 + 3M - 1 < o. 

These will simultaneously hold for 2.53518 ••• < M < 10.7291 •••• 

In principle, the same type of elementary argument may be used to confirm or rule out the existence 
of an orbit of any type, but the complexity of the formal manipulations places practical limits what 
can be determined in this way. . 

We conclude with some remarks based on simulation. Although an asymptotic~ly stable length 
3 type 1 cycle exists for the range of inertias lIf we have indicated, the corresponding domain of 
attraction may be quite small. Other types of orbits are found to coexist for various values of M, 
and the observed behavior will depend sensitively on initial conditions. (For instance, for M ~ 5.4 
, a length 3 velocity cycle consisting of a type .(ii) and two type (iii) transitions seems to dominate 
the dynamics.) The possible multiplicities of coexisting stable periodic orbits and the ways in 
which their geometry may vary with the racquet inertia remains open at the present time. It is 
precisely by understanding the dependence of the system's dynamics on such control parameters 
that we hope to develop a control theory for systems oC this type. 
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