Influence of Landscape Management Practices on Urban Greenhouse Gas Budgets

WILEY J. HUNDERTMARK, MARISSA LEE, IAN A. SMITH, ASHLEY H.Y. BANG, VIVIEN CHEN, CONOR GATELY, PAMELA H. TEMPLER, LUCY HUTYRA

Study Goal & Methods

▶ BU Climate Action Plan (2017)

- Aims for carbon neutrality by 2040
- Focuses on heating, electrical emissions
- Does not account for 'biogenic' sources and sinks of carbon
 - Soil respiration
 - Carbon storage

Methods

- Measured rates of carbon movement
- Segmented the campus landcover into 13 exhaustive categories

Landcover Classification

Campus Differences

Campus Differences (cont.)

Campus Differences (cont.)

Charles River Campus Land Cover C Exchange

Medical Campus Land Cover C Exchange

Wheelock Campus Land Cover C Exchange

500

10

C flux (Mg ha⁻¹yr⁻¹)

12.1% canopy cover

8.3% canopy cover

31% canopy cover

November

December

*emissions are a lower bound estimate, maintenance emissions are not included (mowing, leaf blowing, fertilizer, etc.)

Solution 1: Less Mulch

► Finding: mulch produces CO₂ faster than grass

- Minimize mulch application to decrease CO₂ production
- When? Where? How much?
 - Applying smaller quantities, less often
 - Mulch has the benefit of reducing water loss from soils, but it is being applied in irrigated area. Target mulch for areas without irrigation.

Solution 2: More Trees

- Increase carbon uptake
- ► Five candidate locations
 - Behind Agganis Arena: Parking Lot

National Emerging Infectious Diseases Laboratories

Commonwealth Ave: West Campus

Medical Campus Green

The BU Beach

Solution 2: More Trees (cont.)

- Difficult to estimate contribution to carbon reduction
 - ► Tree size, species
 - Estimate: Add 100 trees on Charles River Campus
 - Would nearly halve net biogenic carbon flux

Thank you!

Campus (area)	Mulch Cover (%)	Lawn Cover (%)	Emissions via Mulch (Mg C ha ⁻¹ yr ⁻¹)	Emissions via Lawn (Mg C ha ⁻¹ yr ⁻¹)	C Sequestered (Mg C ha ⁻¹ yr ⁻¹)	Net Biogenic C Flux (Mg C ha ⁻¹ yr ⁻¹)	Scope 1 Emissions (Mg C ha ⁻¹ yr ⁻¹)
Charles River Campus (73 ha)	4.3	6.7	0.71 ± 0.22	0.94 ± 0.23	0.86 ± 0.67	0.78 ± 0.74	248.6
Medical Campus (32 ha)	4.7	10.0	0.78 ± 0.24	1.41 ± 0.34	0.69 ± 0.44	$1.50 \pm .61$	438.1
Wheelock Campus (3.2 ha)	11.4	15.2	1.87 ± 0.58	2.12 ± 0.51	2.19 ± 0.67	1.80 ± 1.02	200.4