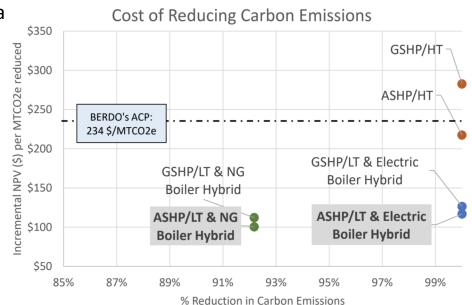
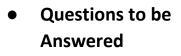
Spring 2022

Heating Electrification Strategy Update for Decarbonizing BU's Charles River Campus:

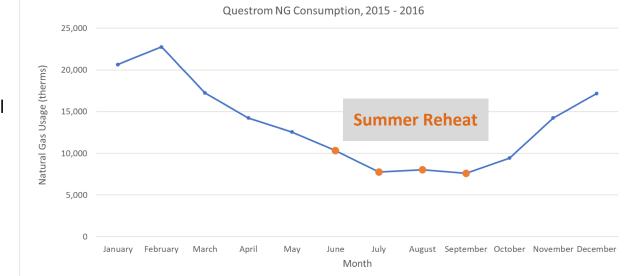

Analysis of Summer Reheat Electrical Loads & Capacity Requirements and Analysis of Interval Data to Identify Energy Efficiency Opportunities

Cathy Cheng (ENG '23) Sabrina Dilig (ENG '23)

Professor Michael Gevelber (ENG)

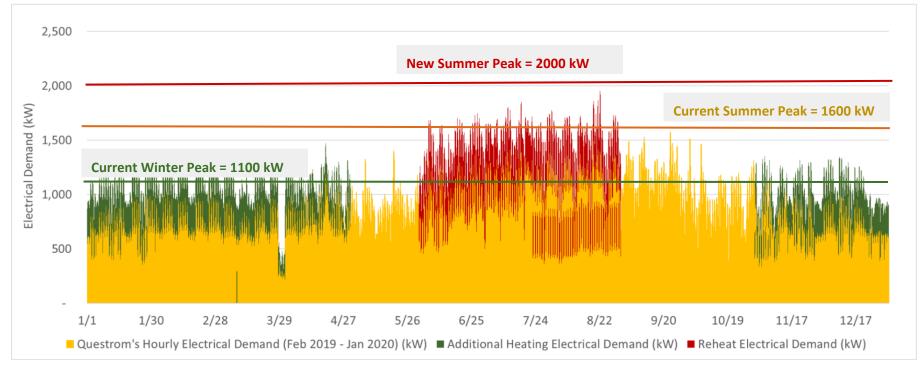

Summary of Previous Results

- Heating represents 40% of BU CRC GHG emissions
- Focus: 15 Large Buildings account for 51% of CRC Heating/Fossil GHG Emissions (26,400 MTCO2e of Emissions), 48% of CRC Total Building Area
 Cost of Reducing Carbon Emissions
- Low-temperature ASHP hybrid strategy can achieve 90% GHG emission reduction and minimize CapEx
- Incremental cost for BU to invest in hybrid heating is ~\$100/MTCO2e vs
 Boston BERDO's ACP of \$234/MTCO2e



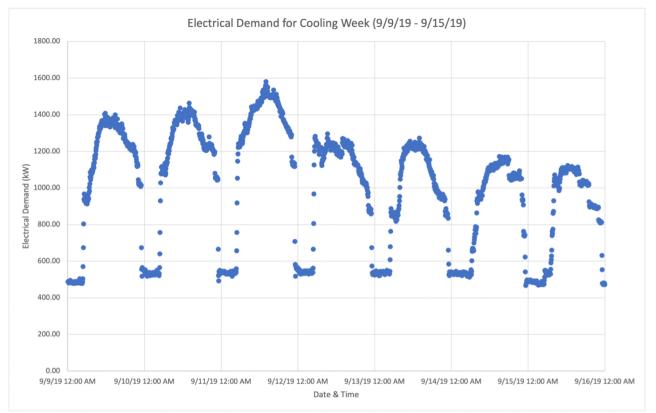
Electrifying Summer Reheat

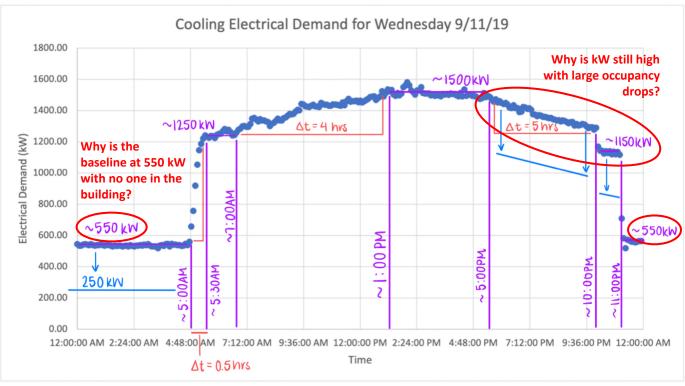
- What is Reheat?
 - In summer time, cool all air to 55°F to wring out humidity. Need to heat air back up to 65°F to allow the air to condense in order to control temperature and humidity
- Why is it important?
 - Currently represents ~40% of natural gas use & significant carbon emissions



- How much additional electrical use will this entail?
- Will the current heat pump design have enough capacity?

Preliminary Model of Heating Electrical Demand


- Estimate indicates that the ASHPs in current design are sufficient to meet reheat load requirements!
- Existing transformers in building have 8,600 kW of capacity


Interval Data: Analysis to Identify Energy Efficiency Measures

What is Interval Data?

- Electrical demand provided for 15-minute intervals on a buildingby-building basis
- Analyzing interval data can show where electrical and heating demand can be reduced with energy efficiency measures
- Preliminary research focuses on Questrom Interval Data from 2019 to 2020

Example Interval Analysis Savings for One September Weekday

- HVAC comes on at 5am and runs until 11pm
- Large reduction of occupancy occurs at 5pm
- Could significantly reduce HVAC usage between 5am to 7am and 5pm to 11pm
- Impact: Could produce 15% savings to have significant GHG emissions and cost reduction

- Question to be Investigated
 - What % of the building is occupied in June, July, and August & could there be savings?

Next Steps

- <u>Buildings on Steam Loops</u>: Investigate cost of implementing and configuring additional heat exchangers in buildings
- <u>Analyze Energy Efficiency Measures</u>: Estimate potential additional energy savings from measures to reduce electrical loads
- <u>Summer Reheat:</u> Further investigate how we can meet this load and evaluate the use of waste heat recovery for summer reheat
- <u>Continue Assessment of Buildings' Electrical Capacity</u>
 - Evaluate constraints of building electrical supply and potential additional costs to extend capacity of transformer unit substations
 - Building-by-building analysis to determine impact of electrification on existing loads
- <u>Continued Discussion</u>
 - Further outreach with BU Facilities Management & Operations and MEP companies
 - Prepare for Heating Electrification Seminars with ISE
 - Publish and present work to BU community and other organizations

Acknowledgements

We'd like to sincerely thank the following individuals for their insight & time:

Boston University Student Researchers

Author of "BU CRC Electrification" Analysis (Jan 2018)

David Staller (ME '18)

Authors of "Energy Efficiency Opportunities on CRC" Analysis (May 2017)

Gabriella Henkels, Charles Bradley Miller, Ryan Peters, Carly Baracco, Anthony Graziano, Cole Ashman Paul Chiampa Jr., Jessica Gimbel, Cristian Morales

Estimating Costs & Financing Large CapX Projects

Domenic Armano	President, Guardian Energy Management
Phillip Eash-Gates	Senior Associate, Synapse Energy Economics
Michael Gibbs	Former Assistant Executive Officer, CARB;
	Former Deputy Secretary of Climate Action, CalEPA;
	Former Senior Vice-President, ICF International;
Megan Howard	Director, MassCEC
Judith Judson	VP of Distributed Energy Systems, Ameresco
Robert Kaufmann	Earth & Environment Professor, Boston University
	Founding Partner, First Fuel Software;
Jeremy Koo	Associate, Cadmus Group
Nalin Kulatilaka	Business Professor, Boston University
	Founding Partner, First Fuel
Paul Lyons	President, Zapotec Energy Inc

Understanding Boston University's Planning, HVAC Implementation, &

Brages Carlberg	Director of Sustainability, Boston University
Robb Dixon	Former Chair, Boston University Faculty Council
Shaun Finn	Assistant VP of Budget, Planning & Business Affairs,
	Boston University
Dipak Intwala	Manager of Boston University Energy Efficiency Program
Joseph Kajunski	Assistant Director of Boston University Engineering and
	Building Automation
Paul Rinaldi	Assistant VP for Planning, Boston University
Rich Ellis, Michael	Boston University Facilities, HVAC
Downing, Craig	
Homen	

Understanding Building HVAC Design & Heat Pumps

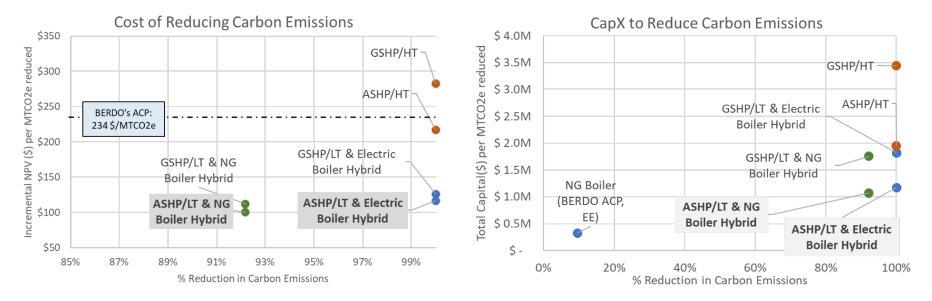
Bradley Campbell	President, Conservation Law Foundation
Nicholas Conklin	Director of Global Product Strategy, Carrier HVAC Program
Cris Copley	Principal of HVAC & Mechanical Design, BR+A
Robert Fisher	VP of Facilities, Roxbury Community College
Anthony Hardman	Senior BPA, The Green Engineer Inc.
Jacob Knowles	Director of Sustainable Design, BR+A
Paul Kondrat	Principal, CannonDesign
James McQueen	Project Manager, Boston Arts Academy
Carolyn Meadows	Director of Strategic Initiatives, Boston Arts Academy
Joshua Michaud	Associate Principal of HVAC, BR+A
Chris Schaffer	Founder & President, The Green Engineer Inc.
Neetu Siddharth	Principal, The Green Engineer Inc.
Timothy Simpson	AERMEC Product Specialist, Emerson Swan
Mike Walters	Principal & Expert in Distributed Heating Systems, Salas O'Brien
Jean-Philippe Drouin	Ecosystem Energy
Justin Thorpe	HTS New England (Aermec Distributor)

Geothermal: Heating & District Heating

T.J. BernierGap Mountain DrillingKeeley BombardBU Earth & Environment (CAS '22)Owen BradyManager of Future of Heat Program, National GridJarred MullenSkillings and SonsTracey OgdenPrincipal, TAO ConsultingErik PekkalaGrowth Portfolio Lead of New Energy Products, National GNathan PhillipsBU Earth & Environment Professor, Boston University	Grid
---	------

Appendix

Financial Analysis of Alternative Electrification Strategies


- Capital limitations strategies that minimize CapX important
- Proposed BERDO ACP cost (\$234/Mton of CO2e) increases "cost" of operating existing NG Boilers
- Key Points from Plot:
 - Electric Boiler solutions require higher OpX than NG Boiler options b/c electricity is ~4x cost of NG
 - Electrification is a net cost increase compared to BAU GSHP Hybrids require~2x the CapX of ASHP Hybrids w/ similar NPV

Comparing CapX, OpX, and NPV of Total Expenses (20 yrs, 4.5% interest rate)

Cost of Reducing Carbon Emissions

- Boston BERDO's Alternative Compliance Payment (ACP): \$234/MTCO2e
 - Corresponds to 2.2X NG price (\$1.07/therm \$2.31/therm)
- Insight: Hybrid systems provide cost savings vs NG system with BERDO ACP (y-axis) & minimize CapX needs for heating electrification
 - Can select & increase % decarbonization (x-axis): NG Hybrid reduces 92% of GHG emissions, while electric system reduces 100%
 - Hybrid ASHP/LT systems (NG & Electric Boiler) are both ~\$100/MTCO2e.

Key Takeaways: Financial Analysis

- Capital is limited
- <u>ASHP preferred over GSHPs</u>: ASHPs require ~40% lower CapX than GSHPs & 4% lower NPV, but a higher OpX by 17%. Necessary electrical supply available for ASHPs
- Total cost (CapX & OpX): Hybrid Systems with electric boilers have greater NPVs of total expenses than those supplemented by NG Boilers
 - Tradeoff: cost vs % decarbonization
- **Comparison to BERDO ACP**: Natural gas & electric hybrid solutions are cheaper than paying BERDO ACP on existing NG Boiler system
- <u>Implementation</u>: Apply learning from pilot buildings to 14 key buildings
 - Reduce scope of retrofit while maximizing GHG emissions reductions

Implementation Strategy: Electrify Pilot & 15 Major Buildings

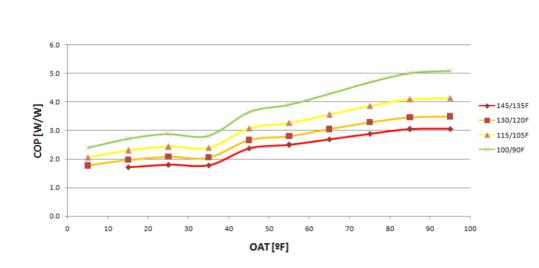
- **Pilot Buildings:** verify retrofit strategy, learn from performance, and evaluate suppliers & contractors
- Major Buildings: maximize GHG emissions reductions with the fewest number of building retrofits
- Selection Criteria: AHU/VAV/Perimeter heating, liquid thermal fluid in heat exchangers

Pilot Buildings				
Possible Retrofit Buildings	# of Buildings	Total Area (GSF)	Heating Energy Use (MMBtu)	% of CRC Fossil GHG Emissions
Facilities & Planning, Human Resources, Sargent, EPIC, Fraunhoffer Center for Manufacturing Innovation, School of Hospitality, Graduate Student Housing (580 Commonwealth Avenue)	7	610,000	30,900	4%

М	ajor Buildings				
Buildings to Retrofit		# of Buildings	Total Area (GSF)	Heating Energy Use (MMBtu)	% of CRC Fossil GHG Emissions
Agganis Arena* CILSE FitRec* Law School (Redstone) LSE Metcalf	Mugar Library** Photonics Physics Research Building Questrom Yawkey	11	2,670,000	280,000	32%
Buildings Under Further Evaluation		# of Buildings	Total Area (GSF)	Heating Energy Use (MMBtu)	% of CRC Fossil GHG Emissions
StuVi-1* StuVi-2*	Warren Towers** West Campus Dormitories*	4	1,660,000	161,000	19%

* West Campus Steam Loop

** Central Campus Steam Loop


Preliminary Retrofit Roadmap: Electrify 15 Key Buildings

- 12 yr plan: Electrify 4.4M GSF to reduce 51% of BU CRC's heating fossil fuel use
 - Critical to have proper project & operations staffing
- CapX: \$3.5M/yr (\$32.2M investment) |Annual OpX: \$10.3M/yr
 - Post-Electrification OpX will be 40% less than existing NG system with BERDO ACP

Project Implementation Plan for Top 15 Key Buildings & Pilots

Coefficient of Performance of ASHP/LT Unit

COP vs OAT

- Updated information for COP of Aermec ASHP/LT units
- Critical for:
 - Calculating electrical demand
 - Evaluating dependence on outside air temperature