

Thermal Wave Sensors for Clean Energy Technology Development

Aaron Khan

PI: Sean Lubner

Collaborators: Savannah Schisler, Anton Resing, Joerg Werner

Thermal Wave Sensors (TWS) can map battery subsurface transport properties

TWS Can Measure Lithium Gradients Within Batteries

Trade-Off Between Energy Density and Power Density

$$Energy Density = \frac{Energy (J)}{Mass (kg)}$$

$$Power Density = \frac{Power (W)}{Mass (kg)}$$

$$M_{total} = m_{cathode} + m_{anode} + m_{separator} + m_{cc}$$
Active Material Inactive Material

TWS Can Validate Decoupling of Energy Density and Power Density

Structural parameters

- Electrode thickness (h_e)

Primary Pore size (D_p)

Matrix thickness ($t_{\rm m}$)

Determines energy density (scales with electrode thickness)

Determines power density (electrode thickness invariant)

Matrix porosity and composition

Thermal waves non-invasively map subsurface Li⁺ distributions in AE

Thermal Wave Sensor Fabrication

Fabrication: Photoresist Spinning

Fabrication: Electron beam metal deposition

Fabrication: Shadowmask

Also building the electronics to power TWS

TWS: Further Applications

Fuel cells (structurally very similar to batteries), interface morphology evolution with cycling

Carbon capture adsorbent materials (CO2 concentration gradients, when to replace, how well is it charging/discharging)

High Temperature Thermal Energy Storage: Generation and evolution of microcracks and sintering.

Thank You