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1 OVERVIEW 
Boston is known for its historic iconic buildings, from the Paul Revere House in the North End, to City 
Hall in Government Center, to the Old South Meeting House in Downtown Crossing, to the African 
Meeting House on Beacon Hill, to 200 Clarendon (the Hancock Tower) in Back Bay, to Abbotsford in 
Roxbury. In total, there are over 86,000 buildings that comprise more than 647 million square feet of 
area. Most of these buildings will still be in use in 2050.   

Floorspace (square footage) is almost evenly split between residential and non-residential uses, but 
residential buildings account for nearly 80,000 (93 percent) of the 86,000 buildings. Boston’s buildings 
are used for a diverse range of activities that include homes, offices, hospitals, factories, laboratories, 
schools, public service, retail, hotels, restaurants, and convention space. Building type strongly 
influences energy use; for example, restaurants, hospitals, and laboratories have high energy demands 
compared to other commercial uses.  

Boston’s building stock is characterized by thousands of turn-of-the-20th century homes and a post-
World War II building boom that expanded both residential buildings and commercial space. Boston is in 
the midst of another boom in building construction that is transforming neighborhoods across the city.  

The age of Boston’s building stock is important because many of the city’s residences were built before 
the 1950’s and the establishment of the first building energy codes. These buildings typically have less 
insulation, are less air-tight, and use older, inefficient equipment, all of which result in higher energy use 
and GHG emissions compared to newer buildings. Recent buildings conform to a common energy code 
that aims to balance cost-effectiveness, building comfort, and environmental goals that leads to lower 
energy use and GHG emissions.   

Carbon-neutral buildings are highly efficient and do not use fossil fuels for heating and other services. 
New buildings will be built to the highest possible performance standards while avoiding the lock-in of 
fossil fuels. Existing buildings will require deep retrofits that reduce energy consumption and electrify 
heating systems. Achieving these goals requires a synergistic mix of fast-acting policies such as net zero 
codes, performance mandates, and retrofit requirements. These changes generate significant benefits 
but require significant upfront capital, a trained labor force, and the willingness and capacity of Boston’s 
residents, businesses and institutions to invest in their buildings. These actions must also give socially 
vulnerable populations access to information, technical assistance, and financial resources. This will 
ensure that they can reap the benefits of lower utility bills, and not be further displaced as a result of 
higher housing costs, or left out of benefits that accrue to residents of new, efficient buildings. 

2 SUMMARY OF KEY FINDINGS 
• Boston’s building stock generates approximately three-quarters of the City’s GHG emissions 

from the consumption of electricity, and the combustion of natural gas and fuel oil. 
• Building energy modeling was applied to the entire city using calibrated models representing the 

city’s building stock. These models were used to identify optimal energy efficiency and 
decarbonization strategies. 
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• Current policy and trajectory will not meet the goal of carbon neutrality by 2050. Additional 
action is needed to significantly reduction GHG emissions over the next 32 years.  

• Both incentives and mandates play an important role in rewarding and driving behavior and 
both will have a role to play for Boston to achieve carbon neutrality. While important, incentive-
based policies and programs alone do not provide the market penetration needed. Only 
mandates provide the level of penetration required to make a significant impact on emissions 
reductions.  

• New construction is only a small part of the challenge. As this analysis demonstrates, predicted 
growth will only represent 15 percent of the building stock by 2050. While new building net zero 
emissions codes are necessary to offset growth, they alone will not make a deep reduction in 
GHG emissions from buildings. 

• The thermal loads in buildings needs to be electrified to the greatest extent feasible. Deep levels 
of energy reduction need to be realized at the same time to lower the cost of electrification.  

• Significant action needs to be taken in the next decade. The policy timelines included in the 
analysis predominantly begin implementation over the next decade in order to start to bend the 
trajectory aligned with the City’s commitments.  

3 BACKGROUND 
The scope of this study focused on evaluating various energy conservation measures and strategies 
required to reduce sector-wide GHG emissions to zero by 2050. Achieving this goal will require changes 
to two existing policy regimes. First, the planning and development process needs to require new 
buildings to eliminate the on-site use of fossil fuels. Second, existing buildings will need to be retrofitted 
to eliminate the on-site use of fossil fuels. Supply, cost and delivery constraints associated with carbon-
free electricity and fuels will likely necessitate efforts to reduce overall energy consumption. These 
constraints are explored in detail in the Carbon Free Boston Energy Technical Report, but are used here 
to frame the analysis. 

From a technical standpoint, the decarbonization of the building sector will require most buildings to be 
electrified and powered by GHG-free electricity. This primarily involves conversion of combustion-based 
thermal systems (heating and hot water) to electric heat pumps and boilers, as well as electrifying 
cooking and backup services. Electrification will need to be paired with whole-building energy 
conservation measures to ensure feasibility, minimize energy costs and promote occupant comfort and 
wellbeing. Some buildings and services are challenging to fully electrify, here renewable fuels may help 
to aid decarbonization, but the supply of such fuels likely will be limited.  

Our approach here uses building energy modeling (BEM) to evaluate the impact of various energy 
conservation measures, electrification measures, and performance targets across a representative 
group of building use classes and vintages. Using these detailed building-level analyses, we assess how 
different policy regimes impact city-wide building sector emissions. This study compares the relative 
impact of individual and packaged ECMs in the context of incentive-based and mandate-based policy 
regimes.     

We find that found that achieving the goal of carbon neutrality will require retrofitting a large 
proportion of Boston’s building stock over the next 30 years. Currently, the life-cycle cost of building 



Carbon Free Boston Technical Report Buildings  
 

 
Boston University Institute for Sustainable Energy  Arup Group Ltd. 

3 

thermal electrification is generally higher than the use of thermal services based on fossil fuel 
combustion. Lowering building energy consumption to avoid the constraints noted above will require 
the application of whole-building energy conservation measures that may require large upfront capital 
costs. Innovative financing programs will be required to overcome the capital hurdle. Retrofitting tens of 
thousands of buildings over the next 30 years will require a large, local and well-trained workforce. Such 
aggressive action will require a regulatory regime that is simultaneously comprehensive and flexible, and 
is supported by a number of enabling policies.  

The benefits of carbon-neutral buildings extend well beyond lower GHG emissions. Energy conservation 
measures can significantly reduce operational costs that lower the energy burden of Boston’s low-
income residents and saves money for its businesses. Energy retrofits can also make buildings more 
climate-resilient, reducing the future costs of heat stress and flooding. Such retrofits can improve indoor 
air quality and comfort for building occupants. Affordable, new zero net emissions buildings can attract 
more people to the urban core and thus reduce transportation-related GHG emiussions. Overcoming 
cost barriers will require recognizing the additional benefits from the improvement of Boston’s built 
environment.  

4 BOSTON’S BUILDING STOCK 

4.1 EXISTING BUILDING STOCK 
The energy use, emissions, potential interventions, and applicable policy instruments will all be 
influenced by the building’s use, vintage and ownership. To capture this diversity and inventory Boston’s 
building stock, this analysis leveraged the Tax Parcel ID Database from the City’s Assessor’s Office. 
Updated in 2018, this database assigns a use type classification, defined by the Commonwealth of 
Massachusetts Division of Local Services, to each separate parcel in the city (Property Type Classification 
Codes Non-arm’s Length Codes and Sales Report Spreadsheet Specifications, 2018). Over 86,000 
buildings and 647 million square feet applicable to the building sector were identified in the database. 
Parcels with non-building usages were not included and tax-exempt parcels were further classified using 
an accessory database provided by the Boston Planning and Development Authority (BPDA). Unit size, 
number of condominium units, and aggregate square footage was used to segment single, small 
multifamily (triple deckers of 2-4 units) and large multifamily (five or more units) buildings. In some 
instances, additional cleaning or processing of the data was needed to address issues such as many 
buildings on one parcel, or multiple parcels of mixed uses. Parcel and building year-built values were 
then used to segment by building age ranges defined for this study. Total floorspace by use and age 
range and other select attributes was subsequently aggregated to be used for calculation of total energy 
use. 

This building stock was segmented into fifteen (15) representative building typologies which define their 
primary use (Table 1). Within each of those building types, four (4) age ranges have been further 
defined, yielding a total of 60 building types to represent the City of Boston for the study.  The age 
ranges defined for the buildings align with energy code development and changes as well as with the 
methodology used in the Community Energy Study. Figure 1 shows the distribution of floorspace by 
building type and age class.   
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Over 60 percent of Boston’s floorspace and 84 percent of its buildings was built before 1950 when no 
energy codes existed. Over half (55 percent) of total square footage and 93 percent of buildings (80,000) 
are residential. Boston’s commercial buildings are predominantly office buildings. Commercial office 
buildings comprise 18 percent of the square footage but only 2 percent of the total number of buildings 
(1,700). Boston’s buildings stock is predominantly comprised of small residential buildings typically 
ranging from 1,000 to 5,000 square feet (Figure 2 left). Despite the large number of small buildings, half 
of Boston’s floorspace is dominated by its largest 4,000 buildings (Figure 2 right). 

Size is often used as a cutoff for building regulation. For example Boston’s BERDO regulation covers 
buildings over 35,000 square feet or parcels with over 100,000 square feet, which covers over 2,000 
buildings. Figure 3 shows the distribution of floorspace and building counts by different size classes. The 
predominant amount of commercial space is distributed across approximately 700 buildings greater 
than 100,000 square feet. 

Buildings were also classified by ownership using owner occupancy codes in the residential sector, and 
exempt-property ownership data obtained from the BPDA. Ownership structures have different 
relationships to benefits, drivers and motivations. Breakdowns of ownership by building use class (Figure 
4) and of building class by building use class by ownership (Figure 5) further demonstrate the diversity of 
the building stock and demonstrate the need for comprehensive but flexible policy regimes needed for 
reducing GHG emissions. 
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Figure 1. Building GHG Emissions by Age and Type of Building 
The GHG emissions from Boston’s buildings are influenced by the age and floorspace in each type of building. This chart shows the amount 
of floorspace (top bar) and emissions (bottom bar) by building use class (columns) and age class (colored blocks). The area of a block relative 
to the total area is proportional to the floor space or emissions associated with a specific building use class and age class segment. New 
Construction is the amount of floorspace that is projected to be built between 2018 and 2050. Note that newer buildings are significantly 
less GHG intensive than the existing stock, while Medical, Laboratory, Industrial Buildings are much more energy intensive than the average 
stock. Retail etc. includes retail stores, hotels, and restaurants. Public services include K-12 schools, fire and police stations. Source: Boston 
Assessors Database & model calculations 
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Table 1. Building use class typology definitions 
USE CLASS DESCRIPTION 

SINGLE FAMILY RESIDENTIAL Buildings that have one living unit per building footprint. Living area has been 
used for area calculations. 

SMALL MULTI-FAMILY  
 

2-4 family residences, intended to represent the triple decker that is 
prominent in Boston. Living area has been used for area calculations, except 
for condominiums where building area was used. 

MULTI-FAMILY RESIDENTIAL 
 

This typology is defined as 5+ family residences. Gross area has been used for 
area calculations, except for condominiums where building area was used.   

OFFICE 

This typology is largely composed of buildings on tax parcels classified as 
multiple story offices, but also consists of administrative buildings linked to 
owner classes like the city, the state, and the federal government. This is the 
largest commercial typology with most buildings directly classified based on 
direct property type matching, but a fair number of which are classified based 
on unknown property types and the judgement that offices represent 
particular descriptions better than our more specifically defined, other 
commercial typologies.   

FIRE/POLICE  Boston Fire and Police Department buildings. 

CONVENTION/ASSEMBLY  

Arenas, auditoriums, large restaurants, movie theaters, libraries, and some 
college or university buildings. Convention/assembly is similar to office in that 
it’s not as specifically defined as other commercial typologies so specific 
property keys without a clear mapping were mapped to it based on their lack 
of fit with specific typologies. 

HOTEL  Inns, motels, and hotels. 

MEDICAL/LAB/PRODUCTION Hospitals, laboratories, and industrial uses. Many property type codes map to 
industrial uses best classified in this typology. 

RESTAURANT 
This typology is defined as standalone restaurants only. The largest of these, 
with square footage above 10,000 square feet were renamed 
convention/assembly.  

RETAIL Standalone retail, laundromats, stores in malls and even property types such as 
health clubs, marinas, and gas stations. 

SCHOOL Public and Private K-12 schools only. (Higher education buildings have been 
segmented per their predominant use type, not as a singular campus.) 

SUPERMARKET Standalone Supermarkets 
WAREHOUSE  Storage facilities including cold and industrial storage. 

WORSHIP 
Churches, synagogues, and other places of worship. Also includes exempt 
properties coded as religious which could include some housing and other use 
space.  

GARAGE This typology is defined as standalone parking garages and parking lots with 
gross area used to represent the building area field.  
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Figure 2. Distribution of Boston’s Buildings by Size 
(left) Distribution of Boston's building stock by size. (right) Cumulative square feet by building size. Source: Boston Assessors Database & model 
calculations. 

   

Within residential buildings, these include Owners, Condominium Associations (i.e. multiple owners 
needing to take collective action), Landlords and Tenants. Owners are able to take action at their own 
discretion and are the ones who reap the direct benefits of that action. The relationship is different in a 
Landlord/Tenant relationship where the Landlord is able to take action yet in most instances, it is the 
tenant who reaps the direct benefits of that action, for example in reduced utility bills. The policy 
mechanisms for both of these instances will likely require differentiation to recognize these 
relationships.  

Within commercial buildings, there are an even wider array of actors including public entities (i.e. 
Federal, State, Quasi-public and City), Institutions (i.e. the Medical and Educational institutions), 
Developers, Property Owners, Owner occupiers and Tenants again all of which have different 
relationships to benefits, drivers and motivations. 
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Figure 3. Boston's building stock by size class 
Left three columns represent the residential stock. Right five columns represent the commercial stock. Column labels represent the count of 
buildings in each size class. Source: Boston Assessors Database & model calculations. 

 

 

Figure 4. Building ownership (colors) building use class (bars) 
Source: Boston Assessors Database & model calculations 

 



Carbon Free Boston Technical Report Buildings 

Boston University Institute for Sustainable Energy Arup Group Ltd. 
9 

Figure 5. Building use class (colors) by building ownership 
Source: Boston Assessors Database & model calculations 

It is important to note that the tax parcel database is intended to be used for property valuations, and 
has several limitations for this study in its application as an inventory for a bottom-up citywide energy 
model. Some of these limitations include:  

• Lack of mapping parcels to a specific building or set of buildings.
• Insufficient differentiation of building use under a given property use code. For example, a

rehabilitation facility classified as a hospital would be categorized as an energy intensive Med-
Lab-Production building rather than a less energy intensive office building.

• Insufficient accounting of mixed uses, meaning the predominant use is often provided. This
results in a large portion of retail (e.g., first floor of an office or residential building) or
underground garage space not able to be accounted for. Instead all area is segmented to the
primary use which may have a significantly different energy intensity.

• Tax-exempt properties such as hospitals, universities, etc., which make up a significant portion
of Boston’s building stock often are assigned use-codes that are insufficient to accurately map to
specific building use classes.

• A moderate amount of parcels are identified as ‘unknown age’ which could not be mapped.
• The database does not record when a major renovation occurs, only the date of original

construction. As such, the City cannot understand the rate or frequency of major renovations,
nor have an accurate picture of the condition of its building stock.

4.2 BOSTON’S FUTURE GROWTH 
Boston has experienced a building boom over the past decade. Given current socioeconomic trends and 
focus on urban development, it is anticipated that Boston will continue to grow significantly though 
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2050. The Imagine Boston 2030 report [2] projects that by 2050, Boston’s estimated population will be 
over 800,000 people, and that the city will add around 77,500 new housing units and 40 million square 
feet of non-residential space. In that time it is expected that some existing buildings are demolished. 
Boston’s future building stock is thus defined for this analysis as the existing stock minus demolition plus 
any new construction: 

Future building stock = 2017 square footage (existing) – demolition + new construction Eq (1) 

The demolition rate was assumed at 0.25% per year across all typologies, which are assumed to be 
replaced by new construction of the same use class. This replacement is in addition to the new growth 
projected below. 

Residential growth projections were obtained from Imagine Boston 2030 [2] which were derived from 
the Metropolitan Area Planning Council’s 2014 Growth Projections [3]. Imagine Boston 2030 identifies 
the number of housing units needed by 2030 and 2050, 53,000 units and 42,000 units respectively for a 
total of 95,000 housing units by 2050. The 53,000 units by 2030 is measured from a baseline year of 
2011, as such a number of those units have already been built.  

To calculate the number of new housing units from 2011-2017, project counts from the Housing a 
Changing City Boston 2030 [4] reports were used. This data showed that 17,507 housing units were 
completed from 2012-2017. This result is slightly ahead of a linear projection for 53,000 new units from 
2011-2030 which would have resulted in 16,737 units. Accordingly, 35,493 units are anticipated from 
2018-2030.   

Our analysis used 2017 as the baseline year for projecting growth. The 35,493 housing units to 2030 and 
the 42,000 units to 2050 were translated to square footage based on an assumption of 1,000 gross 
square feet (gsf) per unit resulting in 35,493,000 square feet of residential growth between 2017-2030 
and 42 million square feet of residential growth between 2031-2050.  

Table 2. Projected New Growth Allocations to Building Use Classes 
Source: [2]–[4] and model assumptions. 

Building Use Class 2018-2050 Growth (Msf) 
Single Family 3.88 
Small Multifamily 20.41 
Large Multifamily 52.76 
Convention/Assembly 2.65 
Hotel 2.27 
Med/Lab/Production 4.05 
Office 19.80 
Restaurant 0.11 
Retail 3.96 
Supermarket 0.85 
Warehouse/Storage 0.00 
Worship 1.68 
Fire and Police 0.38 
Schools 4.04 
Garage 0.00 
Total 116.84 
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The total residential growth square footage was then allocated to each of the three (3) typologies. From 
the existing building stock data set, the post-2000 age range was used for its proportion of single family, 
small multi-family and large multi-family rather than the total housing stock (i.e. all age ranges) to 
reflect the most recent trend in new construction housing to large multi-family residential. As a result, 
the residential sector is projected to grow by over 77 million square feet by 2050, with 35 million square 
feet by 2030 and 42 million square feet by 2050. 

Imagine Boston 2030 projects 20 million square feet of commercial growth by 2030, with an additional 
20 million square feet built between 2030 and 2050, for a total net growth of 40 million new square 
feet.  This growth was assumed to be applicable to the following typologies: Office, 
Convention/Assembly, Hotel, Medical/Lab/Production, Supermarket, Restaurant, Retail and Warehouse.  
Like residential projections, the 20 million square feet by 2030 is measured from a baseline year of 2011. 
The square footage to 2030 has been allocated consistently from 2011 to 2030 for an addition of 
1,052,632 new square footage per year. It is therefore assumed that 6,315,789 square feet has already 
been completed by 2017 and that 13,684,211 square feet of growth is yet to be built by 2030. To 
allocate new development, the BPDA planning pipeline was used to allocate the 20 M sf of commercial 
floorspace for each typology (Table 2). This allocation assumes a predominant growth in the low-EUI 
typology of office. If actual growth is in more energy-intensive sectors such as Medical/Lab/Production 
projected emissions will likely be higher than assumed here and represented in our results such as 
(Figure 1). 

Growth in three typologies typically representing solely institutional buildings (Fire/Police, Schools and 
Worship) was assumed to be correlated with population growth. Current floorspace per capita of these 
typologies was used as the basis for extrapolation. Accordingly, these buildings are projected to grow by 
over 6 million square feet by 2050, 2.8 million square feet by 2030 and 3.3 million square feet by 2050. 

Parking garage floorspace is kept constant as it is anticipated singular structure parking garages will not 
be built in significant numbers in the future and therefore not have a meaningful impact on the outcome 
of this analysis. A small amount of future growth is accounted for in several other buildings such as 
basement garage in an office building.  

In total, Boston’s building stock is predicted to grow 116,875,000 square feet by 2050. While the 
predicted growth over the next three decades is substantial, it is still relatively small in comparison to 
Boston’s 647,000,000 square feet of existing buildings. Growth will represent only 15 percent of 
Boston’s building stock by 2050. 

The largest growth is predicted to be in large multi-family residential (5+ family). This segment alone 
represents 45 percent of growth or 52 million square feet. This growth in the large multi-family is 
consistent with expected with the goal to meet an increasing demand for housing. The projection also 
shows there is a significant shift in growth which has not happened in the past 70 years with residential 
representing the largest proportion of total growth.  

Even if all new construction was net zero emissions starting immediately, Boston would still have its 
existing GHG emissions footprint. Therefore, deep reductions in emissions from Boston’s existing 
building stock will be the key to Boston achieving its goal for carbon neutrality. 
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4.3 CURRENT ENERGY DEMANDS 
Building sector GHG stem from the onsite combustion of fossil fuels (natural gas and fuel oil), the 
consumption of electricity generated from fossil fuels, and the consumption of steam generated by the 
combustion of fossil fuels. Total electricity, natural gas and steam1 consumption in buildings are 
reported by the operating utilities in the city and are used to directly determine emissions from the 
consumption of these energy sources. Since fuel oil is supplied by a number of independent delivery 
services it is difficult get an accurate accounting of fuel oil consumption in the city. Currently the City of 
Boston estimates fuel oil use by downscaling state consumption data based on the city’s share of 
commercial floorspace and estimates of households using fuel oil [5].   

Figure 6 shows the distribution in household heating fuel type by neighborhood for the city of Boston. 
Note that rates of gas, electricity and oil usage vary widely by neighborhood. Such a distribution is 
influenced by historical trends in the installation of utility infrastructure such as gas pipelines, housing 
ownership, and existing building energy infrastructure. Figure 7 shows the historical trend in primary 
household heating fuel, demonstrating a significant decline in oil over the past decade, while natural gas 
and electricity has increased as primary heating fuels.  

While electricity use is ubiquitous across the building sector, the use of other energy sources can vary 
due to a variety of factors. District steam is used in a handful of legacy systems across the city. In 
downtown Boston, the Veolia network provides steam to a number of buildings with a high energy 
demand ranging from large office space to hospital buildings. A district system servicing the medical 
buildings in Longwood (MATEP), as well as several other systems mostly based at the city’s large 
universities, also use steam to heat a number of buildings. Modern district systems such as MATEP also 
provide efficient cooling though adsorption chillers. 

 

                                                           
1 Here, we use “steam” to describe any district scale steam heating that occurs in the city. This differs from the City of Boston’s GHG inventory 
in which steam refers to only that which is imported from outside the City’s boundary such as those generated d at the Harvard Blackstone 
facility and the Kendall generating station, both in Cambridge. 

To Grow or Not to Grow the City? 
Over the course of the Carbon Free Boston study a common question arose in technical and community 
discussions: does the City of Boston’s growth objectives conflict with its goal to be carbon neutral? Simply put, 
these goals do not inherently conflict. In fact, sustainable density-focused growth should be a part of city’s carbon 
mitigation strategy even if it makes achieving near and long-term carbon reductions harder within its own 
boundaries. The reason for this is that all urban economic and social activity is less carbon intensive than if that 
activity took place in less densified environment. In urban settings, space is more efficiently used in both the 
residential and commercial sector, leading to less energy used per building occupant or for economic output. 
Density also enables people and jobs to be more easily connected with public transportation. If Boston were to 
place a cap on growth, people and jobs would locate outside the city where they would have a higher carbon 
intensity. While this would help to curtail Boston’s GHG emissions, it would drive an increase in regional 
emissions. Regional analysis is necessary to fully evaluate growth scenarios associated with densification. In the 
absence of such a comprehensive analysis, densification, even within Boston’s city limits, should remain a core 
strategy for GHG mitigation.  
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Figure 6. Breakdown of Primary Household Heating Fuel by Neighborhood 
Source: American Community Survey [5] 

Figure 7. Boston Households by Primary Fuel Type 
Source: American Community Survey [5] 

Oil is typically regarded as a legacy fuel that is being phased out due to its higher cost, emissions 
intensity and impacts on air quality. Most commercial buildings have moved away from oil as a primary 
fuel. However, due to its ease of long-term storage, oil is still widely used as a backup and peaking fuel 
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in many large buildings, especially those such as hospitals and industrial facilities. It is also used as a 
peaking fuel in district energy plants. Households have been slower to transition away from oil, typically 
due to informational barriers and capital costs. Still, across the commercial and residential sectors, oil 
use has been halved between 2005 and 2017 [5]. 

On average, the cost of natural gas is lower than oil and electricity. Natural gas currently has a lower 
emissions intensity than oil and electricity, although as more carbon-free electricity comes online 
electricity will ultimately become less carbon intensive than natural gas on a per unit of energy basis.2 
The cost, and cleaner burning nature of natural gas has been the primary driver of the shift away from 
oil and has also sifted some households away from electric-resistance heating. Utility-sponsored rebate 
programs through MassSave have promoted this shift by offering incentives towards the purchase of 
high-efficiency gas-based heating systems. These transitions and growth in Boston’s building sector has 
led to an observable increase in gas use over the past 12 years. 

Electricity is used in numerous ways across the building stock. Over a quarter of Boston’s households 
rely on it for primary heating services despite its higher cost, mostly via resistance heating. Many of 
these situations result from ad hoc building conversions such as the creation of a third-floor apartment 
in three decker that was previously 2 units served by gas or oil. Electricity is the primary energy source 
for cooling which leads to the city’s highest demand days in the heat of the summer. Electricity is also 
used in the powering of many building services and activities such as lighting, ventilation, refrigeration 
and electronics. Despite growth in demand for building floorspace and these activities, electricity 
demand has mostly been stable over the last decade, being kept low by efficiency gains. 

Energy use in Boston’s building sector has remained generally flat in recent years (Figure 8) despite 
significant growth in Boston’s built environment and economic activity. This stability is mostly a 
testament to measurable efficiency gains realized in both new and existing buildings that offset the 
increased energy demand. A modest decline in emissions in the buildings sector is mostly attributable to 
the increasing share of carbon-free electricity being supplied to the city’s buildings as a result of a 
greening grid (Figure 9). The last decade has shown that Boston has been able to stabilize its emissions, 
however more substantial actions will be needed to reduce emissions.   

2 Under the Massachusetts Clean Energy Standard this transition will likely occur in 2035 when 50% of delivered 
electricity in Massachusetts is required to come from carbon-free sources. The City could accelerate this transition 
by making a dedicated city-scale procurement. 
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Figure 8. City-wide energy use by fuel 
Source: City of Boston GHG Inventory [6]

Figure 9. City-wide emissions by fuel 
Source: City of Boston GHG Inventory [6] 
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5 BUILDINGS SECTOR MODEL 
This study developed a bottom-up, city-scale building energy model resolved across 15 building types 
and 5 vintages representing the city’s existing and future building stock. Individual building energy 
models representing these typologies were calibrated using data obtained from local utilities and energy 
providers to construct a relatively accurate representation of the city’s electricity and natural gas 
consumption. Individual prototypes were calibrated to a reasonable level of accuracy in accordance to 
ASHRAE and leading academic standards for calibration.  

The workflow described herein was implemented through a series of custom scripts integrating existing 
software developed by the team for this project. Scripts were coded in Python, and energy simulation 
was performed in EnergyPlus, a free, open-source energy simulation software created and maintained 
by the U.S. Department of Energy and considered to be among the leading building simulation engines 
(Torcellini, et al. 2004). 

5.1 MODEL ASSUMPTIONS 
Creating realistic energy models for each archetype required providing assumptions for key energy use 
drivers for each building use and vintage in the set of 60 building typologies.  As a starting point, the US 
Department of Energy commercial and residential reference building models were used. Built by three 
national laboratories, these models were developed for 17 building types using attributes and 
construction types that represent 70% of the US commercial building stock[7]. The models for each 
building type are replicated three times to represent buildings constructed in the present (“new 
construction”), post-1980, and pre-1980. The DOE commercial reference building models used for this 
project were developed for ASHRAE climate zone 5A, in which the city of Boston is located. 

Of these models, 10 were found to have use types that directly match those selected for Carbon Free 
Boston. For these, the geometry provided in the DOE models was used as the starting point for 
simulation. For the remaining four types (worship, convention/assembly, fire/police, triple decker, and 
parking garage), custom models of geometry and zones were used as the starting point. Additionally, 
within the DOE reference models, the 3 provided vintages align closely with the post-1980, 1980-2000, 
and post-2000 categories used in this study. However additional models were created for the pre-1950 
vintage. Within the existing reference models, the geometry of the building is held constant to allow for 
a more accurate inter-vintage comparison of energy performance. Following this practice, the geometry 
of the pre-1950 vintage was held constant with the other vintages as well. 

In all cases, the existing and constructed models were modified to better reflect the building 
characteristics of the city of Boston. Inputs for all vintages and building types were derived from the 
Commercial Buildings Energy Consumption Survey (CBECS) and the Residential Energy Consumption 
Survey (RECS). CBECS and RECS are national surveys by the US Energy Information Administration that 
collect building characteristic and energy use data from the US building stock[8]. Relevant CBECS and 
RECS data was pulled for the New England region and sorted by building type and by vintage. For 
quantitative variables (e.g. number of occupants), data was averaged across the sample size. For 
qualitative variables (e.g. window type), the percentage of buildings following into each category was 
calculated. The most common responses for qualitative variables were transferred into quantitative 
inputs using COMNET Appendix B for facades, ASHRAE 90.1-2004 for HVAC, and engineering judgment 
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for lighting. In addition to deriving input data for missing building types and vintages, the CBECS and 
RECS data was also used to verify that the DOE reference model inputs accurately reflect the 
Boston building stock. Data sources by model are summarized in Table 3 and Table 4. 

 
Table 3. Corresponding vintages for project and DOE reference building models 

Project Vintage DOE Reference Building Vintage 
Pre-1950s N/A 
1950-1980 Pre-1980 
1980-2000 Post-1980 
Post-2000 New construction 

Table 4. Corresponding building types for project and DOE reference building models 
Project Building Type DOE Reference Building Type 

Convention/assembly 
Constructions: warehouse 
Internal gains: small office 
Process loads: CBECS for restaurants 

Fire/police Small office + modifications per CBECS 
Hotel Large hotel 
Office Large office 
Medical/laboratory/production Hospital 
Multi-family residential Midrise apartment 
Parking garage 
Restaurant Full service restaurant 
Retail Stand-alone retail 
School Primary school 
Single-family residential RECS 
Supermarket Supermarket 
Triple decker residential RECS 
Warehouse Warehouse 
Worship Small office + modifications per CBECS 

5.2 UTILITY DATA CALIBRATION 
While inputs from the national surveys and prototype models offers a reasonable starting point for 
energy simulation, these may not lead to the most accurate energy estimations for Boston. This 
conclusion was posited in the Boston Community Energy Study, which suggested that future work 
identifying savings opportunities for the city should leverage metered data to calibrate energy models. 
Through the City of Boston, a partnership with three utility providers in the city (Eversource, National 
Grid and Veolia) was established for which energy data for 2015, 2016, and 2017 for buildings in was 
sourced according to the process shown in Figure 10. For city owned buildings, metered data was 
received directly from the City of Boston. 
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Figure 10. Workflow for building model calibration 

All three utility providers were able to share significant datasets with the team representing nearly 
8,000 buildings. This allowed the archetypes to be further tailored to the City of Boston. Prior to using 
the received data to calibrate the archetypes, additional data processing was performed to ensure the 
quality of the values received. First, each dataset was reviewed to remove outlier series with extremely 
high or low average energy consumption. In some datasets, visual observation revealed that such 
outliers were present, and may be caused by inaccurate reporting of building area or a single meter 
feeding multiple buildings. There is likely to be some error introduced due to the fact that reported 
usage could have occurred during any 30-day window ending in a calendar month, and not representing 
usage of calendar month. Outlier elimination was performed by calculating the average monthly EUI and 
removing those over three standard deviations above the mean. Second, monthly datapoints which 
appeared to be anomalies in data reporting were removed from individual datasets using a similar 
approach of excluding values above and below three standard deviations of the mean of the individual 
account. Third, accounts missing more than one month of data were removed to ensure that occupied 
buildings were used for calibration. Finally, the remaining profiles were averaged to create an energy 
use profile representative of each age and vintage. It should be noted that uncertainty still exists in this 
data given that readings could be taken at any point in the month, so the months to which readings are 
assigned may not represent an accurate demarcation of the calendar month. 

To further refine the data, the team derived a window of anticipated minimum and maximum monthly 
energy consumption for each building type from BERDO data. The outlier analysis was rerun using these 
windows, generating results that more closely matched BERDO benchmarks and had a more consistent 
seasonal profile. 
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After initial inputs were developed, all 60 energy models were calibrated to match the average energy 
use intensity of actual buildings in Boston. To calibrate the models, a combined automated and manual 
process was developed in Python. 

This approach first performed an automatic calibration by altering variables defined by the project team 
within windows of acceptable values based on ranges of expected values from industry experience, 
CBECS, and RECS. The automated calibration utilized a heuristic optimization which tested combinations 
of these variables and identified the one which provided the greatest reduction error between the utility 
data and the simulated result. To ensure that the result represented realistic building inputs, these 
outputs were reviewed manually and the final variables determined by a combination of evaluating the 
error and the visual fit of the modeled data to the utility data. 

ASHRAE Guideline 14 sets standards for the statistical tests and performance boundaries for calibrating 
models for retrofit using Normalized Mean Bias Error (NMBE) and Coefficient of Variation of the Root 
Mean Squared Error (CV[RMSE]). Calculation of NMBE and CV[RMSE] involves comparing the modeled 
data in each time period (Mi) with the observed data in the same time period (Oi) and a total number of 
data points (N). These two tests serve different purposes: 

NMBE tests if there is a continuous over- or under-estimation of energy performance within the model. 
NMBE, denoted BNMB, is calculate as follows: 

 
 

𝐵𝐵𝑁𝑁𝑁𝑁𝑁𝑁 =
∑ (𝑀𝑀𝑖𝑖 − 𝑂𝑂𝑖𝑖)𝑁𝑁
𝑖𝑖=1
∑ 𝑂𝑂𝑖𝑖𝑁𝑁
𝑖𝑖=1

× 100% Eq (2) 

 

CV[RMSE] test if the magnitude of difference between the modeled and observed data is significant. 
CV[RMSE], denoted CVRMSE, is calculated as follows: 

 𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
�1
𝑁𝑁∑ (𝑀𝑀𝑖𝑖 − 𝑂𝑂𝑖𝑖)2𝑁𝑁

𝑖𝑖=1

1
𝑁𝑁∑ 𝑂𝑂𝑖𝑖𝑁𝑁

𝑖𝑖=1

 Eq (3) 

ASHRAE Guideline 14 specifies that “the computer model shall have an NMBE [Normalized Mean Bias 
Error] of 5% and a CV(RMSE) [Coefficient of Variation of the Root Mean Squared Error] of 15% relative to 
monthly calibration data. If hourly calibration data are used, these requirements shall be 10% and 30%, 
respectively.” However these standards are intended for use in cases where a building model has been 
created for a specific building and is calibrated against metered data for that building. In such cases 
geometry, occupancy, and other key factors are expected to be aligned between the model and the 
building. Guidelines for expected metrics are less clear when calibrating archetypes to representative or 
average data. Academic studies using utility data to fit representative models in similar cases have 
determined that NMBE values of approximately 20% and CV[RMSE] of approximately 55% for monthly 
data can be good fits, and significantly better than uncalibrated models [9], [10]. 

Based on these studies, for the Carbon Free Boston study, the aim was to improve upon these metrics, 
with targets to achieve 
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• Normalized Mean Bias Error (NMBE) of ±10% using hourly data across one full year 
• Coefficient of Variation of the Root Mean Squared error (CV[RMSE]) of less than 30% using 

monthly data across three years 

Each of the 60 prototypes was calibrated with the aim of reaching the NMBE and CV[RMSE] targets 
described. Due to the variation in reliable utility data available, some use and vintage segments had 
smaller samples sizes of actual data for calibration; in these cases if the sample size could not be 
considered significant, meeting the targets was not necessarily attempted as strictly. Instead, final input 
parameters for each model were determined as a combination of segment calibration and by 
comparison to inputs of other vintages within the same use with more robust datasets for calibration. In 
general, this led to good agreement between the modeled and measured data for most building 
segments, and consistency within use types for final modeled inputs. 

The calibrated results were scaled up to create a modeled city emissions profile and compared to 2015 
reported emissions. For electricity and gas, the scaled results showed under a 5% difference between 
the modeled approach and the reported energy consumption of the city, as shown in Table 5. 

Table 5. Comparison of reported and simulated city energy use 

 2015 Citywide 
Reported Use (kWh) 

2015 Citywide 
Simulated Use (kWh) Percent Difference 

Gas 11,047,008,059 11,132,296,461 0.8% 
Electricity 6,682,689,530 6,950,938,598 4.0% 

 

5.3 CARBON INTENSITY OF ENERGY SUPPLIED TO BOSTON’S BUILDINGS. 
The carbon intensity of grid-sourced electricity and fuels used in Boston’s buildings is a major driver of 
the total emissions from Boston’s buildings. The rate of decline in the carbon intensity of electricity will 
also affect the relative impacts of energy conservation and electrification strategies. A rapidly 
decarbonizing electricity supply would prioritize electrification strategies over energy conservation 
measures.  

Historically, the carbon intensity of the grid, and thus electricity supplied to Boston has been outside of 
the city’s control. The most significant driver of the emissions intensity of the grid is the MA Clean 
Energy Standard. This state policy stipulates that electricity sold in Massachusetts becomes steadily less 
carbon intensive in the coming years reaching 80% carbon-free by 2050. Given policy trends in other 
states, it is likely that this goal may be revised to a more ambitious target that achieves 100% carbon-
free electricity by 2050.  

Achieving carbon-neutrality would effectively require 100% carbon-free electricity or the procurement 
of offsets. Pursuing rapid decarbonization targets such as the city’s 50% by 2030 goal will also require an 
early procurement of 100% carbon-free electricity. In recent years Boston’s institutions have sought to 
procure renewable electricity as part of their sustainability commitments. Currently the City is exploring 
the feasibility of a carbon-free power purchase agreement for municipal electricity supply. Additionally, 
the City is in the process of implementing a Community Choice Aggregation that aims to provide 
additional renewable electricity on top of the Clean Energy Standard requirements and give its residents 
the option of procuring 100% renewable electricity.  
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To illustrate the impact of these potential scenarios three trajectories describing the carbon intensity of 
the city’s electricity supply were developed (Figure 11) to reflect the Clean Energy Standard, a 100% by 
2050 grid, and an early 100% by 2030 city-wide procurement strategy. These scenarios are used for 
framing the impact of given evaluated below. Given trends in renewable electricity technologies, state 
level polices and need to rapidly decarbonize, it is likely that a 100% clean energy procurement strategy 
would be pursed early. Although options exist for lowering the carbon intensity of fuels such as natural 
gas and diesel oil, such options are currently limited. The greening grid, related policy frameworks, and 
the potential for renewable fuels are discussed in the Carbon Free Boston Energy Sector Report.  

Figure 11. Emissions intensity trajectories used in this analysis  

 

5.4 BASELINE RESULTS 
Figure 1 shows emissions by building use class and vintage alongside the equivalent floorspace. While 
emissions scale with floorspace, some building types are more energy and emissions intensive than 
others. In general, older buildings tend to be more energy and emissions intensive than younger 
buildings. This is observed by the fact that the Pre-1950 vintages comprise a larger share of each 
typology’s emissions than its respective share of floorspace. Further, new construction is relatively 
efficient compared to the existing stock: while future growth will comprise 15% of floorspace in 2050, it 
will only comprise 6% of emissions in 2050. This is predominantly due to newer buildings being more 
efficient and driven by our assumption that over the next 30 years the building code will steadily 
improve, reaching net-zero equivalency in 2045.  

Some building typologies are more efficient than others. In the residential sector, larger multifamily 
buildings tend to be more efficient than smaller single-family homes. Office space generally has lower 
intensities compared to rest of the commercial stock. Retail, supermarkets, convention spaces, and 
especially medical/laboratory/industrial buildings tend to be very energy intensive and subsequently 
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have higher emissions relative to their floorspace. For example, Convention/Assembly buildings are 6% 
of total square footage but represent 13% of total GHG emissions, while Med/Lab/Production buildings 
are 6.5% of total square footage but represent 12% of total GHG emissions. 

Figure 12. Cumulative emissions by building size quantile (black line) and proportion of building area 
in either commercial (yellow) or residential (green) subsectors  

 

As noted earlier, individual building size varies drastically in Boston with small residential buildings 
comprising the bulk of individual buildings in Boston (Figure 2), while floorspace is dominated by larger 
commercial and multifamily buildings. Emissions from the building stock follow this trend with the top 
10% of emitters being responsible for nearly two-thirds of sector emissions (Figure 13). These buildings 
are predominantly commercial, but would also include a number of large multifamily that would likely 
be regulated in a similar fashion to commercial buildings. 

5.5 BASELINE SCENARIO TO 2050 
A baseline scenario (Figure 13) was used to estimate future emissions assuming the continued 
application of existing policy and no additional effort to reduce emissions. The baseline used three key 
assumptions for the projection addressing new construction, efficiency in existing buildings and the 
carbon intensity of the electricity grid over time. For new construction, the energy code was utilized as 
the basis to continue to drive future efficiency in new construction. The important distinction is that the 
energy code regulates energy performance, not emissions. As such, the baseline assumption continues 
to assume energy efficiency only in new construction, not an increase in decarbonization through 
greater adoption of electrification of HVAC systems. Referencing past code improvements in ASHRAE 
90.1 over the past 40 years, a projection on an increasingly stringent energy code was made and 
implemented on the current 3-year basis as required by the Green Communities Act. This established 
net zero energy level performance for new construction by 2045 in a linear trajectory. It is important to 
note that even this baseline assumption requires ongoing action by the Massachusetts Board of Building 
Regulation and Standards (BBRS) to continue to adopt ever more stringent energy codes.  
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For existing building efficiency, BERDO was utilized as the basis to continue to drive future efficiency in 
existing buildings. No changes were assumed to the current ordinance in terms of its reporting threshold 
or energy action requirement.  The important distinction is that BERDO requires an energy action, not 
action on GHG emissions. Existing regulations use energy as the proxy to realize emissions reductions. 
No data exists as to how building owners are meeting the energy action requirement. 2018 (reported in 
2019) is the first year of the requirement to demonstrate an energy action for compliance. In its current 
form, there is a wide range of pathways for compliance organized on three categories, highly efficient 
buildings, energy action and energy assessment. As data becomes available, it is imperative that tracking 
what energy actions are being undertaken and levels of efficiency achieved for compliance is monitored 
by the City. This information will be critical to informing if and more likely how the policy may need to 
be augmented in the future.  

For the purposes of this analysis, it was assumed that half of the current applicable buildings under 
BERDO would achieve energy reductions at a rate of 5% for the initial reporting period starting in 2020 
when all buildings under the ordinance will have reported. A 2.5% reduction in energy consumption for 
the subsequent 5-year periods was assumed recognizing that energy efficiency gets harder and harder 
to achieve over time.  

Figure 13. Baseline Buildings Emissions Projections under Alternative Grid Scenarios 
Emissions savings are shown for electricity as the grid transitions from its current emissions intensity (maintained by the black line) to a Clean 
Energy Standard (CES) trajectory (white area below black line) to an early city-wide procurement trajectory that fully decarbonizes electricity by 
2030. Source: model calculations. 

 

5.6 PROJECTED CHANGES IN ENERGY DEMAND DUE TO CLIMATE CHANGE 
The calibrated results indicate the energy consumption of the City of Boston using recent weather data. 
However, climate change will impact the amount of electricity and gas used in the future across the city, 
and may advantage or disadvantage building energy and emissions conservation strategies and impact 
their cost-effectiveness. To test the impact of future climate on reported city energy use, the team 
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simulated the calibrated buildings models using a future typical meteorological year (TMY) file created 
using WeatherShift. WeatherShift uses global circulation models in combination with historic TMY 
weather files to generate a projection of typical future weather at a point in the future using a selected 
global emissions pathway [11]. For this study, a future weather scenario for 2050 under the IPCC 
Representative Concentration Pathway 8.5 was used which corresponds to a 1.4 to 2.6 °C (2.5 – 4.7 °F) 
increase globally. This estimates weather for Boston at mid-century on the current emissions trajectory. 
Under this scenario the number of days per year with the daily minimum temperature reaching 5°F or 
below declines from 14 to 2, and the number of days where the daily maximum temperature exceeds 90 
increase from 8 to nearly 50.    

For Boston’s current building stock, assuming now growth or application of ECMs, this change will cause 
gas consumption to drop by approximately 9%, while electricity use in buildings will rise by 0.5%. The 
shift away from gas is driven by an increasingly warm winter reducing the need for heating. Similarly, 
the increase in electricity is representative of warmer summers driving greater electricity demand. 
Electricity gains are not as pronounced in the projection due to higher efficiencies of cooling equipment 
and a reduction in electricity use for heating in some spaces today balancing the gain in summer 
demand. This provides an advantage for decarbonization by reducing citywide reliance on natural gas, 
and advantages the cost-effectiveness of measures which aim to reduce cooling energy use. 

5.7 FUTURE IMPROVEMENT WITH URBAN ENERGY MODEL FOR BOSTON  
In evaluating the energy performance of the buildings, two key ways in which this analysis could be 
improved were identified. First, while the prototype models developed rely on accepted building 
characteristics from national survey data, these may not capture the complete reality of building system 
and operating characteristics in Boston. The CBECS and RECS datasets are both national inventories, so 
by necessity have only a few hundred buildings sampled in the northeast, of which it is unknown how 
many are representative of Boston’s building stock specifically. These served as the starting point for 
assumptions and adjustments were made according to local knowledge from the team and technical 
advisory group. In a typology-based approach like this, it is a challenge to make assumptions that need 
to represent all buildings of a particular type and/or age when it is recognized there is wide variation in 
actual building characteristics, systems and operation. While the assumptions of building performance 
in this study were tailored to Boston based on local expertise and findings from prior studies, future 
work could benefit from a better understanding of the building end uses and system types present in 
Boston. Findings from energy audits of existing buildings in Boston would help build a robust database 
of building characteristics that could improve the accuracy of building prototype models tailored for 
Boston. This additional data on existing Boston buildings would enable the further segmentation of the 
60 building uses and vintages documented in this study to capture the diversity of buildings in the city at 
a higher level of granularity. Whether additional segmentation encompasses additional uses or the 
diversity of building types within the proposed uses (e.g., large vs. small office, or hospital vs. nursing 
home), additional segmentation could better improve the accuracy of the city energy estimate and 
better tailor recommendations of energy saving strategies. 

An additional suggested next step is for the city and utilities to continue to collaborate on understanding 
energy use and patterns of buildings in the city including refinement of monthly average profiles for 
electricity and natural gas for buildings by segment in Boston. As was noted in this work, the quality of 
utility data received required led to significant post-processing and the exclusion of a large number of 
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data points. As a result, the calibrated models may not be as accurate as desired, particularly for 
building segments where only a very small sample size could be used. Working with the utilities, the City 
of Boston should develop average monthly energy use patterns for each building segment to better 
calibrate the archetype models and improve the accuracy of the models. The process of creating better 
profiles will also help streamline the utility data collection and management infrastructure, which is key 
for ordinances such as utility data reporting which rely on matching accounts to addresses and mapping 
to city data. 

Additionally, standard profiles could be useful for testing the potential of new technological solutions 
that may help unlock Boston’s energy and carbon conservation measures. Making average profiles 
available for study and use will help accelerate the incorporation of low energy technologies in the city 
by providing confidence that proposed solutions can work on a range of typical users. 

Another recommendation to improve the accuracy of urban energy model creation is to extend the 
amount of data collected, aggregated, and disseminated through the Tax Parcel database to include 
additional fields helpful in understanding building use and energy performance. As previously identified, 
the city features a large number of mixed-use buildings for which the database currently lists only the 
primary use. When scaling energy consumption based on segmentation, this results in misclassification 
of some floor area based on the primary use type. Assessing for each property the area of each 
individual use would allow for a more accurate understanding of the true energy consumption. 
Additionally, for any given building, a more accurate picture of likely end uses could be developed, 
allowing energy saving solutions to be appropriately targeted to each building. For instance, in a mixed-
use office tower with restaurant space on the first floor, commercial kitchen equipment upgrades 
should be leveraged, but the database today would not allow this type of use type differentiation.  

Other cities such as New York and San Francisco maintain more comprehensive property and building 
inventories that are used for several additional municipal services including planning, health and zoning. 
New York City’s PLUTO database has detailed breakouts of floor space by space classes (office, garage, 
factory) for a single parcel and more detailed use classes (e.g., hospital, nursing home) that would 
enable more representative building energy modeling.  

6 BUILDING-LEVEL STRATEGIES: RESULTS & ANALYSIS 
There are two primary means of reducing carbon emissions in buildings. The first is through reducing the 
demand for energy in buildings and the second is through changing the source of energy consumed to 
one that has less or no carbon emissions. While significant efficiency gains can be achieved through 
strategies that reduce demand, even the most efficient buildings still require energy to deliver necessary 
services like ventilation, heating, cooling, lighting, hot water and power for a range of devices. Thus, 
carbon neutrality, will ultimately require the decarbonization of the energy required to provide services 
in buildings. This can be accomplished primarily through the electrification of services that typically rely 
on combustion of fossil fuel-based energy (i.e. natural gas or fuel oil) for heating, hot water and other 
process services. Complete decarbonization via electrification requires the use of carbon-free electricity. 

Approximately building interventions were modeled across the 60 building energy models representing 
existing stock, and 15 models representing future growth. The results determined the potential impact 
of a single or combination of strategies if they were implemented across the building stock, thereby 
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establishing the most effective strategies to reduce carbon emissions. Both energy efficiency (i.e., HVAC 
replacement, deep energy retrofits) and decarbonization (i.e., fuel switching, electrification, demand 
response) strategies were analyzed. Strategies were identified from several sources, including the City of 
Boston, previous and current MassSave programs, and the Carbon Free Boston Buildings Technical 
Advisory Group which comprised industry experts.  

Each strategy was modeled in a combination of EnergyPlus and Python using the calibrated models as 
the baseline. For strategies which required meeting performance targets, a combination of assumed 
improvements in technical characteristics modeled within EnergyPlus and a reduction in resulting EUI 
was used to simulate the impact and achieve the defined level of performance. In some instances, 
strategies were defined as only applicable to specific building types and therefore only simulated for 
those buildings. Appendix A provides details for each strategy in the analysis including identification of 
which strategy was applicable to which building type. 

6.1 SINGLE-ACTION MEASURE ENERGY CONSERVATION MEASURES 
Energy efficiency is the cornerstone of any plan to realize carbon-neutral buildings.  ECMs are actions 
that reduce the quantity of energy needed to deliver ventilation, thermal comfort, illumination, and all 
the other services that a building provides for its occupants. ECMs include actions like switching to more 
efficient lighting and appliances, reducing air leaks, adding insulation, optimizing HVAC system 
performance and recovering energy where possible.  These single-action ECMs include taking action on 
one specific aspect of a building, such as replacing light bulbs or lamps, replacing equipment with more 
energy efficient versions, installing programmable thermostats and other controls-based changes, or 
adding/increasing insulation. These actions are typically easy to implement, result in energy savings and 
are very cost effective. However, they have a limited impact in reducing emissions across the city since 
they only address one isolated aspect of where and how energy is consumed in a building. Even 
collectively, all these single-action ECMs will not achieve the level of emissions reductions required.  

6.2 PERFORMANCE-BASED (“PACKAGED”) STRATEGIES 
In addition to single-action ECMs, several performance-based strategies were analyzed (). These 
strategies establish a level of performance that a building is required to achieve. A benefit is that these 
strategies provide flexibility in how that level of performance is achieved. The current Energy Code and 
Stretch Energy Code are examples of performance-based requirements.  

For several of the performance-based strategies, the Advanced Energy Retrofit Guides for Existing 
Buildings published by The US Department of Energy (DOE) [12]–[16] have been used as a key reference 
to define the level of performance achieved.  These guides were commissioned by the DOE and 
produced by the Pacific Northwest National Laboratory to address key segments of the US commercial 
building stock, namely Commercial Office, Retail, K-12 Schools, Hospitals/Healthcare and Grocery Store 
buildings. They provide information (both energy analysis and cost savings estimates) that is climate 
specific across individual ECMs as well as three recommended packages of energy conservation 
measures. For this analysis, the AERGs were used to define the level of savings associated with each of 
the three (3) performance-based strategies according to building type. Technical specifications for these 
are listed with the ECMs in Appendix A.  
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Existing Building Commissioning (EBCx) also known as retrocommissioning assumed energy savings 
ranging from 8.5-10% and assumed changes to controls such as set points, turndown and other 
sequence of operations would be implemented. EBCx is typically easily implemented across all building 
types with little to no disruption to service or occupancy and are highly cost effective. Such measures 
can often be achieved though building operator training on best practices. This measure is not 
applicable to small residential units. 

 
Table 6. Simulated building intervention targets.  

Existing Building 
Commissioning (EBCx) 

Standard Retrofit Deep Energy Retrofit / Passive 
House Retrofits 

Operations and maintenance 
improvements, including 
strategies such as changes to 
controls and regular 
maintenance to prevent decline 
to optimize performance of 
equipment, systems and 
assemblies. 

Implementing incremental 
capital upgrades to systems, 
equipment and assemblies in a 
building. These include 
strategies such as replacement 
of equipment (e.g a boiler, Air 
Handling Unit or Chiller), or 
building envelope components 
(e.g. roof or window 
replacement or adding 
insulation to walls). 

Implementing a whole-building 
design approach to a building 
for both the building envelope 
and its systems and equipment. 
Deep retrofits include upgrades 
or replacement to the building 
envelope, i.e. walls, roof and 
windows, and air leakage, and 
HVAC systems, controls and 
lighting in a holistic renovation. 

Target EUI Reduction: 8.5-10%  Target EUI Reduction: 25-30% Target EUI Reduction: 50% 
 

Standard Retrofits assumed replacement of all HVAC equipment with more efficient versions. These 
incremental upgrades require planning and sequencing of improvements to optimize savings, but can be 
implemented with minimal to moderate disruption to service and occupancy and are also typically cost 
effective. Replacements of equipment already occur in buildings as equipment reaches its end of life. 
The work can be scheduled to occur during appropriate times of the year with regard to weather and 
during off-hours when a building is unoccupied. This can be challenging in buildings that require 
24/7/365 operation such as hospitals, laboratories or manufacturing facilities but can be accomplished 
with built-in redundancy or temporary services. Improvements or replacements to building envelope 
components are typically more disruptive and have longer payback periods.  

Deep Energy Retrofits energy savings assumed building envelope improvements, addition of ventilation,   
in addition to the standard retrofit measures were implemented. While deep retrofits present the 
largest opportunity for savings, they require significant capital, have longer payback periods and are 
disruptive to service and occupancy in a building. Depending on the use of the building, this can be even 
more challenging to implement, especially compared to a standard retrofit. For example, in a residential 
building, occupants can continue to occupy and live through a major renovation or temporarily relocate 
while construction is completed. In a school or office building, a phased approach is more typical and 
can be implemented to only renovate portions of a building at a given time. While this adds time to the 
overall length of construction and cost, it minimizes vacancy and the relocation of occupants and 
maintains service and operation for the majority of the building. Buildings can also be fully vacated for a 
deep energy retrofit if relocation can be arranged and provides the opportunity for alignment with 
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repositioning in the market to further optimize the business case. Like standard retrofits, realizing a 
deep energy retrofit can be extremely challenging in buildings that require 24/7/365 operation such as 
hospitals, laboratories or manufacturing facilities.  

Despite their high upfront cost and potential for disruption targeting comprehensive deep Energy 
Retrofits can provide some substantial benefits in addition to energy savings. Despite Boston’s best 
efforts to curb emissions, the city must be prepared for a modest-to-significant rise in temperatures, 
flooding events, and other extreme events. Boston’s built environment was not designed for these 
future climate realities. Flooding has the potential to impact building energy infrastructure that has 
historically been housed in basements. Extreme heat events will make Boston’s buildings dangerously 
hot for its most vulnerable residents. Comprehensive retrofits can make these buildings more resilient 
to climate change. Deep retrofits can also make Boston’s buildings healthier by improving indoor air 
quality. Poor air circulation, water infiltration, mold are common problems across the city’s aged 
residential stock, and Class B and Class C commercial space. The risks of these conditions are 
exacerbated in the low-income housing stock which house vulnerable populations. This has the potential 
to improve occupant health and reduce costly treatments, hospital admissions, and lost work days can 
arise from poor indoor air quality.  

CASE STUDY: DEEP RETROFIT IN THE JAMAICA PLAIN GREEN HOUSE 
The JP Green House in an urban homestead in Jamaica Plain, owned by Andrée Zaleska. Purchased after a 
foreclosure in 2008, the residence was transformed from a former corner-store, in derelict condition, into an 
energy-positive (zero-carbon) home.  JP Green House was rebuilt to meet rigorous Passive House efficiency 
standards and generates all its electricity needs through its 5.625kW rooftop solar array. Additionally, the 
residence is retrofitted to minimize heat loss, utilizing measures such as thick insulation, southern-facing triple-
glaze windows and a heat recovery ventilation system. In the winter months, the house can maintain an indoor 
temperature of 63°F without any heat. There is no gas or oil system and the home deploys an extremely efficient 
air-to-water heat pump. The combination of these energy conservation measures and on-site generate makes JP 
Green House energy positive, meaning that it produces excess electricity generation. 

Additionally, Zaleska and her business partner, Kannan Thiruvengadam, utilized the land to build a large urban 
organic garden, which provides all the produce for Zaleska's family as well as many neighbors. They use the space 
both for food production and as an urban classroom, offering educational programs to youth and teens based 
around sustainability concepts. The main project of the nonprofit, JP Green School, a self-directed learning center 
for the study of sustainability that was based in the house for three years, and has now moved to Hope Central 
Church in Jamaica Plain. 

JP Green House demonstrates the ability for high-performance efficiency standards to be applied to existing homes 
– going energy positive does not have to be limited to new construction.   

 

New Building Packaged Measures ranged from an Enhanced Stretch Code, to Passive House Standard to 
Net Zero Energy-ready. The Advanced Energy Design Guidelines (AEDGs) [17]–[21] were used as a 
reference to identify the package of strategies to achieve low-energy performance in new construction. 
They were developed in collaboration with The American Institute of Architects, Illuminating 
Engineering Society, US Green Building Council and US Department of Energy. The AEDGs similar to the 
AERGs address building types that represent major energy users in the US commercial building stock, i.e. 
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K-12 Schools, Hospitals, Retail, Commercial Office, and Grocery Stores. They are a series of publications 
designed to provide strategies and recommendations for achieving 50% energy savings over the 
minimum code requirements of ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings 
Except Low-Rise Residential Buildings. 

The Stretch Code strategy maintained a 10% energy reduction from the baseline or code compliant 
energy performance while the Passive House Standard utilized the performance criteria required for 
certification by the Passive House Institute US (PHIUS). The criteria include, an ultra-low air infiltration 
rate, maximum annual heating and cooling load and source energy performance (kBtu/sf/year). Net 
Zero Energy-ready performance was defined by a low site energy use intensity (kBtu/sf/year) per 
building typology from The US DOE’s Energy Star Portfolio Manager Target Finder tool. It is identified as 
“ready” since on-site energy production was not included in this strategy, which can vary based on 
building type. The AEDGs in addition to research by the New Buildings Institute were used as a reference 
the suite of strategies and EUIs to achieve Net Zero Energy-ready performance.  

6.3 FUEL SWITCHING OIL-GAS 
Fuel switching was included for existing buildings only. It has been an effective strategy over the past 10-
15 years to help reduce GHG emissions. However, it is only an incremental step as it switches heating 
energy from fuel oil to natural gas. While natural gas has lower GHG emissions compared to fuel oil, 
natural gas is still fossil fuel-based energy.  

6.4 BUILDING ELECTRIFICATION 
Electrification shifts energy consumed for heating and hot water from fossil-fuel based energy, i.e. 
natural gas or fuel oil, to electricity which has the potential to be fossil-fuel free. The electrification of a 
building has two primary options given current technology. This strategy was applied to both new 
construction and existing buildings. For new construction, electrification was defined as an electric 
boiler for most commercial buildings which electricity to directly generate heat in a boiler or a radiant 
heater. For residential buildings, the electrification strategy was defined as an air-source heat pump 
system. Heat pumps use electricity to move heat from one location (e.g. outdoor air or ground) to 
another (the indoor building space). Heat pumps are very efficient and can reduce GHG reductions by 
more than 50 percent compared to a natural gas system under a low-carbon grid. 

The results show that electrification is very effective at reducing carbon emissions by 2050. The 
challenge is that current electricity prices make electric boilers not cost-effective compared to natural 
gas since their overall efficiency is comparable (92-95% efficient). Air-source heat pump systems on the 
other hand, are cost-effective even today since they are very energy efficient. For this analysis, a 
coefficient of performance (COP) of 3.2 was defined for air-source heat pump systems, meaning that for 
every 1 unit of energy input, the system generates 3.2 units of energy output, heating in this instance. 
Incentives are currently available through the MassCEC for these systems. However, there are 
limitations for the application of these systems across building types and concerns of their reliability in 
extremely cold weather which Boston experiences. As temperatures drop, they become less efficient 
however manufacturers continue to improve system operation and now provide cold climate options 
where these systems can operate in temperatures as low as -13oF. As a result, some non-residential 
buildings may choose to use a mix of heat pumps and electric boilers, as supplemental for peak heating 
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days. Additionally, these systems require space outdoors for heat exchangers, which can pose 
challenges where outdoor space (e.g., rooftops) is constrained.  

The potential of electrification as a GHG reduction measure is highly dependent on the carbon intensity 
of the grid to realize the savings. The impressive efficiency gain of electrification is muted in the near 
term because fossil fuels (mostly natural gas) currently generate 43 percent of electricity in the regional 
grid. The carbon intensity of the grid increases during peak weather conditions as well. For example, 
during very cold periods the current grid is forced to rely on oil-based peak generation plants, which 
increases the carbon intensity of electricity used for heating. Short-term and seasonal energy storage 
might be necessary to reduce peak electricity demand, accommodate the intermittent nature of wind 
and solar energy, and avoid straining the current capacity of the distribution network. Energy storage 
also provides important resiliency benefits during emergency events.  

By itself electrification will greatly increase electricity demand, so it must be coupled with aggressive 
energy efficiency and storage to avoid straining generation, transmission and distribution resources. 
Expanding these resources to meet large demand would lead to increases in the cost of electricity. The 
largest potential reductions in emissions result when deep energy retrofits are combined with the 
electrification of heating (space and water) and cooking. Refer to the Energy chapter for further details. 

CASE STUDY: BOSTON UNIVERSITY’S GEOTHERMAL WELL DRILLING INITIATIVE 
Nearly ten years ago, Boston University installed its first geothermal system of six wells at the building 
spanning 882 to 888 Commonwealth Avenue. In 2018 the University announced that it aims to heat and 
cool the newly proposed Data Sciences Center at 645 Commonwealth Avenue with more enhanced 
geothermal technology. One of the major differences between these two projects is that the Data 
Sciences Center will be a 17-floor building which will require upwards of 30 geothermal wells to 
accommodate the heating and cooling needs of the building. As Dennis Carlberg told BU Today, “…this 
will be the biggest geothermal project in Boston yet.” 

Although the Data Sciences Center is not planned to begin construction until late 2019 early testing 
evaluated three alternative drilling approaches to inform the full installation of the planned geothermal 
system. The test wells will offer insight into the most effective drilling methods as well as the geology 
underneath the building site. Alternative drilling methods will be used for each test well to determine 
which technique can produce the straightest boreholes in the least amount of time. The design team 
requires this information before they can determine the well spacing and depth for the planned system.  

The geology underneath the building site can vary greatly and will affect the heating and cooling 
capacity of the planned wellfield. This geological variability will be tested by drilling each test well in 
different locations across the building site. The heating and cooling capacity of the planned wellfield will 
be estimated based on measurements of thermal conductivity and borehole thermal resistance for each 
test well.  
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6.5 ON-SITE STORAGE 
Energy storage systems provide dispatchable energy on-site, independent of the electricity grid. It allows 
buildings to offset a portion of electricity consumption, typically at times of peak demand when the grid 
is most stressed and generation is the most carbon intensive. This strategy does not save energy, but 
rather shifts when energy is consumed from the grid to reduce carbon emissions and peak demand 
charges which for many commercial buildings is a significant portion of electricity bills. As such, these 
systems typically are very cost effective and are relatively easy to implement. Finding space for the 
system is usually the most challenging aspect. While these systems are in their infancy, significant 
incentives are available through the MassCEC and it is expected that they will become increasingly 
common in the near future. These systems can be charged through the electricity grid at off-peak times, 
e.g. overnight, and/or through an on-site solar photovoltaic system. While the sizing of these systems 
will vary depending on a building’s specific load profile and Client drivers for such a system, for this 
analysis, the strategy was defined to reduce peak demand 15% between 2-6pm for commercial buildings 
and 5-9pm for residential buildings. 

  



Carbon Free Boston Technical Report Buildings  
 

 
Boston University Institute for Sustainable Energy  Arup Group Ltd. 

32 

6.6 BUILDING-LEVEL RESULTS 
Energy use and emissions intensity by building typology and vintage are presented in the Policy and 
Strategy Appendix Excel File. Selected typologies and ECMs are presented below to illustrate and discuss 
the impact key highlights. 

 

Figure 14. Large Multifamily Residential Strategies – New Construction 

 

The most effective strategies for large multifamily residential new construction were those which 
incorporated dramatic reductions in the demand for energy, especially for heating energy. Passive 
House Standard, HVAC efficiency improvement and electrification, and net-zero ready buildings 
provided the greatest savings. Heating and hot water energy demands are the predominant energy 
demand which is typically met by high efficiency natural gas boilers in new construction. Given this 
profile, the strategies that address the efficiency and source of energy for heating and hot water are the 
most effective. HVAC electrification has a particularly profound emissions impact using 2050 emissions 
by converting a large portion of natural gas load to electricity. The emissions for electrification can be 
further reduced with carbon-free electricity beyond the 80 x 50 grid.  Passive House emissions could be 
further reduced if it was coupled with electrification HVAC systems. Another key finding is the difference 
indicated by the Net Zero Energy and Net Zero Emissions strategies. Net Zero Energy performance 
realizes a highly energy efficient building, however, still allows the use of fossil-fuel based energy. 
Comparatively, Net Zero Emissions performance realizes the same energy efficient building and couples 
this with decarbonization in energy consumed, in this case assumed to be electrification.   
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Figure 15. Large Multifamily Residential Strategies – Existing  

 

Similar to new construction, the largest energy an emissions savings in existing multifamily residential 
buildings are seen in HVAC improvements and electrification of end-uses. Both Passive House Standard 
retrofits and Deep energy retrofits realize significant emissions reductions, however even though they 
include holistic building envelope improvements, they are comparable to HVAC electrification if realized 
with fossil-fuel based energy for heating and hot water services. It is only if these performance 
standards are realized with electrification of heating and hot water services that the emissions savings 
dramatically improves compared to electrification alone. The emissions reductions can be increased 
further with a fully carbon-free electricity grid. All other strategies have minimal to moderate impact at 
reducing both energy demand and emissions. 
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Figure 16. Small Multifamily Residential Strategies – New Construction 
 

 

New small multifamily construction benefits most from improvements in the building envelope and 
HVAC system, whether through a requirement such as meeting Passive House standard or through 
increases in code requirements (HERS rating) for efficiency and HVAC electrification. Per unit of area, 
heating demand is significant for small multifamily buildings, suggesting that improvements which 
reduce heating energy use are likely to have the largest impact on energy and emissions reduction. 
Similarly, electrifying HVAC systems, and over time switching to heat pumps, will drastically reduce the 
emissions footprint of these buildings as the electricity grid becomes cleaner. The scale and size of these 
buildings make them excellent candidates for heat pump systems even today.  
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Figure 17. Small Multifamily Residential Strategies – Existing Buildings 
 

 

The results for existing small multifamily buildings were generally consistent across age categories with 
small variations in the impact of envelope and HVAC measures. Older buildings tend to benefit more 
from improvements in insulation, and sealing gaps in the envelope in addition to HVAC efficiency. 
Similar to new construction, measures that reduced heating demand were found to have the greatest 
impact on reducing energy and emissions for small multifamily buildings. Electrification was found to 
have the most significant impact on emissions across all age categories, assuming the HVAC conversion 
was to a heat pump system. This could be fully carbon neutral depending on the carbon intensity of the 
electricity supply. 
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Figure 18. Commercial Office Strategies – New Construction 
 

 

 The most effective strategies for office new construction are performance-based strategies that 
accelerate energy and/or GHG emissions reductions from the baseline assumption. All prescriptive 
strategies consistently have small impacts (Less than 5%) on energy and GHG emissions. While 
electrification of HVAC systems has a minimal energy reduction (3.5%), this translates to 29% savings in 
GHG emissions with the baseline electricity grid in 2050.  

It is also remarkable that there is a material difference between Net Zero Energy and Net Zero Emissions 
strategies.  This difference can be further increased if the electricity supply is carbon-free. The most 
aggressive performance is a cap-based approach, essentially working backwards from the 2050 carbon 
neutrality goal to allocate a emission budget per building.  
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Figure 19. Commercial Office Strategies – Existing Buildings 1950-1980 
 

 

The strategy results for existing office buildings were generally consistent across all age ranges. Again, 
the most effective strategies are performance based that accelerate energy and/or GHG emissions 
reductions from the baseline assumption. The most effective prescriptive strategies are window 
replacements, retro commissioning and electrification of HVAC systems. Standard retrofits combine 
HVAC equipment replacements with increased efficiency which results in a considerable 30% energy 
savings. Electrification of HVAC systems continues to have a small energy reduction (10%), but translates 
to 55% savings in GHG emissions baseline electricity grid in 2050. It is also remarkable that there is a 
material difference between Deep energy (50% reduction) and Deep energy & electrification strategies, 
an additional 20% reduction in GHG emissions.  This difference can be further increased if the electricity 
supply is carbon-free. 
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Figure 20. Med/Lab/Production Strategies – New Construction 
 

 

The buildings that comprise the Med/Lab/Production typology are the most energy and emissions 
intensive buildings in this study. They include buildings such as hospitals, research laboratories and 
manufacturing facilities most of which have 24/7/365 operation and critical services. Driving energy and 
GHG emissions reductions in these buildings, while challenging, will have significant impacts to the city’s 
GHG emissions profile. Like other typologies, the most effective strategies are performance-based 
strategies that accelerate energy and/or GHG emissions reductions from the baseline assumption.  

These buildings typically have very high process and plug loads, ventilation requirements and 
simultaneous need for both heating and cooling. They are not as sensitive to building envelope 
strategies as their energy consumption is internally driven.  Most prescriptive strategies have small 
impacts (less than 1%) on energy and GHG emissions. Rooftop solar PV and lighting reductions are the 
most effective prescriptive strategies to reduce GHG emissions mainly due to their high hours of 
operation and space requirements for light levels. While electrification of HVAC systems has a moderate 
energy reduction (9%), this translates to 37% savings in GHG emissions with the baseline electricity grid 
in 2050. The same difference between Net Zero Energy and Net Zero Emissions strategies can also be 
seen.  Their impact is dramatic due to the definition of these strategies on an ultra-low EUI basis (12-20 
kBtu/sf/yr) compared to their current baseline (140 kBtu/sf/year).  
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Figure 21.  Med/Lab/Production Strategies – Existing Buildings 1950-1980  

 

Driving energy and GHG emissions reductions in existing Med/Lab/Production buildings, while very 
challenging, will have significant impacts to the city’s GHG emissions profile. These buildings typically 
have very high process and plug loads, ventilation requirements and simultaneous need for both heating 
and cooling and as a result, present significant opportunities for energy reduction. The most effective 
prescriptive strategies studied in this analysis are fuel switching, lighting retrofits, retro commissioning 
and electrification of HVAC systems. While the most effective strategies for Med/Lab/Production 
existing buildings continue to be the performance-based strategies, deep energy or emissions retrofits, 
they show a less dramatic reduction in energy consumption and emissions compared to new 
construction, approximately 50%.    
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Figure 22. Convention/Assembly Strategies – New Construction 
 

 
Convention/Assembly new construction buildings are moderate energy and emissions intensive 
buildings, like office buildings. As previously identified, this typology represents the widest range of 
buildings from arenas, auditoriums, and convention centers to large restaurants, movie theaters, 
libraries, and some college or university buildings.  

These buildings typically have a large peak in their energy profile driven by when the building is fully 
occupied compared to minimally occupied and typically have high ventilation requirements. Having 
appropriate HVAC systems that can turn-down, and/or moderate according to occupancy and recover 
energy see the highest reductions. Again, the most effective strategies for Convention/Assembly new 
construction are performance-based strategies that accelerate energy and/or GHG emissions reductions 
from the baseline assumption. Most prescriptive strategies have small impacts (less than 10%) on 
energy and GHG emissions.  

While electrification of HVAC systems has a moderate energy reduction (3.7%), this translates to 30% 
savings in GHG emissions with the baseline 2050 electricity grid. There also continues to be a material 
difference between Net Zero Energy and Net Zero Emissions strategies.  
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Figure 23. Convention/Assembly Existing Buildings 1980-2000  

 

 

The results for existing Convention/Assembly buildings were generally consistent across all age ranges. 
The most effective strategies are performance-based strategies that accelerate deep energy and/or GHG 
emissions reductions from the baseline assumption, particularly ones that address natural gas 
consumption. The most effective prescriptive strategies are fuel switching, lighting retrofits, retro 
commissioning and retrofitting HVAC systems. Standard retrofits combine HVAC equipment 
replacements with increased efficiency which results in a considerable 30% energy and GHG emissions 
savings. Given the high natural gas use of this typology for non-heating uses including cooking in 
presumed café and restaurant spaces, electrification of HVAC systems has a much smaller impact on 
GHG emissions than other typologies. There continues to be a material difference between Deep energy 
(50% reduction) and Deep energy & electrification strategies, an additional 25% reduction in GHG 
emissions.   

With a sound understanding of effective strategies, the next step was development of policies that 
would seek to achieve the desired outcomes (i.e. GHG emissions reductions in the building sector) 
established by the strategy analysis.   
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6.7 CITY-WIDE IMPACT OF STRATEGIES 
Simulating individual strategies across 75 buildings revealed several key insights that were used to 
inform the selection of policies for further study. Single ECM’s actions have a modest impact, even when 
applied city-wide (Figure 23) while the technical potential of packaged ECM’s (Figure 24) is much 
greater. A number of ECMs have negative impacts either under all grid scenarios, or under clean grid 
scenarios. This behavior highlights some of the dynamic properties of a building. A cool roof may reduce 
cooling demands in the summer, but would increase heating demands in the winter. Older lighting and 
office electronics are inefficient and generate heat as waste energy, which reduces heating demand in a 
building. In the simulation reduced internal gains from more efficient lighting and equipment is made up 
by increasing natural gas use. The direction in this trade off in emissions is further influenced by the 
carbon intensity of the grid. Likewise, the generation of solar electricity has no impact on emissions if 
the grid-supplied electricity is carbon-neutral.  

Packaged measures reflect a potential combination of many of the analyzed ECMs (Figure 24). For new 
buildings their potential reduction is limited to emissions that are created by future growth, which is a 
small contributor to future emissions. Still, passive house and net zero strategies are likely to be 
necessary for limiting growth and taking advantage of low-cost measures during building development. 
In existing buildings, the Standard, Deep and Passive House Retrofits strategies the only approaches that 
significantly move the needle on emissions via energy conservation. Thermal electrification of the 
building stock’s primary heating loads can unlock deep emissions reductions only when the grid 
becomes less carbon intensive.  

These packaged measures reduce emissions through a reduction or transformation of the building’s 
energy demand (Figure 25). Such transformation could result in a significant reduction in natural gas and 
oil consumption. Thermal electrification does significantly increase electricity consumption in the city. A 
more detailed discussion of the impacts of this is contained in the Carbon Free Boston Energy Technical 
Report. Briefly, electricity consuming increase in aggregate and at times of peek thermal demand that 
will likely require new capacity development or peak management strategies. Coupling thermal 
electrification with aggressive energy conservation actions can result in a decrease in electricity use 
alongside fuel consumption.   
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Figure 24. City-wide impact of single energy conservation measures  
* Indicates measure applicable to only new buildings 
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Figure 25. City-wide impact of packaged energy conservation measures and electrification actions  
* Indicates measure applicable to only new buildings. Standard and deep retrofits are applicable to the commercial stock only, while passive house retrofits are applicable to the residential stock. 
Thermal electrification applies to all buildings.  
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Figure 26. Technical potential net change in energy use for packaged energy conservation strategies 
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Incremental cost values were taken from One City Built to Last [22]. Cost values were assumed to be 
consistent across building class and vintages. Estimates for deep energy retrofits combined several of 
these values and were validated against the Advanced Energy Retrofit Guides (AERG) developed by the 
National Renewable Energy Laboratory (NREL) and Pacific Northwest National Laboratory [12]–[16]. 
Using the framework provided by the AERG’s Office Building study, we use a 6.5% discount rate in NPV 
calculations. Energy costs were calculated using the 2018 Annual Energy Outlook [23]. 

Future costs for individual and packaged measures are highly uncertain. While recent, local, residential 
deep energy interventions had high costs, there was a large degree of variability among the cases. A 
larger study found that a small number can be cost-effective. It is likely that costs will come down if this 
work is performed at a large scale. There is a lot of potential technological learning to be achieved in this 
nascent industry that could bring down costs. 

Figure 27. Marginal Abatement Cost (MAC) Curve for Retrofitted Buildings 
Many energy efficiency measures reduce energy use and GHG emissions while also saving money. The vertical axis is the cost associated with 
reducing GHG emissions by one metric ton for a particular strategy ($/t CO2e). The horizontal axis is the total reduction in GHG emissions 
caused by that strategy; the wider the bar, the greater reduction. Costs are averaged across 2020-2040 (20-year time horizon) and assume 
current best practices in the industry. Actual costs are likely to vary significantly by building type and age. Source: model calculations, ASHRE & 
DOE Advanced Energy Design Guides, One City: Built to Last (NYC). 
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Most strategies to decarbonize the building sector have negative costs—this means that the dollar value 
of energy saved is greater than the cost of implementation. In effect, most energy conservation 
measures pay for themselves. Individual measures that are readily available to households and 
businesses such as the installation of energy efficient lighting and weatherization unequivocally save 
energy and they reduce utility bills and emissions, but they yield small GHG reductions. Rooftop solar 
has a large cost and a modest GHG reduction potential, but it does enhance resiliency for the city by 
providing energy that does not rely on a connection to the grid. The replacement of an oil furnace with 
an electric heat pump results in a net savings over the lifetime of the heat pump. On the other hand, the 
replacement of a gas furnace with a heat pump is costly due the higher relative costs of electricity 
compared to natural gas.  

Retrofits yield large reductions in GHG emissions over the lifetime of the equipment installed. The 
abatement cost of a deep energy retrofit is similar to a standard retrofit even though it has a higher 
initial cost. Over the lifetime of the equipment (~20 years), the approximately 50 percent energy savings 
from a deep retrofit make it cost-comparable to a standard retrofit, while delivering greater GHG 
reduction. The combination of a whole-building retrofit with the electrification of heating and cooking 
increases the GHG reduction compared to a retrofit alone. These results demonstrate that energy 
efficiency and electrification are complementary strategies when they implemented in tandem.  

7 POLICY REVIEW 
Reducing emissions across Boston’s current and future building stock will require aggressive but flexible 
policies. This section evaluates current policies and their potential penetration into Boston’s building 
stock.  

Generally, policies directly regulating the building stock can be categorized as either incentives or 
mandates, and as either prescriptive or performance (Table 7). These policy approaches can work in 
concert to address a broad range of goals across the building sector. For example, the MassSave 
program has led the country in promoting energy efficiency incentivization by driving residential and 
commercial buildings owners and occupants to implement a number of prescribed ECMs. Renew Boston 
has augmented this work, aiming to educate the city’s residents on the potential of energy conservation. 
At the same time, public recognition is significant incentive for high profile companies and institutions to 
perform better. Across Boston, universities, businesses, hospitals and institutions have committed to 
drastically reducing emissions in their buildings. Sometimes these efforts are promoted by a competition 
or a rating program, sometimes they simply reflect good citizenship and leadership.   

Achieving carbon neutrality will require that more mandates be built on top of these programs. Boston’s 
BERDO requirement makes owners of large buildings understand the energy use of their buildings and 
how it contributes climate change relative to other buildings in the city. To achieve carbon neutrality, 
especially in the absence of state and federal policy, the city’s building stock will need to be more tightly 
regulated. Mandates regulating building performance allow building owners the flexibility to pursue 
emissions reductions in a manner suited to a building’s unique attributes and use. This flexibility drives 
up the potential compliance rate. Limited prescriptive mandates are likely to be required to eliminate 
the use of fossil fuels where clean fuels or electricity are available. In particular, banning the use of 
heating oil (Figure 23) in the near future would reduce building sector emission by eight percent and 
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deliver air quality benefits. While such a mandate may be an effective strategy for decarbonizing the 
residential sector. Many larger buildings, including hospitals, use heating oil for backup. Thus different 
degrees of regulation may be needed in different sectors. 

Table 7. Policy frameworks used for this analysis 
Framework Definition Examples Adoption Rate 
prescriptive 
incentive  

an incentive (typically financial) 
for a specified action be taken 

Programs like MassSave and Renew Boston 
that offer financial incentives (e.g., rebates) for 
taking certain energy efficiency actions (light 
bulbs, heat pumps) are considered prescriptive 
incentives.  

< 18% 

performance 
incentive  

an incentive that encourages 
building owners to meet a 
specified EUI or emissions  
performance target 

The federal tax incentives [24]; accelerated 
approval; reduced fees; educational support; 
technical assistance; recognition programs; 
competitions. (Often includes programs 
outside of government)  

15% - 28% 

prescriptive 
mandate  

a requirement issued by a 
governing body that a specified 
action be taken 

The City of Boston’s Building Energy Reporting 
and Disclosure Ordinance (BERDO) requires all 
buildings larger than 35,000 square feet or 35 
units to annually report energy and water use 
as well as to complete an energy action every 
five years. 

73% - 85% 

performance 
mandate  

a requirement issued by a 
governing body that buildings 
meet a specified performance 
target 

Energy code & stretch code. The City of 
Boulder, CO implemented the SmartRegs 
program, which requires all licensed rental 
properties to meet a specified minimum level 
of energy performance (e.g., [25]) 

85% 

 

The policy analysis below is used develop assumptions for how impactful certain policy regimes will be 
in the future. Regulating the built environment for emissions mitigation will be a necessary, but 
challenging endeavor. While the policy framework bounds polices that directly act on buildings, any 
policy regime will need to be supported by a number of enabling policies that span finance, workforce 
development, and building owner education. 

7.1 CITY OF BOSTON POLICIES 

 BERDO (Existing Buildings) 
Boston’s Building Energy Reporting and Disclosure Ordinance (BERDO) [26] was passed by the City 
Council in May 2013 which was enacted as an amendment to the Air Pollution Control Commission 
(APCC) Ordinance. The stated purpose of BERDO is: 

 “to reduce the emissions of air pollutants, including greenhouse gases, from energy production, 
encourage efficiency use of energy and water, and develop further investment in building a green 
economy by requiring the reporting and disclosure of annual energy and water use in all large 
buildings in accordance with this article. {7-2.2 (a))” 

The ordinance has phased in buildings over the past five years and now currently includes nonresidential 
buildings that are 35,000 square feet or larger, residential buildings that are 35,000 square feet or larger 
or have 35 or more units and any parcel with multiple buildings that sum to 100,000 square feet or 100 
units. Aside from the annual reporting requirement, section 7-2.2 (f) Energy Assessments or Actions 
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requires buildings under the ordinance complete an energy assessment or action such as the 
Commission shall specify with five (5) years of its first energy reporting deadline and within every five (5) 
year period thereafter. Additionally, section 7-2.2 (j) Enforcement and Penalties contains the ability for 
imposition of penalties by the APCC for non-compliance, including fines. It is important to note that to 
date, no fines have been issued for non-compliance, despite not achieving full compliance.  

BERDO therefore is not solely a disclosure ordinance, but also includes requirements for ongoing action 
as well as a means of enforcement of the ordinance. The ordinance has the potential to play a role in 
driving changes in the buildings sector with further amendments, rather than needing to institute new 
policy. Several other cities around have similar disclosure and reporting ordinances. While each city has 
differing thresholds for compliance, most are similar to BERDO (Table 8).  

Table 8. Disclosure Ordinance Compliance rates from various cities 
Reported in % of applicable buildings for each year after implementation. 

 Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 
Boston (BERDO) 73 76 79 82   
Cambridge (BEUDO) [27] 95 91     
New York (Local Law 84) [28] 56 74 80 82 83 90 
San Francisco – Large [29] 83 83 81 82 82  
San Francisco – Midsize [29] 53 53 46 48   
San Francisco – Small [29] 41 36 39    
Seattle: Non-residential [30] 89 90 99    
Seattle: Residential [30] 97 95 99.5    
Chicago [31] 92 84 80 85   
Philadelphia [32] 86 90 91    

 

The compliance rate of Boston by number of buildings is comparable to other large cities. It is important 
to note that these data sets for mandates are relative to disclosure only and do not represent action 
being taken. It is a reasonable assumption that if action is required, compliance rates may decrease. In 
the coming years many of these ordinances, with require an energy reduction action. Compliance rates 
with these efforts can help to guide an understanding of the efficacy of building policies and their 
enforcement mechanisms.  

 Article 37 (New Buildings) 
Article 37 is the green building zoning provision in Boston’s Zoning Code.  The stated purposes of Article 
37 are, “to ensure that major building projects are planned, designed, constructed, and managed to 
minimize adverse environmental impacts; to conserve natural resources; to promote sustainable 
development; and to enhance the quality of life in Boston.” 

It requires that all projects subject to Large Project Review under Article 80 meet the minimum 
‘certifiable’ level under the appropriate Leadership in Energy & Environmental Design (LEED) rating 
system. Article 37 also established the Interagency Green Building Committee (IGBC) to advise the BPDA 
and Inspectional Services Department (ISD) on project compliance with the City’s green building and 
climate resiliency policies and requirements [33].  Enforcement of Article 37 is provided by section 37.7 
Commissioner of Inspectional Services shall not issue any building permit or use permit for a Proposed 
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Project that is subject to the provisions of this article unless the Director of the Boston Redevelopment 
Authority has issued a Certification of Compliance pursuant to Section 80B-6. 

Article 37 drives the design of buildings to an intended level of performance that is tied to permitting 
(aka entitlements) as well as issuance of a final building permit. The Article also has the potential to play 
a role in driving changes in the buildings sector with further amendments, rather than needing to 
institute new policy. 

 Stretch Energy Code (New Buildings) 
The City of Boston adopted the stretch energy code which is a performance-based mandate. While there 
is a prescriptive path, the performance based pathway is the predominant pathway to demonstrate 
compliance with energy performance. Again, the Mass EEAC has completed a study in March 2018, 
Massachusetts Commercial Energy Code Compliance and Baseline for IECC 2012 [34], that estimated the 
compliance rate with the stretch energy code using two methodologies.  

An additional study from July 2018, Massachusetts TXC47 Non-Residential Code Compliance Support 
Initiative and Net Savings Assessment [35] also provides insight to compliance with and without the 
Code Compliance Support initiative (CCSI) which provides training to code officials and buildings 
professionals with the intent to improve compliance with building energy codes. The study found that 
compliance attributable to the CSSI was 5-6% improvement. 

Table 9. MA Stretch Energy Code Compliance 
Reported in % of applicable buildings for each year after implementation. 

 Year 1 Year 2 Year 3 Year 4 Year 5 
Energy Code Compliance Trends [34] 82 76 85 87 88 
Compliance estimate with CSSI [35] 93 94 94 95 95 
Compliance estimate without CSSI ever existing [35] 81 82 83 84 84 

7.2 STATE POLICIES 

 MassSave 
MassSave offers a wide range of services, rebates, incentives, trainings, and information to assist 
residents, businesses, and communities to make energy efficient upgrades. MassSave is a collaborative 
of natural gas utilities, electric utilities, and energy efficiency services providers, including Berkshire Gas, 
Blackstone Gas Company, Cape Light Compact, Columbia Bas of Massachusetts, Eversource, Liberty 
Utilities, National Grid, and Until [36]. 

In the City of Boston, Renew Boston is the incentive program associated with the Utilities. As identified 
in the policy adoption research, incentives have an important role to play in driving behavior and it is 
anticipated this will continue as Boston moves to decarbonize by 2050. 

The City of Boston, through its Renew Boston program, has set a goal to increase residential 
participation in all residential energy efficiency programs including MassSave, rebates for Energy Start 
appliances, and Low-Income and Multifamily programs. The data represents the percentage of 
households participating each year and as such, duplicates will be present as households can participate 
multiple years.  

https://library.municode.com/ma/boston/codes/redevelopment_authority?nodeId=ART80DEREAP_IIRELAPRPLDEARPLINMAPLAPREBOREAUVO_BLAPRREREAP_S80B-6ENCECOLAPRRE
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Table 10. Prescriptive Incentive Adoption Rates 
Reported in % of applicable buildings for each year after implementation. 

 Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 
Boston Renew Boston Participation 2.4 3.3 3.3 4.4 7.4 8.7 
LED Lighting - MA 1 2 3 6 12 18 

 

The Massachusetts Energy Efficiency Advisory Council (EEAC) also provides data on the effectiveness 
and progress of efficiency programs across the state. A June 2017 briefing [37] looked at the residential 
upstream lighting program which provides for retrofitting of lighting with LED lamps. As the data shows, 
this program has yielded much higher participation than Renew Boston. The ease of obtaining the 
incentive can be a barrier to participation in these types of programs. While these two data sets provide 
very different results, at the macro scale, the overall penetration remains low at less than 20%. 

 Energy Code & Stretch Energy Code 
The Energy code and the Stretch Energy Code is outside the direct control of the City of Boston and is 
controlled by the State via administration of the State Building Code by the Board of Building 
Regulations and Standards (BBRS). In accordance with the Green Communities Act of 2008, 
Massachusetts is required to update its building code every three years to be consistent with the most 
recent version of the International Energy Conservation Code (IECC).  

780 CMR Ninth Edition via Chapter 13: Energy Efficiency Amendments, the energy code regulates energy 
performance (not emissions) of buildings for both new construction and existing buildings. The Stretch 
Code is optional by going above the State Energy Code. It is updated less frequently but needs to be 
refreshed in order to maintain its “stretch” status over the Base Energy Code. Municipalities choose to 
adopt it by vote of the City Council or Town Meeting. Adopting the stretch code is a necessary criterion 
for designation as a Green Community and therefore be eligible for grants from the State to pay for 
energy saving projects in municipal buildings. Boston’s adoption of the stretch code became effective 
July 1, 2011. Boston can work with state agencies to advance the energy code at triennial revisions and 
introduce net-zero stretch energy code options. 

In its current form, new residential construction needs to follow the Performance Path of the Base code 
and achieve a HERS (Home Energy Rating System) rating of 55. The Stretch Code also applies to new 
commercial buildings over 100,000 square feet. Additions, renovations, and repairs to residential or 
commercial buildings are not applicable to the updated Stretch Code, only the Base Energy Code is 
applicable. 

7.3 OTHER PROGRAMS 
These programs include A Better City’s Sustainability Challenge locally and nationally, DOE’s Better 
Buildings Challenge. These organizations establish programs based on performance that provide 
leadership recognition and awards for participants. A such, these participants are typically early 
adopters, or the first movers.  

Boston’s Green Ribbon Commission commissioned a study to look at the largest property owners in the 
City. This analysis found that the top fifty property owners in the City control 28% of the overall square 
footage in Boston, over 176,000,000 square feet. These owners include public, commercial and non-
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profit organizations such as: the City of Boston, the Massachusetts Port Authority; Boston University; 
Northeastern University; the Archdiocese of Boston; the Boston Medical Center; Avalon Bay 
Communities; and Boston Properties. The largest segment is public entities followed by real estate and 
higher education. The research showed that most of these entities have commitments around GHG 
emissions and energy reductions. As such, they are already working towards the City’s goals to varying 
levels.  

This cohort is important for demonstrating the feasibility of new technologies or novel approaches to 
GHG reduction. Often their financial capabilities or public responsibilities facilitate the implementation 
of newer technologies. This increases market knowledge about technology design and implementation, 
such as building electrification or comprehensive energy conservation measures. This knowledge helps 
to reduce technology and implementation costs for others, subsequently opening the door to policies 
aimed at implementing such actions across the entire sector.  

7.4 POLICY IMPACT ANALYSIS: ROOFTOP SOLAR 
Building-scale solar can help contribute to Boston’s carbon neutrality goals. Its adoption by both 
residential and commercial building owners in recent years reflect a confluence of incentive-focused 
polices, lowering prices, and increasing consumer interest. For building-scale solar, rooftop solar 
photovoltaic (PV) electricity generation (“rooftop solar”) is the most significant technology being 
deployed. Through the generation of solar energy, such systems can provide power to the buildings that 
underly the panels, power to the grid though net metering, and lucrative solar-renewable energy credits 
(SRECs) that can be transferred to other entities [38]. Rooftop solar also provides a green-status to 
buildings that can increase asset values.  Despite the benefits of solar electricity, the installation of these 
systems presents a large up-front cost that many residents and businesses are not financially capable of 
covering. To alleviate this financial burden, various financial incentives (e.g., rebates, low-interest loans, 
tax credits, etc.) are available at the state- and federal-level to make solar electricity a viable and 
affordable energy option.  

The Massachusetts Clean Energy Center (MassCEC) offers incentive programs to help residents and 
businesses throughout Massachusetts to adopt clean energy technologies and is responsible for tracking 
solar installations though its Renewable Energy Production Tracking System (PTS) [39]. The analysis 
presented below utilizes the MassCEC’s PTS solar installation data to evaluate how this technology has 
been adopted over the last decade. 

 Solar Electricity - Massachusetts 
As of mid-2018, approximately 83,000 rooftop solar installations have occurred across 351 
municipalities in Massachusetts, amounting to nearly 2.14 GW of total solar capacity. About 95 percent 
of these installations were on residential buildings. Solar electricity adoption was slow at the beginning 
of the century with less than 3,000 solar installations statewide within the first decade. Statewide solar 
installations began to rapidly pick up between 2011 and 2016, adding an additional 64,000 solar electric 
systems and exceeding 20,000 installations per year in 2015 and 2016 (Figure 1). Solar installations 
dropped drastically in 2017, decreasing by nearly 50 percent of 2016’s total. Cost has been a key driver 
in the adoption of solar electricity across Massachusetts. The average cost per watt has decreased over 
time, increasing the affordability and accessibility of this clean energy technology (Figure 28).  
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Figure 28. Annual Solar Installations in Massachusetts  
Source: Data from Massachusetts Clean Energy Center.  

 

 
Figure 29. Average Cost per Watt in residential installations  
Source: Data from Massachusetts Clean Energy Center. 

 

Figure 30. Rooftop Solar in Boston 
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Solar installations and total installed capacity by census tract in Boston through June 2018 that were funded by Massachusetts Clean Energy 
Center programs. Source: Data from Massachusetts Clean Energy Center. 
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 Solar Electricity - Boston 
Through mid-2018, about 2,450 solar systems have been installed in the city, amounting to nearly 36 
MW of total solar capacity (Figure 29). Boston’s solar electricity portfolio is by far the largest out of any 
municipality in Massachusetts with Worchester and Springfield following behind with only about 1,300 
installations each. Like Massachusetts, Boston’s solar installations have mainly taken place on residential 
buildings.  

In addition to the number of annual installations, the installed capacity of these solar electric systems 
can provide important information about how solar electricity adoption has evolved over time (Figure 
31). Between 2011 and 2015, the average installed capacity ranged between 4.7 and 5.0 kW per 
installation. In 2016 and 2017, the average installed capacity increased to 5.7 and 6.3 kW per 
installation, respectively reflecting an improvement in cost, technology, and installation approaches. 

Figure 31. Annual Solar Installations and Capacity in Boston 
Note decline in 2017 is also observed in City of Boston permit data. Source: Data from Massachusetts Clean Energy Center. 

 

Although Boston’s residential buildings account for most solar installations in the city, solar installations 
have only occurred on about 3 percent of Boston’s residential building stock. Rates of installs differed 
starkly amongst the 3 different ownership structures for residential buildings (condo, owner-occupied 
and rentals). Owner-occupied buildings account for most residential solar installations in Boston, both 
overall and as a proportion of buildings in each cohort (Figure 31). The lower installation rates for rental 
and condo units suggest potential barriers to adoption in these groups. For condo associations such 
barriers may include organization hurdles and lack of models for implementation. For rentals, the 
financial benefits of solar generation could provide additional revenue, but landlords may be limited by 
capital constraints and knowledge.  

Solar roofs may have become as much as an element of personal identity as owning a hybrid or an 
electric vehicle. Such consumer behavior would likely be one of the reasons why owner-occupied homes 
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tend to have higher rates of adoption than other ownership classes. Such behavior may also explain the 
recent drop in adoption, which could indicate a saturation in the type of owner who will likely be an 
early adopter. At this point about 3-3.5% of residential buildings have rooftop solar. While some early 
incentive programs have promoted some to adopt, more aggressive policy action will be needed to get 
close (Figure 32) to achieving the full technical potential of 1.2 TWh (Google Project Sunroof).  

The ownership aspect of having access to renewable energy has likely been a driver of rooftop solar 
uptake. If community choice aggregation (and city wide 100% carbon free procurement in the long 
term) comes online this may lower the desirability of installing a rooftop solar: If one can check a box on 
their utility bill for 100% renewable energy, why go through the hassle of installing solar? Thus, for 
rooftop solar to reach its city-wide technical potential there must be either a clear financial incentive to 
install panels or a clear policy mandate to spur action.  

The financial incentive of rooftop solar will lag other renewable options, due to its high installation 
costs. In Massachusetts on-shore wind is typically the lowest cost renewable energy, followed by utility 
scale solar, and then rooftop solar. Once developed at scale, offshore wind may become cheaper than 
rooftop solar. Solar on new construction is generally cheaper than installations in existing buildings, but 
as buildings grow larger and taller, the proportion of solar available to the building is smaller and 
smaller. This would suggest that rooftop solar may be a misallocation of capital, at least in the near 
term. However, if time of use pricing was implemented broadly, rooftop solar may provide significant 
cost savings if integrated with on-site battery storage allowing residents to store energy during peak 
production (e.g., day time, when a home is unoccupied) to be used during period of peak demand (e.g. 
nighttime heating or cooling). Additionally, if integrated into a local microgrid, such integrated solar-
battery systems could provide a source of resiliency during critical events. Roof-top solar thus need to 
provide location- and time-specific value. Identifying such value will be necessary in future policy design 
to promote more rooftop solar generation. 

Achieving this such installations will require a mix of financial and regulatory incentives. Financial 
incentives include both subsidies and time of use pricing. Regulator incentives could support microgrid 
development or require the installation of rooftop solar. California has implemented the latter 
regulation, requiring all new residential homes up to three stories to have solar roofs installed. This may 
be feasible for similar homes in Boston but may be infeasible for larger buildings that may require the 
use of roof space for heat pumps. Solar regulations should also consider the importance of trees in an 
urban environment and avoid trading current and potential future foliage for rooftop solar generation. 
Promoting rooftop solar is an essential element of creating carbon neutral buildings, but will require a 
flexible mix of polices and incentives to accelerate adoption and innovation in the space.  

Recent residential installation rates hover at around 300 per year. This is a large increase from just a few 
years ago, but is well below the installation rate needed to realize the full rooftop PV potential in Boston 
of about 1 TWh, equivalent to about 15 percent of current electricity demand (Figure 26). The work 
required to achieve this scale of rooftop PV deployment provides an excellent opportunity to implement 
in-city workforce development. 
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Figure 32. Annual Residential Solar Installations in Boston by Owner Classification  

Source: Data from Massachusetts Clean Energy Center. 

  

Figure 33. Possible Future Installations of Rooftop Solar in Boston  
Historical installs of rooftop solar electric systems in the residential building sector, with forecasts representing various rates of potential 
citywide adoption, and the number of annual installations required to achieve each respective level of adoption. Source: Historical data from 
Massachusetts Clean Energy Center; forecasts from Institute for Sustainable Energy model calculations. 
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7.5  POLICY ADOPTION 
Predicting how building owners, managers and residents will respond to various, untested policy 
mechanisms is challenge and wrought with uncertainty. Due to knowledge limitations, regulatory 
barriers, perceived resource and capital constraints, uncertain and variable time horizons, and other 
factors, decision makers in this sector tend not to behave as classical rational agents compared to other 
sectors. This may suggest that more direct regulatory action, such as an emissions-focused policy 
regime, can help to reduce the social consequences of poor-performing and fossil-fuel emitting buildings 
These social consequences go beyond those associated with carbon emissions and include climate 
resiliency and public health. 

Using the policy framework listed earlier in Table 7, a range of policies were defined that included both 
incentives and requirements on a prescriptive and performance basis.  The important distinction is that 
policy is the legal mechanism to achieve a desired outcome (e.g., emissions mitigation) while the 
strategy analysis establishes the impact of a particular action. To model the impact of a policy, the 
strategy or combination of strategies were combined with the appropriate adoption rate, defined 
intervention and implementation timeline. Policies were developed for new construction, existing 
buildings or applicable to all buildings. 

Based upon the background research of policies from Boston and other cities, adoption rates were 
identified based on the policy classifications (Figure 34). These adoption rates would define at what rate 
a defined policy would be adopted for the applicable building segments. Overstating the adoption of 
policy could set unreal expectations and would ignore the reality that not all policy can achieve the 
technical potential. Mandates are expected to have a higher rate of adoption than incentives. 
Performance requirements, due to their flexibility, are anticipated to have a higher rate of adoption 
than prescriptive polices.  

Figure 34. Policy Adoption Time Series Curves Used in This Study 
From the background research described above, local and state data on existing programs and policies in addition to national research of 
similar programs and policies were categories into adoption curves. After year five, adoption is anticipated to remain steady at the year five 
value. 
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8 POLICIES FOR CARBON NEUTRAL BUILDINGS 
Combining the building-level strategies and the policy-framework’s adoption rates, illustrative polices 
were modeled to evaluate their potential impact. Summaries and definitions of these polices are 
included in the Policy and Strategy Appendix Excel file.   

8.1 NEW CONSTRUCTION  
Boston is in the midst of a major building boom, adding 4 to 6 million square feet per year of new 
building space since 2014. Advancing new buildings to high energy performance, including net zero or 
net positive standards, will reduce emissions and prevent the need for future retrofits in these buildings. 
While the Commonwealth administers the State Building Code, Boston can take leadership in working 
with state agencies to advance Energy Code standards at triennial revisions and introduce net zero 
energy Stretch Code options. Another option is to enact new Zoning Code carbon emissions 
performance standards, including phasing in net zero emissions requirements starting with residential 
multifamily low-rise buildings. 

Figure 34 shows the potential emissions reductions under alternative electricity-supply scenarios. While 
single measure policies and requirements can reduce emissions, only building-wide net zero and passive 
house policies were capable of reducing emissions significantly.  Similar to the strategy analysis results, 
individual building specific incentives for lighting, HVAC equipment or building envelope do not make 
significant impacts to further reduce GHG emissions. The baseline assumption for an ever-increasing 
energy code makes these targeted and incremental measures less impactful.  

Performance based new construction policies focused on accelerating the baseline scenario of an 
increasingly stringent energy code which resulted in Net Zero Energy performance in 2045. Both Net 
Zero Energy and Net Zero Emissions policies were part of the analysis to determine if there is material 
difference between regulating energy performance or emissions performance.  Currently codes regulate 
energy as a proxy for realizing emissions reductions. A passive house standard for residential buildings, 
another performance-based standard, was also included in the analysis.  Each of these three policies are 
performance based which builds off the current energy code and provides flexibility to define what the 
right combination of efficiency strategies is for a specific building. These policy options also align with 
larger national organization and state government proposals for new construction such as the Zero 
Code, an Architecture 2030 initiative, and Title 24 in California.  

Additional policies applicable to new construction included incentives and requirements for energy 
storage, rooftop solar photovoltaics and single-action strategies like lighting enhancements, cooking, 
equipment and appliance efficiency (Figure 35). While the strategy analysis demonstrated these had low 
to moderate potential for energy and emissions reductions and the policy analysis is consistent with 
these results, they can contribute to emissions reductions. Both energy storage and solar PV can be 
important and possibly necessary contributors or enablers for a carbon neutral building sector. Policies 
to continue to incentivize and require these systems were considered.  
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Figure 35. Impact of selected new building policies on emissions under alternative renewable electricity scenarios 
ZNE = Zero Net Emissions. Source: model calculations. 
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Figure 36. Impact of selected (new and existing) building intervention policies on emissions under alternative renewable electricity scenarios  
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 Performance Standards 
The timelines identified for new construction policies start as soon as 2020 as additional action is 
needed in the near term. The policies that were considered as soon as 2020 were to require Passive 
House Performance Standard for residential buildings, which are expected to experience the most 
growth, and to continue to incentivize solar PV and energy storage systems. The strategy analysis 
demonstrated that Passive House provided significant energy savings and when implemented with a 
heat pump system could realize significant emissions savings.  This was prioritized as it is a known 
performance standard that has been implemented and can be accelerated.  

Both the Net Zero Energy and Net Zero emissions timelines phase in the requirement in five-year 
increments over a ten year timeline starting in 2025. Achieving Net Zero Energy or Emissions across the 
Commercial building sector remains a challenge in knowledge and technology for many buildings as 
compared to Passive House. The intent for the initial timing and phasing of the requirement recognizes 
these realities and that this performance requirement is much more challenging for some building 
typologies than others. It also builds on precedent that the City would lead by example requiring the 
performance standards of its own facilities first, then starting to phase in residential and commercial 
construction with the Med/Lab/Production segment the last segment to be applicable. The timeline also 
recognizes that these performance requirements represent a step change in how buildings are designed, 
built and operated and that knowledge gaps exist across stakeholders within the built environment, i.e. 
Owners, tenants, designers, builders and operators.  The timeline also leaves the highest energy 
intensive buildings as the last to phase into the requirements in order to allow stakeholders and 
technology additional time to develop.   

It is important to highlight that several building segments are currently able to achieve these levels of 
performance. Single family and smaller residential and commercial buildings, e.g. multifamily residential, 
office, and K-12 schools have already achieved Net Zero Energy or Energy Positive performance in 
Boston and Massachusetts.  

These high performance standards for buildings also offer many additional benefits besides reduced 
and/or very low utility bills and reduced maintenance. Thermal comfort for occupants improves as 
building envelope designs become more insulated and allow less air infiltration which makes them less 
reliant on mechanical systems. These buildings can better moderate the impacts of extreme heat and 
cold spells on its occupants, delivering resiliency benefits in a changing climate. Indoor air quality is 
improved, and daylight is typically enhanced to offset electric lighting use.  

The Passive House Standard also has limited aggregate impact since it is only applicable to residential 
buildings, or 66% of new construction where Net Zero Energy and Emissions policies are applicable to all 
new construction buildings. The implementation timing of these policies limit their aggregate impact to 
offset emissions associated with growth since the last segments of buildings being phased in between 
2035-2040. As this analysis has demonstrated timing matters greatly in determining the magnitude of 
emissions reductions in new construction. 

Timing determines the magnitude of emissions reductions in new buildings. The implementation of a 
net zero policy for all new buildings by the City in 2030 reduces cumulative emissions by 17 percent 
(Figure 37).  Earlier implementation of the same policy reduces emissions by an additional 25 percent. 
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This is a consistent theme that emerges from our analysis in every sector: early action builds on itself 
and makes it easier to reach an emissions target.  

Figure 37. Reducing GHG Emissions in New Buildings 
Early action to reduced emissions yields a large reduction the long run.  This chart shows annual emissions from cumulative new building 
construction: without a new buildings performance policy (Baseline), from a net zero policy implemented in 2030, and from a net zero policy 
implemented in 2023. In the baseline, emissions increase with the growing stock of new buildings, but eventually level off and decline. The 
baseline scenario is based on our assumptions that the state building code will strengthen, and that the grid becomes cleaner due to the 
Massachusetts Clean Energy Standard. A net zero buildings policy instituted in 2030 will reduce cumulative emissions through 2050 by 17 
percent. A net zero buildings policy instituted in 2023 will reduce cumulative emissions through 2050 by 42 percent. Source: model calculations 
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the city. Viewed in this vein, rooftop PV is unlikely to be the most cost-effective path to achieve carbon 
neutrality; in most electricity markets nationwide, distributed renewables tend to have a premium 
relative to grid-scale renewable power. Additionally, as a building strategy, if the grid moves to 100% 
renewable energy, rooftop PV becomes less valuable as a decarbonization measure, and the required 
investment may be better placed in transitioning remaining fossil fuel load to electricity. 

 New District Energy 
Figure 38. GHG Emissions from New District Energy Systems in Boston 
Net emissions change from the implementation of a combined heat and power system in every large new building project (about 1 million 
square feet per year from 2020 to 2040). Each emissions profile represents alternative grid or electricity procurement scenarios. “100% by 
2030” means that the City procures enough clean electricity such that its total supply (grid purchases plus procurement) is 100% zero-carbon by 
2030. Source: Institute for Sustainable Energy model calculations. 
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Climate neutrality requires that at some point in the future district energy must use GHG-free fuels.  
These could include sustainably-sourced renewable natural gas or solid biomass, however sustainable 
supplies of these resources are uncertain. Hydrogen generated from renewable electricity has much 
higher costs and would require new pipeline infrastructure. New district energy systems can leverage 
heat sources other than fuels, such as heat pumps that utilize waterbodies, sewage lines, subway 
systems, data centers, industrial processes, and the ground. While a full assessment of the potential of 
these systems was outside the scope of our analysis study, these potential resources merit deeper 
investigation and are discussed in the Carbon Free Boston Energy Sector Chapter.  

8.2 EXISTING BUILDING POLICY 
Policies for existing buildings ranged from prescriptive to performance based and focused on 
accelerating the baseline scenario of driving energy efficiency through the current BERDO regulation.  A 
greater number of policies were explored for existing buildings as this analysis has demonstrated that 
achieving emissions reductions in existing buildings is the most important. The 2050 baseline assumed 
the current BERDO thresholds for buildings would achieve a 5% energy savings during the first energy 
action period and 2.5% energy savings in each subsequent five-year period.  

 Prescriptive Policies  
The prescriptive policies included in this analysis explored incentives for isolated building components 
such as windows/glazing, wall and roof insulation, air infiltration, lighting and HVAC system equipment 
efficiency. Each is assumed to go beyond current prescriptive code requirements for performance. Given 
the limited scope of each of these policies their emissions reductions were relatively low.  

 Performance Policies  
The performance base policies included in this analysis explored requirements for ongoing energy 
efficiency and GHG emissions reductions over time, primarily extending existing policies (e.g., BERDO).  
This approach eases the process with which to implement changes as they require an amendment 
rather than a completely new regulation or regulatory structure.  

The policies included a range of options for amending BERDO as this policy is focused on existing 
buildings and already has an actionable component to the ordinance. The first options was under 
existing BERDO reporting to change the current guidance on what constitutes an energy action by 
requiring energy savings of 5%. On average, over a five year period, this equates to 1% sustained savings 
annually. This is an incremental increase from the baseline assumption, i.e. half of buildings achieve 
2.5% every 5 years to 5% energy 5 years. These small incremental efficiency requirements can be 
implemented currently to start to move the most important segment of the city's emissions profile. 

The next policy focused on the lowest performers under existing BERDO reporting to require the bottom 
quartile to improve out of the bottom quartile every 10 years starting in 2030. This seeks to require 
continual improvement in the worst-performers to realize a more energy efficient building stock but 
does not further expand the buildings covered in BERDO. Additionally, since it is only implemented in 10 
year increments, it would only have 2-3 cycles limiting its overall impact. Differentiation in current 
performance may still be a valid policy approach for future requirements. 

Additional policy options sought to expand the number of buildings that participate in BERDO by 
lowering the reporting threshold. This approach brings more buildings into disclosing performance 
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which builds a more robust database for the City and more importantly, requires energy actions to be 
taken in a greater number of buildings. Two increments were defined to lower the reporting threshold, 
to buildings greater than 20,000 SF or 20 units, and to include all buildings in Boston.   

At 20,000 SF or 20 units, these buildings are not too dissimilar from those at 35,000 SF or 35 units and 
adds a manageable number of buildings to the ordinance. However, the City would need to assess its 
capacity to implement and enforce requirements across an increased quantity of buildings and a 
considerable outreach effort would be required to educate new building Owners of the requirements.  

Including all buildings has a higher impact on emissions reductions but has much greater implications to 
make this largely not viable. This would add an additional 76,000 buildings which has implications on the 
City in its capacity to implement and enforce the ordinance and level of effort needed for outreach. As 
such, a different policy approach is likely needed for this segment of the building stock, which is 
predominantly residential, both single family and small multifamily. 

In addition to changes to BERDO, policies explored in this analysis looked to other triggers to require 
performance improvements. Requirements for deep energy and/or emissions retrofits when buildings 
undergo major renovations, similar to performance-based policies for new construction. Major 
renovations were assumed to be applicable to 3% of buildings per year, which is small but accrues over 
time to make it a meaningful policy option.  

While not included in this analysis, there are other points of intervention or triggers that are 
recommended to be studied further. These include triggers such as point of sale, point of lease, and as 
part of refinancing for both residential and commercial buildings. Refinancing events realize capital for 
Owners, and a portion of the proceeds could be reinvested in the building for GHG emissions reduction. 
It is important to note that these triggers are also subject to larger macro-economic and market trends 
that have the potential to underperform depending on economic activity in Boston over the next thirty 
years. Ongoing requirements as studied under BERDO are not subject to such trends.  
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Figure 39. Impact of selected existing building retrofit policies on emissions under alternative renewable electricity scenarios from 2021-2050 
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 Decarbonization Policies 
Policies specifically targeting on-site fossil-fuel combustion through reduction and elimination were also 
evaluated. The first was fuel switching with the intent of eliminating fuel oil as a heating source by 2030. 
This was defined as switching from fuel oil to natural gas for all buildings except for single family and 
small multifamily residential where it was assumed these buildings would install a heat pump (electric) 
based heating system, rather than the incremental step to natural gas. Fuel switching from oil to natural 
gas is a known strategy that has been successfully implemented over the past decade (+) across all 
building types. 

The second fuel-switch based policy was to eliminate the sale of fossil-fuel based heating systems over 
time starting in 2030 and being fully implemented by 2040. This only regulates the sale of equipment 
and would not require buildings to retrofit or replace fossil-fuel based boilers until their useful life was 
reached. As mentioned, the most effective strategies at reducing emissions are those that specifically 
target fossil-fuel based energy consumption since the emissions associated with electricity decrease by 
at least 80% by 2050 in all scenarios. The timelines for this policy is phased as it recognizes there are 
limited options currently available and that advances in technology are needed. Single Family and Small 
Multifamily have current, proven technology options available to be fossil-fuel free and therefore were 
identified as the initial segment for this policy starting in 2030. Larger buildings do not have as many 
options available and specific building types with process requirements in Hospitals, Laboratories and 
others are the most challenging to phase out fossil fuel use. Recognizing this, this segment of buildings 
the latest timeline for compliance by 2040 assuming technology will be available over the next two 
decades. 

The results of individual policies show a wide range of impact across the building stock from minimal to 
significant. Even highly effective policies that are targeted to a small segment of buildings, e.g. passive 
house retrofits for residential buildings, yield a limited impact in the context of the entire building stock. 
Only the policies that encompass the largest segments of the building stock addressing both energy 
efficiency and decarbonization make a significant impact in reducing the city’s GHG emission profile. 

The policy analysis has demonstrated that requiring ongoing energy and GHG emissions reductions 
under BERDO’s energy action requirement can have the largest impact on the city’s GHG emission 
profile. The analysis at its most aggressive action required 1% savings per year over the next 20-30 
years. Further expansion of BERDO by reducing the reporting threshold further expands the impact of 
the policy in GHG emissions reductions. By lowering the threshold, it also makes a statement that 
carbon neutrality is not only the responsibility of the city’s largest buildings, it is the responsibility of all 
buildings in Boston. 

8.3 ENABLING POLICIES 
Substantially increasing the regulation of the built environment will need to be supported by a number 
of enabling policies to spur innovation, work force capacity, and provide project financing. These 
enabling polices will need to be crafted in collaboration by the City, other municipalities, the state, local 
educational intuitions, property owners and corporate partners. Their inclusion in building retrofit and 
electrification programs will help to accelerate progress, keep costs low, stimulate local economic 
development and reduce burdens on stakeholders. 
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 Knowledge and Innovation 
Education has a key role to play in making such policies effective and maximizing potential emissions 
reductions. Many property owners and occupants are not aware of the numerous benefits associated 
with deep energy efficiency and electrification measures. Increasing awareness of these benefits will be 
essential to ensuing wide program adoption. Further, retrofitting an average of 2,000-3,000 buildings a 
year will require a trained workforce educated by new programs in the city’s vocational programs, 
community colleges and universities. In the meantime, building retrocomissioning and operator training 
programs that seek to optimize building energy use without major interventions, can deliver measurable 
reductions, at very low costs.   

The collection and analysis of data related to building performance is essential for effective performance 
policies and sharing best practices. Boston’s Building Energy Reporting and Disclosure Ordinance 
(BERDO) established a foundation for bringing attention to energy use, efficiency and emissions in 
Boston’s buildings by requiring building owners to report energy use data. BERDO currently covers 
approximately 2,000 large commercial and large multifamily residential buildings, nearly half of the built 
environment in the city. This program will be essential for tracking the success of performance-based 
policies. Improving the quality and types of data (smart meters, audits) collected by BERDO will also 
enable a better understanding of building energy use.  

 

There is substantial opportunity for innovation in the buildings space, although it is often overlooked. 
Smart meters, connected systems, air recycling, pre-fabricated envelopes, and other emergent 
technologies have the potential to provide novel emissions reduction strategies. Performance mandates 
encourage the application of such innovative approaches. 

Retrocomissioning and Building Operator Training 
The City of Boston has worked with its electric and gas utilities, Eversource and National Grid, to develop an 
initiative for Building Operator Certification (BOC) training. BOC training is a 74-hour program that covers best 
practice in operations and maintenance of facilities to promote improved occupant comfort and energy 
efficiency. Each class covers a different building system, such as HVAC, lighting, controls, or electrical. Students 
are asked to evaluate their own buildings’ operational systems as homework for each class. In the first round, 
completed this month, 30 municipal employees from Boston and surrounding municipalities participated, with 
utility sponsorship. 

A 2017 NEEC study1 estimates that BOC training results in an average savings of more than 100,000 kWh (0.3 
kWh/sqft) and 1,400 therms per participant per year. Such savings in Boston’s 2,200 largest buildings, 
approximately 258 million square feet, would reduce annual electricity use by 77 million kWh. Demand 
response, taught in these courses, has the added benefit of reducing load on the grid during peak hours when 
the grid emissions factor is higher. In 2016, ISO New England’s average marginal emissions rate was 710 
lb/MWh while the LMU marginal emissions rates were 807 lb/MWh (off-peak), 892 lb/MWh (on-peak) and 968 
lb/MWh (high electricity demand days). 

The City of Boston is working with their utility partners to promote and expand this program to train all 
municipal facilities operators, to see regular and widespread participation. The program could also be opened 
to building operators working in buildings covered by Boston’s Building Energy Reporting and Disclosure 
Ordinance. 
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 Financing  
Deep energy retrofits require significant upfront capital investments and some thermal electrification 
measures may increase lifetime energy costs. Historically, these have been considered obstacles to 
intervention. There are a couple of reasons that this mode of thinking may be outdated. First, tying deep 
energy retrofits to an intervention point such as a major renovation lowers their potential costs as many 
building components undergo replacement at this point anyways. Second, energy cost savings are 
substantial despite having long payback periods. Finally, deep energy retrofits deliver health and quality 
of life benefits that are harder costs to realize. Such benefits need be considered when pursuing a 
retrofit. 

Despite these potential benefits, the upfront costs of interventions can remain prohibitive, especially for 
residential homes. Financing programs need to provide the capital necessary at low costs to avoid 
burdening building owners who may be mandated to implement costly investments.  

 Keeping people in place 
Such significant investment in Boston’s buildings will increase asset value and potentially rental prices. 
This may lead to the displacement of many low-income and vulnerable populations. Enabling new, zero-
emission, construction will lower stress on the housing market. Ensuring that residents can benefit from 
lower utility costs and be empowered in conserving energy will help to lower the cost burden of energy, 
which can be significant for some low-income populations. 

 Foster Leadership 
200 Clarendon Street, formerly the John Hancock Tower, underwent a major energy modernization 
effort in 2012. HVAC and operational upgrades to the 40-year-old icon of Boston’s skyline reduced 
energy use intensity by 23 percent and emissions by 38 percent. Boston Properties, the building’s 
owner, aims for a 45 percent reduction in emissions by 2025.  

The path to carbon neutrality will be accelerated if the City leads by example with its own building stock; 
it is already doing so on multiple fronts. Ultra-efficient municipal buildings with rooftop PV provide a 
strong message to everyone that Boston is firmly committed to its climate goals. The City has 
undertaken lighting and heating improvements to the Central Library in Copley Square and to City Hall 
and added rooftop solar to other facilities. Leading by example also bolster’s the City’s national and 
international reputation as a leader on addressing climate change. 

Across Boston, other building owners are stepping forward. Boston University recently committed to 
achieving carbon neutrality by 2040 with an anticipated one-third of emission reductions coming from 
building energy-efficiency measures. Residents across the city are installing solar on their rooftops and 
implementing home energy-efficiency measures. These leaders are demonstrating that meaningful 
progress is possible and cost-effective and helping to mature the market, thereby paving the way and 
reducing costs for others to act.  

The City has supported market development for high performing new buildings by proving their 
feasibility and demonstrating their benefits. In 2011, the City of Boston launched the E+ Green Building 
Program, a design competition and development initiative, to pilot the use of high-performance 
standards in multi-unit residential buildings in Highland Park, Jamaica Plain, Mission Hill, and Dorchester.  
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The City can further drive emissions reductions in the building sector and accelerate market 
transformation towards carbon-neutral buildings by advocating for a more stringent state energy code. 
In addition to Commonwealth staff, working directly with representatives from the utilities, real estate 
industry, affordable housing organizations, green building and environmental justice organizations, and 
other groups in the setting of objectives and drafting of language can help to cultivate support, or at 
least minimize opposition, to the ambitious and transformational requirements. The development of 
clear and targeted communication strategy to accompany the roll out of draft standards and codes will 
also strengthen the implementation of these policies.  

9 PATHWAY TO CARBON NEUTRALITY 
The above evaluation of individual polices shows the limited impact of incremental increases in building 
energy and emissions regulation at the city and state level. On the low-impact end, a series of incentives 
can continue the success of programs such as MassSave to increase efficiency and reduce costs. On the 
high-end, building on BERDO, more aggressive wide-reaching emissions performance requirements can 
achieve material reductions in the city’s emissions.  

While important, incentive-based policies and programs alone do not provide the market penetration 
needed to make a significant impact on reducing GHG emissions towards carbon neutrality. Incentives 
are useful and important to gain acceptance of a new technology or system, enable early adoption, 
demonstrate leadership and/or reward good behavior. Required policies (i.e. mandates) provide the 
level of penetration required to make a significant impact on reducing GHG emissions towards carbon 
neutrality. But mandates can take as much as 5 years to reach full potential and require significant 
regulatory oversight. As new policies are implemented these challenges need to be factored into policy 
planning.  

Ultimately decarbonization will require a transition from the use of fossil fuels in buildings. In the 
absence of sufficient state and federal policy to achieve deep decarbonization the City will likely need to 
require the phaseout of fossil fuels in the next 30. This requires a policy regime that facilitates 
electrification to the greatest extent feasible and mandate the use of renewable fuels where fuels are 
used. An effective policy would this seek to pursue two objectives 

1. Buildings must shift to non-fossil fuel-based energy systems. 
2. Buildings energy demand should be reduced to enable the implementation of non-fossil fuel 

energy systems. 

In effect this is a prescriptive mandate to decarbonize that would necessitate buildings performance to 
meet potential cost and feasibility constraints of electrification and fuel decarbonization.  

Figure 40 and Figure 41 reflect an aggressive an illustrative deep decarbonization pathway in the 
buildings sector. Here new construction is assumed to meet net zero requirements phased in across 
building classes throughout the 2020’s. Building electrification and deep energy (50% EUI reductions) 
retrofits are assumed to proceed at a rate of 3% of the building stock per year starting in 2020 reaching 
a maximum penetration of 85% by 2050. Electrification with no grid improvement has the potential to 
increase emissions (hence the observed crossover in Figure 40) due to the current higher carbon 
intensity of electricity than natural gas. However, a cleaner grid such as the one imposed by the Clean 
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Energy Standard, or a 100% renewable procurement strategy can unlock significant efficiency savings. 
For Boston to achieve its interim goals of 50% GHG reduction by 2030, an earlier procurement strategy 
will be necessary due to the limitations of decarbonization in the transportation and buildings sectors. 
Figure 42. Shows the impact of such a procurement on the emissions trajectory. 

In any scenario, getting off of fossil fuels will be a challenge for some buildings. These may include 
historic buildings, deeply entrenched energy equipment or systems, such as district energy, backup 
services, cooking, aesthetic uses of natural gas, or other processes. Either renewable fuels or offsets will 
be needed to decarbonize these systems. 

 

Figure 40. Illustrative Pathway to Eliminating Carbon Emissions in the Buildings Sector  
The key to carbon-neutrality in buildings is the combination of deep energy efficiency and the electrification of heating and cooking with clean 
electricity. Wedges represent the impact of specific, consecutive actions starting from today’s conditions (Baseline (Current Grid)), which 
reflects expected growth in buildings and current policies in place. Deep efficiency performance requirements (light blue) include strong new 
building performance standards, and deep energy retrofits aligned with a critical intervention point (e.g., major renovation) in a building’s life 
cycle. Deep energy retrofits target a 50% reduction in energy use per square foot. Electrification includes the deployment of heat pumps in 
residential and some commercial buildings, electric boilers in larger buildings, and the electrification of most hot water and cooking services. 
Source: model calculations 
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Figure 41. The Steps to Carbon Neutrality in Boston’s Buildings  
The steps reflect the GHG reduction potential of specific consecutive actions starting from today’s conditions. Source: model calculations 

 

 

Figure 42. Illustrative pathway for buildings sector decarbonization under an early (Zero by 2030) 
electricity procurement strategy 
Source: model calculations 
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9.1 THE CHALLENGE AND OPPORTUNITY OF COMPREHENSIVE ELECTRIFICATION AND EFFICIENCY 
The decarbonization of the city’s electricity supply is an a priori requirement for carbon neutrality. This 
transition will result in electricity becoming a less carbon intensive fuel. A city-wide renewable 
procurement strategy can by itself cut emissions in the building sector in half. What remains is a 
dependence on fossil fuels, mostly natural gas and a nominal fraction of oil. Decoupling the city from 
fossil fuels will require electrifying a good portion of the buildings stock’s thermal demand and procuring 
renewable fuels for those which cannot be easily electrified. The impacts of electrification on the 
demand for electricity are briefly addressed here, but is evaluated in detail in the Carbon Free Boston 
Energy Sector Report, which also discusses potential supplies of renewable natural gas and hydrogen.  

A challenging aspect to electrification is its potential to significantly increase the demand for electricity. 
This has consequences in the actual supply of electricity and delivery. Table 11 shows changes in energy 
consumption by fuel type as a result of a thermal electrification strategy and a strategy that combines 
deep energy retrofits with electrification. Under both scenarios, natural gas and oil fuel use drops 
considerably. The remaining fuel use is predominantly for cooking, backup, and supplemental heating 
services. Some of these services could conceivably be electrified now. The increase in electric demand is 
a fraction of the removed heat. This is a testament to the potential of highly efficient heat pumps which 
are modeled to provide 3.2 times the thermal energy than the electricity required to operate them. 
Under the electrification measure, a small number of typically-large building types are assumed to have 
been converted to electric boilers (99% AFUE). This significantly increases demand for these building 
types. The small increase in electricity, relative to the decline in fuel use, is also attributable to the 
conversion of electric-resistance heating systems to the air source heat pumps, and the inefficiency of 
older fuel-based boilers.  

Table 11. 2050 Impacts of Energy Demand under a full implementation of thermal electrification and 
deep efficiency measures  
Source: Energy data is from Institute for Sustainable Energy model calculations. Energy cost estimates are obtained from [23]  

  
Electricity 

(GWh) 
Natural Gas 

(GWh) 
Oil 

(GWh) 
City-Wide Energy 

Cost ($ bn) 
2050 Baseline  7,200 10,040 1,689 2.11 
2050 Electrification Only 9,340 3,272 317 2.17 
2050 Efficiency + Electrification 6,452 2,878 24 1.50 

Under the electrification only scenario electric demand increases by about 30%. This increase is 
significant, but not divergent from historical trends in electric demand growth. Deep efficiency measures 
can unlock substantial energy cost savings. Building electrification increases peak electricity demand 
drastically on cold days (see Energy Chapter), even under deep efficiency measures. These two scenarios 
thus represent potential extremes in which electrification would necessitate investment in either 
transmission, distribution, storage and generation capacity (electrification only) or into energy 
conservation measure. The former strategy reflects small incremental investment with no-long-term 
cost savings, while the latter reflects large upfront investment that results in long-term cost savings.  

The optimal strategy is likely somewhere in the middle, as even deep energy conservation efforts will 
still require the management of peak electricity demands on cold days that currently exceeded the low-
carbon capacity of the regional grid. 
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The capital costs of electrification are expected to be relatively small, especially if treated as 
incremental. The cost of heat pumps and electric boilers are comparable to natural gas furnaces and 
boilers. Despite this small cost, subsides could be effective at ensuring uptake and technology 
acceptance, especially if policies prohibiting the replacement of fossil fuel thermal systems are put into 
place. However, to achieve deep penetration additional requirements are needed.  

Our illustrative example factors in a phase out of oil by 2030. These buildings are assumed to be 
electrified, but represent a small part of the stock and one that is predominantly residential. These 
residences will likely have modestly cheaper energy bills as a result and represent a priority target for 
electrification and efficiency efforts. Phasing out natural gas will at some point require a significant 
incentive for electrification at the end of life of existing systems or a mandate prohibiting the installation 
of new systems in buildings that can be feasibly electrified. Such an approach could be also be applied to 
cooking and hot water equipment in addition to heating systems. 

Feasible electrification will require buildings to be retrofitted with ECMs to complement of heat pumps 
in a way that ensures their functionality, keeps operating costs low and can ensure high levels of air 
quality. The core concern is functionality, which is steadily improving for heat pumps and is likely to be 
sufficient in the future. The operational costs of thermal electrification, are going to be influenced by 
how future increases in peak electricity demand gets passed on to the ratepayer. As these costs 
increase, the potential benefits of building energy conservation measures will also increase.  

Such action may not require achieving the 50% target associated with a deep energy retrofit, but 
comprehensive energy conservation efforts that are less than 50% can still reduce costs and improve 
building health.  The costs of comprehensive or deep energy retrofits are uncertain. Our incremental 
cost estimates (6-8 $/sf) suggest a relatively low price for such actions. Other estimates on the cost of 
deep energy retrofits range dramatically and often do not report the incremental or marginal cost of 
energy efficiency measures [40]. It is thus difficult to get accurate estimates of the true cost of deep 
efficiency measures. A joint effort by National Grid and NREL to deep energy retrofit single family and 
small multifamily homes in the region resulted in total costs of $16-$54 per square foot. The 
Department of Energy’s Advanced Energy Retrofit Guidelines modeled 50% EUI reduction targets at a 
cost of $4-6 per square foot for office and retail spaces [12], [13].  

Achieving such costs is a likely best-case scenario that is only feasible if comprehensive energy 
conservation actions were conducted at a significant building intervention point such as a major 
renovation. Timing comprehensive action with such an intervention point can also minimize disruption. 
Typically, such interventions happen on a 30-year cycle or at a rate of 3.3% a year. For Boston this would 
amount to nearly 3,000 buildings a year, most of which would be residential.  Table 12 lists a number of 
alternative intervention points which may be use used to reduce potential disruption.   

Conceivably, a mandate to couple a deep energy retrofit with such an intervention that is supported by 
financial incentives to cover the gap such actions would require a minimum $4-5 billion of funding 
support, but costs cost likely become higher. There is reason to assume that the cost of deep energy 
retrofits can decline substantially to reach economical price targets. Currently, deep energy retrofits are 
rare, in part, due to the concerns about the cost. As the industry scales up, knowledge about building 
behavior and best practices will increase and drive down costs. Additionally, new methods may be 
developed. For example, the EnergySprong approach developed in partnership with the EU’s Transition 
Zero programs is seeking to use prefabrication methods to lower the cost of deep energy retrofits. Such 
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a manufacturing-based approach reduces the labor-demanded by retrofits and thus the cost. Such cost 
reductions have been observed in other industries such as solar and wind. Unlocking this potential 
requires early investment into process development and technological learning.  

Table 12. ADEG’s Identified Opportunities in a Buildings Life to Perform a Deep Retrofit 
Source: Advanced Energy Retrofit Guide: Office [13]  

Building Event  Opportunity 

Roof, window and 
siding replacement 

Planned roof, window and siding replacements provide opportunities for significant 
improvements in daylighting and efficiency at small incremental costs. These improvements in 
turn allow for reduced artificial lighting, and a smaller, more efficient HVAC system. 

End (or near end) of 
life major equipment 
replacement 

Major equipment replacements provide an opportunity to also address the envelope and other 
building systems. After reducing thermal and electrical loads, the marginal cost of replacing the 
major equipment with smaller equipment, or no equipment at all, can be negative, as seen in the 
Empire State Building Case Study. 

Upgrades to meet 
code 

Life safety upgrades may require substantial disruption and cost, enough that the incremental 
investment and effort to radically improve the building efficiency becomes not only feasible but 
also profitable. 

New owner or 
refinancing 

New ownership or refinancing can include building upgrades as part of the transaction. This may 
offer a lower interest rate than is normally available for upgrades, which improves the cost-
effectiveness of a deep retrofit. 

Major occupancy 
change 

A major occupancy change presents a prime opportunity for a deep retrofit, for two reasons. 
First, a deep retrofit can generate layouts that improve energy and space efficiency, while 
creating more leasable space by downsizing mechanical equipment. Second, owners may be able 
to leverage tenant investment in the fit-out. 

Building greening  
An owner or tenant-driven desire to achieve green building or energy certification may require 
significant work on the building and its systems, which may then make a deep retrofit 
economical. 

Large utility 
incentives 

Many utilities will subsidize the cost for a deep retrofit. In some regions, the incentives might be 
large enough to make the deep retrofit economical. 

Fixing an 
“energy hog” 

Upon examination, some buildings are found to have such high energy costs the deep retrofits 
have good economics without leveraging any other building event. 

Portfolio planning  

The cost-effectiveness of a deep retrofit may be improved when many similar measures are 
implemented across a portfolio of buildings. This is particularly true when buildings in the 
portfolio share similar characteristics, allowing both the design and construction teams to achieve 
some efficiencies of scale. 

9.2 HOLISTIC APPROACH TO POLICY IS NEEDED TO ACHIEVE NEUTRALITY 
Boston’s building stock is old and diverse. To make the buildings stock last though the 21st century and 
its challenges, significant investment and comprehensive action will be needed to make these buildings 
more energy efficient, carbon neutral, healthy, and affordable. Comprehensive, deep or holistic actions 
have the potential to deliver these benefits.  Generally, the city’s building stock can be divided into two 
categories: the mid-size to large size commercial and residential which comprise the bulk of the city’s 
floorspace; and the small residential which dominate the city’s individual buildings (Figure 43). These 
two segments will need to be regulated differently.  

Since the large buildings stock tends to have more potential time points of intervention (e.g., those 
listed in Table 12), this stock may be best suited for medium-term electrification and performance 
requirements. Here, the City could target its poorest performing buildings first, but set additional targets 
for ensuring that the commercial stock would be electrified to the greatest extent practical. Some 
building classes may need more time: laboratory and hospital buildings may be the hardest building 
segment to achieve these goals in. However, the commercial space represents much of the city’s low 
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hanging fruit in terms of economically reducing energy consumption. This space could also include a 
number of City owned buildings and public housing. The retrofit of these buildings could provide 
significant ancillary benefits in terms of municipal cost savings and health outcomes. 

Figure 43. Illustrative policies for regulating residential (left building) and commercial (right building) 

 

The small residential stock will be more of a challenge due the smaller building size – where an action 
will typically have a smaller impact. Economies of scale for comprehensive building retrofits and 
electrification could be achieved if a local industry was fertilized by pilot projects and workforce 
development. It would likely take a longer time for this industry to get off the ground for the small 
residential stock, but it could leverage the capacity of the industry developed for the large building 
stock. In the near term, thermal electrification can be pursued by encouraging the deployment of heat 
pumps in the residential sector to supplement existing systems.  

To manage growth associated with projected new construction, it is imperative that these new buildings 
achieve net zero emissions, not net zero energy. This requires both energy efficiency and electrification. 
Until a net zero emissions policy is implemented, new construction will continue to add to the city’s GHG 
emissions profile and will require these buildings be decarbonized in the future likely at a higher cost 
than if it was done now.  

The pathway to carbon neutrality is not easy and requires a level of commitment and action by all 
building types and actors in the city. The technology, systems and strategies that currently exist, when 
accelerated, can make a considerable contribution to lowering the city’s GHG emissions despite a 
projection for continued growth. However, those alone will not meet the goal. While the challenge is 
daunting, the end result are buildings that are dramatically more energy efficient than today and use 
fossil-fuel free electricity for their energy needs. These buildings are healthier, more resilient and 
require less money to operate and maintain.   
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Matt Foran National Grid 
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ABBREVIATIONS 
AEDGs Advanced Energy Design Guidelines 
BBRS Massachusetts Board of Building Regulation and Standards 
BEM Building Energy Modeling 
BERDO Building Energy Reporting and Disclosure Ordinance  
BOC Building Operator Certification  
BPDA Boston Planning and Development Authority 
Btu British Thermal Unit 
CBECS Commercial Buildings Energy Consumption Survey  
CCSI Code Compliance Support Initiative  
CES Massachusetts Clean Energy Standard 
CO2 Carbon Dioxide 
CO2e Carbon Dioxide Equivalent 
COP Coefficient of Performance  
CV[RMSE] Coefficient of Variation of the Root Mean Squared Error 
DOE US Department of Energy 
EBCx Existing Building Commissioning 
ECM Energy Conservation Measure 
EEAC Massachusetts Energy Efficiency Advisory Council  
EUI Energy Use Intensity 
GHG Greenhouse Gas 
HVAC Heating, Ventilation, and Air Conditioning 
IECC International Energy Conservation Code  
IGBC Interagency Green Building Committee  
ISD Inspectional Services Department  
LEED Leadership in Energy & Environmental Design  
MassCEC Massachusetts Clean Energy Center 
NMBE Normalized Mean Bias Error  
PTS Renewable Energy Production Tracking System  
PV Photovoltaic 
RECS Residential Energy Consumption Survey 
t CO2e Tonne (Metric ton) of CO2e 
TMY Typical Meteorological Year 
W  Watt  
Wh Watt-hour 
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