January 29<sup>th</sup>, 2021

Heating Electrification Strategies to Decarbonize BU's Charles River Campus: Phase 2 Focus on Key Existing Buildings

- 1. Problem Definition & Overview of Approach
- 2. Phase 1 Findings
- 3. Peak Electrical Demand Estimate
- 4. Strategies to Reduce Peak Electrical Demand & GHG Emissions

Gayatri Sundar Rajan (ENG '22) Keeley Bombard (CAS '22)

Professor Michael Gevelber (ENG)

## Overview

- BU's Climate Action Plan aims to eliminate BU CRC's carbon emissions by 2040
- 40% of BU's CRC Greenhouse gas emissions stem from heating its buildings

Why *Electrify* Heating Systems?

• Electric heating reduces 100% of the carbon emissions from existing fossil heating systems

Why Retrofit *Existing* Buildings?

- BU's campus only grows by 0.75% each year<sup>1</sup>
- We cannot wait to construct new buildings to reduce BU's carbon emissions

Scope of Problem

• 211 buildings<sup>2</sup> | 10 M ft<sup>2</sup> CRC<sup>2</sup> | \$12M/yr of NG use<sup>2,3</sup> | 20-year timeframe

Driving Question: How can we electrify the greatest % of BU's fossil heating systems in the shortest time given limited capital and operating budgets?

From Energy Section of BU CAP
2016 Utility Data, excludes rentals
NG Price of \$13.83/MMBtu

# Phase 1 Findings

Focus on retrofitting 15 key buildings

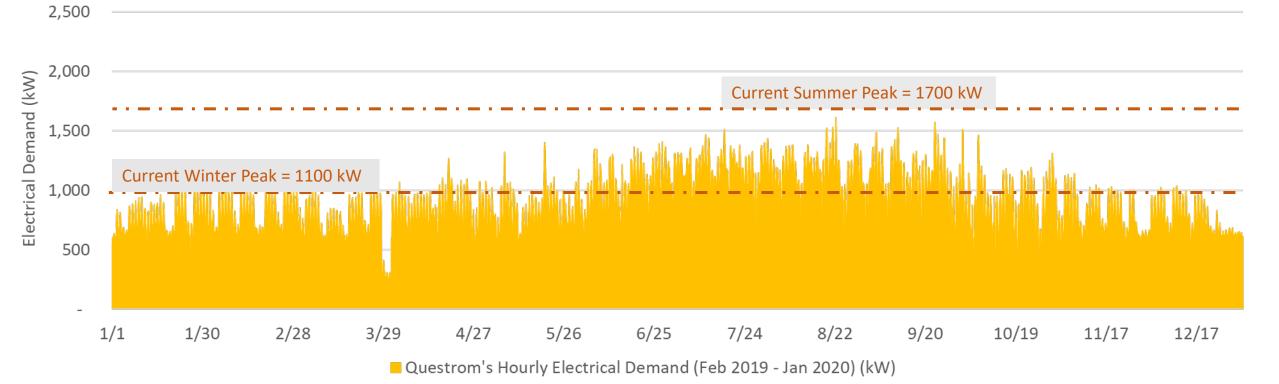
Reduce 44% of CRC's fossil heating energy use with only 15/211 buildings Air-Source vs Ground-Source Heat Pumps

GSHPs' higher efficiency does not offset it's greater capital cost and disruption when compared to ASHPs. Install Hybrid Systems of Heat Pumps & Boilers

3

Minimize capital cost, maximize utilization of heat pumps Explore High-Temp Heat Pumps

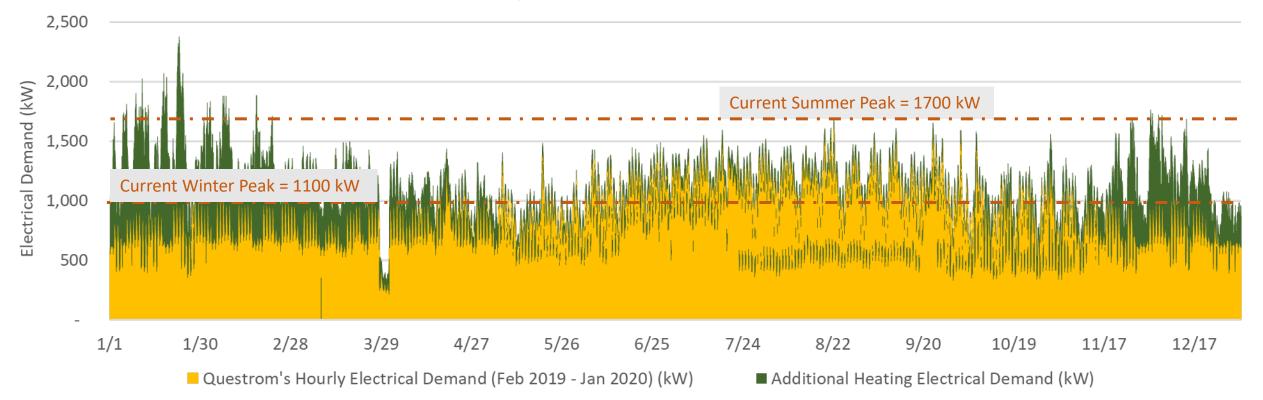
More compatible with existing equipment thus requiring less extensive renovations


#### Phase 2 Focus:

- Feedback from MEP companies: Is our retrofit feasible given existing electric capacity?
- Tailoring retrofit strategy to key buildings  $\rightarrow$  start with Questrom!

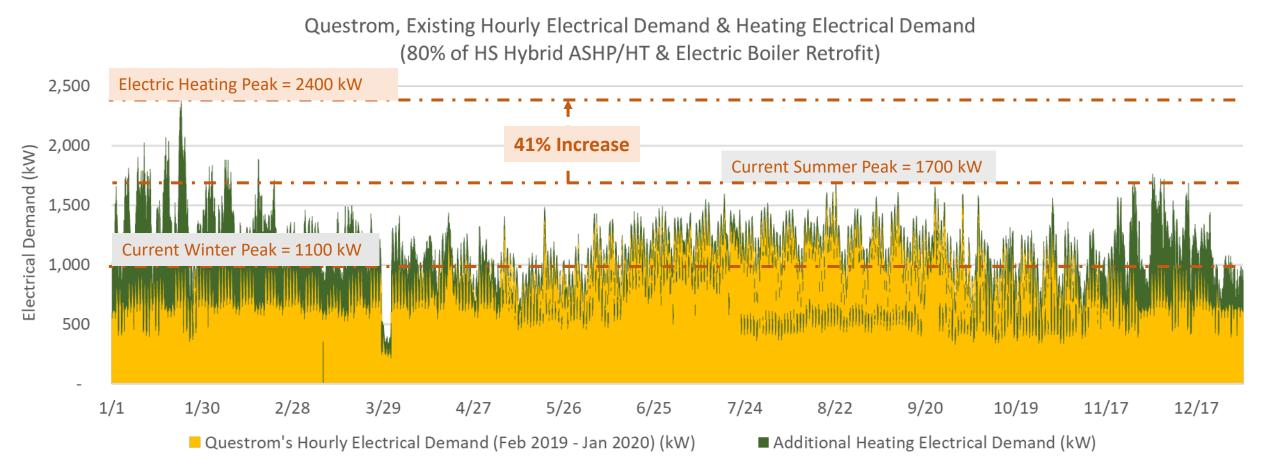
### Higher Peak Electrical Demand

- Peak Electrical Demand: max electrical power (kW) drawn from electrical service in a 15-min interval
- Increase in capital cost and complexity b/c of need to upgrade electrical service


Questrom, Existing Hourly Electrical Demand & Heating Electrical Demand (80% of HS Hybrid ASHP/HT & Electric Boiler Retrofit)



### Higher Peak Electrical Demand


- Peak Electrical Demand: max electrical power (kW) drawn from electrical service in a 15-min interval
- Increase in capital cost and complexity b/c of need to upgrade electrical service

Questrom, Existing Hourly Electrical Demand & Heating Electrical Demand (80% of HS Hybrid ASHP/HT & Electric Boiler Retrofit)

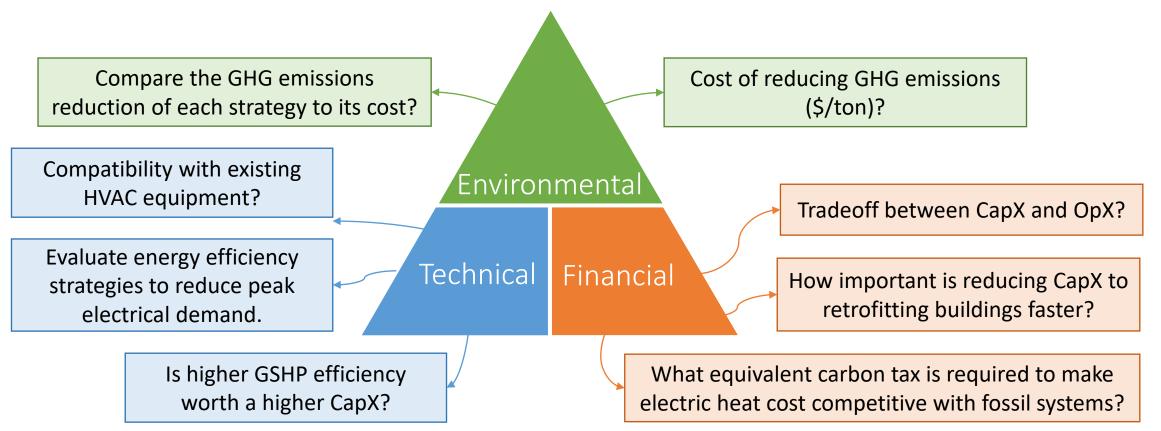


## Higher Peak Electrical Demand

- Peak Electrical Demand: max electrical power (kW) drawn from electrical service in a 15-min interval
- Increase in capital cost and complexity b/c of need to upgrade electrical service



### Research Questions


- 1. Cost of upgrading building's electrical capacity?
- 2. What hot water temperature is needed for perimeter heat and AHUs?
- 3. What equipment design minimizes capital cost, operating cost, greenhouse gas emissions, and peak electrical demand?

### Strategies to Decrease Peak Electrical Demand

- 1. Decrease peak heating load: optimize economizer and airflow<sup>1</sup>
- 2. Reduce electricity used for heating:
  - a) Use existing fossil-fuel boilers for supplemental heat on coldest days (only 4-13% of year)
  - b) Use more efficient electric heating equipment: GSHPs vs ASHPs
- 3. Store electricity in off-peak hours: Explore building energy storage

### Summary of Phase 2 Analysis

- **Driving Question:** How can we most quickly reduce the greatest % of BU's GHG emissions given limited capital and operating budgets?
- **Objective:** Refine heating electrification strategy
- Reality Check: Present to BU Staff & Admin and MEP companies for feedback



## Acknowledgements

## We'd like to sincerely thank the following individuals for their insight & time:

#### **Boston University Student Researchers**

Author of "BU CRC Electrification" Analysis (Jan 2018)

David Staller (ME '18)

Authors of "Energy Efficiency Opportunities on CRC" Analysis (May 2017) Gabriella Henkels, Charles Bradley Miller, Ryan Peters, Carly Baracco, Anthony Graziano, Cole Ashman Paul Chiampa Jr., Jessica Gimbel, Cristian Morales

#### Estimating Costs & Financing Large CapX Projects

| Judith Judson    | VP of Distributed Energy Systems, Ameresco         |
|------------------|----------------------------------------------------|
| Paul Lyons       | President, Zapotec Energy Inc                      |
| Domenic Armano   | President, Guardian Energy Management              |
| Michael Gibbs    | Former Assistant Executive Officer, CARB;          |
|                  | Former Deputy Secretary of Climate Action, CalEPA; |
|                  | Former Senior Vice-President, ICF International    |
| Robert Kaufmann  | Founding Partner, First Fuel Software;             |
|                  | Earth & Environment Professor, Boston University   |
| Nalin Kulatilaka | Founding Partner, First Fuel Software;             |
|                  | Business Professor, Boston University              |
|                  |                                                    |

#### **Understanding Boston University's Project Planning & Implementation**

| Paul Rinaldi    | Assistant VP for Planning, Boston University    |
|-----------------|-------------------------------------------------|
|                 | Business Professor, Boston University,          |
| Robb Dixon      | Former Chair, Boston University Faculty Council |
| Dennis Carlberg | Director of Sustainability, Boston University   |

#### **Understanding Building HVAC Design & Heat Pumps**

| U                |                                                |
|------------------|------------------------------------------------|
| Jacob Knowles    | Director of Sustainable Design, BR+A           |
| Cris Copley      | Principal of HVAC & Mechanical Design, BR+A    |
| Joshua Michaud   | Associate Principal of HVAC, BR+A              |
| Carolyn Meadows  | Director of Strategic Initiatives, Boston Arts |
|                  | Academy                                        |
| James McQueen    | Project Manager, Boston Arts Academy           |
| Robert Fisher    | VP of Facilities, Roxbury Community College    |
| Bradley Campbell | President, Conservation Law Foundation         |
| Timothy Simpson  | AERMEC Product Specialist, Emerson Swan        |
|                  |                                                |

#### **Geothermal: Heating & District Heating**

| Tracey Ogden  | Principal, TAO Consulting |
|---------------|---------------------------|
| Jarred Mullen | Skillings and Sons        |
| T.J. Bernier  | Gap Mountain Drilling     |